高效金属-有机框架的工程设计用于光催化CO2还原

彭国强 李秀艳 李敏 苏志博 胡发露 周国伟

引用本文: 彭国强, 李秀艳, 李敏, 苏志博, 胡发露, 周国伟. 高效金属-有机框架的工程设计用于光催化CO2还原[J]. 物理化学学报, 2026, 42(2): 100164. doi: 10.1016/j.actphy.2025.100164 shu
Citation:  Guoqiang Peng, Xiuyan Li, Min Li, Zhibo Su, Falu Hu, Guowei Zhou. Engineering efficient metal-organic frameworks for photocatalytic CO2 reduction[J]. Acta Physico-Chimica Sinica, 2026, 42(2): 100164. doi: 10.1016/j.actphy.2025.100164 shu

高效金属-有机框架的工程设计用于光催化CO2还原

    通讯作者: Email: faluhu@qlu.edu.cn (胡发露); gwzhou@qlu.edu.cn (周国伟)
摘要: 过去几十年间,过量CO2排放引发了诸多环境问题。太阳能驱动的光催化CO2转化为高附加值化学品,为能源与环境问题提供了极具前景的解决方案。近年来,一种由有机配体与金属离子/簇自组装形成的多孔配位聚合物——金属有机框架(MOFs),因其优异的CO2捕获能力和可调控结构,在光催化转化CO2领域获得广泛探索。然而,开发具有高效CO2转化性能的MOFs仍面临重大挑战。本综述系统阐述了构建高效光催化CO2还原MOFs的四大关键工程策略:配体工程、次级构筑单元(SBU)工程、缺陷工程和形貌工程。这些策略聚焦于优化MOFs的关键结构特性,这些特性对其光催化CO2还原性能(特别是光吸收能力、CO2吸附能力及电荷分离传输效率)具有决定性影响。所建立的设计原则与调控策略展现出广泛适用性,可拓展用于指导多种MOF基功能体系的理性设计。此外,我们批判性评估了各策略的优缺点,着重阐明其特定贡献与固有局限性。最后,我们展望了MOF基光催化CO2还原的发展前景,并指明了未来具有潜力的研究方向。

English

    1. [1]

      A. Reisinger, J. Fuglestvedt, A. Pirani, O. Geden, C. Jones, S. Maharaj, E. Poloczanska, A. Morelli, T. Johansen, C. Adler, R. Betts, S. Seneviratne, Annu. Rev. Environ. Resour. 50 (2025) 1.1, https://doi.org/10.1146/annurev-environ-111523-102029. doi: 10.1146/annurev-environ-111523-102029

    2. [2]

      H. McLaughlin, A. Littlefield, M. Menefee, A. Kinzer, T. Hull, B. Sovacool, M. Bazilian, J. Kim, S. Griffiths, Renew. Sust. Energ. Rev. 183 (2023) 113215, https://doi.org/10.1016/j.rser.2023.113215. doi: 10.1016/j.rser.2023.113215

    3. [3]

      H. Chen, Y. Zheng, J. Li, L. Li, X. Wang, ACS Nano. 17 (2023) 9763, https://doi.org/10.1021/acsnano.3c01062. doi: 10.1021/acsnano.3c01062

    4. [4]

      W. Gao, S. Liang, R. Wang, Q. Jiang, Y. Zhang, Q. Zheng, B. Xie, C. Toe, X. Zhu, J. Wang, et al., Chem. Soc. Rev. 49 (2020) 8584, https://doi.org/10.1039/D0CS00025F. doi: 10.1039/D0CS00025F

    5. [5]

      T. Senftle, E. Carter, Acc. Chem. Res. 50 (2017) 472, https://doi.org/10.1021/acs.accounts.6b00479. doi: 10.1021/acs.accounts.6b00479

    6. [6]

      F. Zhao, B. Zhu, L. Wang, J. Yu, J. Colloid Interface Sci. 659 (2024) 486, https://doi.org/10.1016/j.jcis.2023.12.173. doi: 10.1016/j.jcis.2023.12.173

    7. [7]

      C. Ehlig-Economides, Curr. Opin. Chem. Eng. 42 (2023) 100957, https://doi.org/10.1016/j.coche.2023.100957. doi: 10.1016/j.coche.2023.100957

    8. [8]

      J. Li, S. Jiang, S. Song, Chin. J. Catal. 59 (2024) 1, https://doi.org/10.1016/S1872-2067(23)64647-9. doi: 10.1016/S1872-2067(23)64647-9

    9. [9]

      S. Das, J. Pérez-Ramírez, J. Gong, N. Dewangan, K. Hidajat, B. Gates, S. Kawi, Chem. Soc. Rev. 49 (2020) 2937, https://doi.org/10.1039/C9CS00713J. doi: 10.1039/C9CS00713J

    10. [10]

      S. Wang, L. Wang, D. Wang, Y. Li, Energy Environ. Sci. 16 (2023) 2759, https://doi.org/10.1039/D3EE00037K. doi: 10.1039/D3EE00037K

    11. [11]

      L. Qiu, H. Li, L. He, Acc. Chem. Res. 56 (2023) 2225, https://doi.org/10.1021/acs.accounts.3c00316. doi: 10.1021/acs.accounts.3c00316

    12. [12]

      J. Wang, D. Liu, M. Li, X. Gu, S. Wu, J. Zhang, Chin. J. Catal. 63 (2024) 202, https://doi.org/10.1016/S1872-2067(24)60074-4. doi: 10.1016/S1872-2067(24)60074-4

    13. [13]

      Q. Chen, X. Wang, Y. Zhou, Y. Tan, H. Li, J. Fu, M. Liu, Adv. Mater. 36 (2024) 2303902, https://doi.org/10.1002/adma.202303902. doi: 10.1002/adma.202303902

    14. [14]

      X. Wang, Q. Chen, Y. Zhou, Y. Tan, Y. Wang, H. Li, Y. Chen, M. Sayed, R. Geioushy, N. Allam, J. Fu, Y. Sun, M. Liu, Nano Res. 17 (2024) 1101, https://doi.org/10.1007/s12274-023-5910-9. doi: 10.1007/s12274-023-5910-9

    15. [15]

      X. She, Y. Wang, H. Xu, S. Chi Edman Tsang, S. Lau, Angew. Chem. Int. Ed. 61 (2022) e202211396, https://doi.org/10.1002/anie.202211396. doi: 10.1002/anie.202211396

    16. [16]

      M. Liu, G. Liang, N. Zhang, T. Li, L. Diao, P. Lu, X. Zhao, D. Li, D. Yang, Chin. J. Struct. Chem. 43 (2024) 100359, https://doi.org/10.1016/j.cjsc.2024.100359. doi: 10.1016/j.cjsc.2024.100359

    17. [17]

      R. Li, C. Tung, B. Zhu, Y. Lin, F. Tian, T. Liu, H. Chen, P. Kuang, J. Yu, J. Colloid Interface Sci. 674 (2024) 326, https://doi.org/10.1016/j.jcis.2024.06.176. doi: 10.1016/j.jcis.2024.06.176

    18. [18]

      R. Li, F. Xie, P. Kuang, T. Liu, J. Yu, Small 20 (2024) 2402867, https://doi.org/10.1002/smll.202402867. doi: 10.1002/smll.202402867

    19. [19]

      X. Zhang, K. Liu, J. Fu, H. Li, H. Pan, J. Hu, M. Liu, Front. Phys. 16 (2021) 63500, https://doi.org/10.1007/s11467-021-1079-4. doi: 10.1007/s11467-021-1079-4

    20. [20]

      H. Choi, Y. Choi, J. Kim, J. Lee, E. Kang, J. Yun, H. Park, M. Kim, H. Ullah, K. Shin, H. Kim, Chem. Eng. J. 503 (2025) 158163, https://doi.org/10.1016/j.cej.2024.158163. doi: 10.1016/j.cej.2024.158163

    21. [21]

      Y. Guo, T. Li, D. Li, J. Cheng, Renew. Sust. Energ. Rev. 189 (2024) 114053, https://doi.org/10.1016/j.rser.2023.114053. doi: 10.1016/j.rser.2023.114053

    22. [22]

      F. Wang, Y. Liu, M. Peng, M. Yang, Y. Chen, J. Du, A. Chen, ACS Catal. 14 (2024) 16434, https://doi.org/10.1021/acscatal.4c06065. doi: 10.1021/acscatal.4c06065

    23. [23]

      Y. Xu, Y. Yang, M. Wu, X. Yang, X. Bie, S. Zhang, Q. Li, Y. Zhang, C. Zhang, R. Przekop, B. Sztorch, D. Brzakalski, H. Zhou, Acta Phys. Chim. Sin. 40 (2024) 2304003, https://doi.org/10.3866/PKU.WHXB202304003. doi: 10.3866/PKU.WHXB202304003

    24. [24]

      H. Cao, Y. Li, Q. Hu, J. Wu, M. Zhong, L. Ji, Chem. Eng. J. 481 (2024) 148551, https://doi.org/10.1016/j.cej.2024.148551. doi: 10.1016/j.cej.2024.148551

    25. [25]

      M. Suvarna, T. Araújo, J. Pérez-Ramírez, Appl. Catal. B: Environ. 315 (2022) 121530, https://doi.org/10.1016/j.apcatb.2022.121530. doi: 10.1016/j.apcatb.2022.121530

    26. [26]

      D. Koshy, S. Nathan, A. Asundi, A. Abdellah, S. Dull, D. Cullen, D. Higgins, Z. Bao, S. Bent, T. Jaramillo, Angew. Chem. Int. Ed. 60 (2021) 17472, https://doi.org/10.1002/anie.202101326. doi: 10.1002/anie.202101326

    27. [27]

      Z. Zhang, X. Wang, H. Tang, D. Li, J. Xu, Chin. J. Catal. 55 (2023) 227, https://doi.org/10.1016/S1872-2067(23)64549-8. doi: 10.1016/S1872-2067(23)64549-8

    28. [28]

      F. Wang, X. Li, K. Lu, M. Zhou, C. Yu, K. Yang, Chin. J. Catal. 63 (2024) 190, https://doi.org/10.1016/S1872-2067(24)60066-5. doi: 10.1016/S1872-2067(24)60066-5

    29. [29]

      S. Xu, F. Xiao, Chin. J. Struct. Chem. 42 (2023) 100173, https://doi.org/10.1016/j.cjsc.2023.100173. doi: 10.1016/j.cjsc.2023.100173

    30. [30]

      F. Kolahdouzan, N. Goodarzi, M. Setayeshmehr, D. Mousavi, A. Moshfegh, Chin. J. Catal. 70 (2025) 230, https://doi.org/10.1016/S1872-2067(24)60214-7. doi: 10.1016/S1872-2067(24)60214-7

    31. [31]

      J. Yu, X. Li, J. Fu, K. Dai, Sci. China Mater. 67 (2024) 379, https://doi.org/10.1007/s40843-024-2779-5. doi: 10.1007/s40843-024-2779-5

    32. [32]

      J. Lei, N. Zhou, S. Sang, S. Meng, J. Low, Y. Li, Chin, J, Catal. 65 (2024) 163, https://doi.org/10.1016/S1872-2067(24)60109-9. doi: 10.1016/S1872-2067(24)60109-9

    33. [33]

      X. Wang, S. Dong, K. Qi, V. Popkov, X. Xiang, Acta Phys. Chim. Sin. 40 (2024) 2408005, https://doi.org/10.3866/PKU.WHXB202408005. doi: 10.3866/PKU.WHXB202408005

    34. [34]

      Z. Zhang, B. Rhimi, Z. Liu, M. Zhou, G. Deng, W. Wei, L. Mao, H. Li, Z. Jiang, Acta Phys. Chim. Sin. 40 (2024) 2406029, https://doi.org/10.3866/PKU.WHXB202406029. doi: 10.3866/PKU.WHXB202406029

    35. [35]

      Z. Zhou, W. Guo, T. Yang, D. Zheng, Y. Fang, X. Lin, Y. Hou, G. Zhang, S. Wang, Chin. J. Struct. Chem. 43 (2024) 100245, https://doi.org/10.1016/j.cjsc.2024.100245. doi: 10.1016/j.cjsc.2024.100245

    36. [36]

      S. Fang, M. Rahaman, J. Bharti, E. Reisner, M. Robert, G. Ozin, Y. Hu, Nat. Rev. Method. Prime. 3 (2023) 61, https://doi.org/10.1038/s43586-023-00243-w. doi: 10.1038/s43586-023-00243-w

    37. [37]

      X. Deng, J. Zhang, K. Qi, G. Liang, F. Xu, J. Yu, Nat. Commun. 15 (2024) 4807, https://doi.org/10.1038/s41467-024-49004-7. doi: 10.1038/s41467-024-49004-7

    38. [38]

      X. Hou, C. Ai, S. Yang, J. Zhang, Y. Zhang, J. Liu, J. Materiomics. 11 (2025) 100998, https://doi.org/10.1016/j.jmat.2024.100998. doi: 10.1016/j.jmat.2024.100998

    39. [39]

      G. Pan, Z. Xia, N. Wang, H. Sun, Z. Guo, Y. Li, X. Li, Chin. J. Struct. Chem. 43 (2024) 100463, https://doi.org/10.1016/j.cjsc.2024.100463. doi: 10.1016/j.cjsc.2024.100463

    40. [40]

      X. Fu, H. Huang, G. Tang, J. Zhang, J. Sheng, H. Tang, Chin. J. Struct. Chem. 43 (2024) 100214, https://doi.org/10.1016/j.cjsc.2024.100214. doi: 10.1016/j.cjsc.2024.100214

    41. [41]

      K. Huang, G. Liang, S. Sun, H. Hu, X. Peng, R. Shen, X. Li, J. Mater. Sci. Technol. 193 (2024) 98, https://doi.org/10.1016/j.jmst.2024.01.034. doi: 10.1016/j.jmst.2024.01.034

    42. [42]

      D. Chen, Z. Wang, J. Fu, J. Zhang, K. Dai, Sci. China Mater. 67 (2024) 541, https://doi.org/10.1007/s40843-023-2770-8. doi: 10.1007/s40843-023-2770-8

    43. [43]

      F. Xu, Y. He, J. Zhang, G. Liang, C. Liu, J. Yu, Angew. Chem. Int. Ed. 64 (2024) e202414672, https://doi.org/10.1002/anie.202414672. doi: 10.1002/anie.202414672

    44. [44]

      L. Zhu, F. Hu, B. Sun, S. Gu, T. Gao, G. Zhou. Adv. Sustainable Syst. 7 (2023) 2200394, https://doi.org/10.1002/adsu.202200394. doi: 10.1002/adsu.202200394

    45. [45]

      F. Liu, Z. Liu, G. Zhou, T. Gao, W. Liu, B. Sun, Acta Phys. Chim. Sin. 41 (2025) 100071, https://doi.org/10.1016/j.actphy.2025.100071. doi: 10.1016/j.actphy.2025.100071

    46. [46]

      F. Liu, B. Sun, Z. Liu, Y. Wei, T. Gao, G. Zhou, Chin. J. Catal. 64 (2024) 152, https://doi.org/10.1016/S1872-2067(24)60099-9. doi: 10.1016/S1872-2067(24)60099-9

    47. [47]

      B. Zhang, F. Liu, B. Sun, T. Gao, G. Zhou, Chin. J. Catal. 59 (2024) 334, https://doi.org/10.1016/S1872-2067(23)64633-9. doi: 10.1016/S1872-2067(23)64633-9

    48. [48]

      D. Liu, B. Sun, S. Bai, T. Gao, G. Zhou, Chin. J. Catal. 50 (2023) 273, https://doi.org/10.1016/S1872-2067(23)64462-6. doi: 10.1016/S1872-2067(23)64462-6

    49. [49]

      F. Xie, C. Bie, J. Sun, Z. Zhang, B. Zhu, J. Mater. Sci. Technol. 170 (2024) 87, https://doi.org/10.1016/j.jmst.2023.06.028. doi: 10.1016/j.jmst.2023.06.028

    50. [50]

      B. Liu, J. Cai, J. Zhang, H. Tan, B. Cheng, J. Xu, Chin. J. Catal. 51 (2023) 204, https://doi.org/10.1016/S1872-2067(23)64466-3. doi: 10.1016/S1872-2067(23)64466-3

    51. [51]

      M. Cabrero-Antonino, A. Uscategui-Linares, R. Ramírez‐Grau, P. García‐Aznar, G. Sastre, J. Zhang, S. Goberna‐Ferrón, J. Albero, J. Yu, H. García, F. Xu, A. Primo, Angew. Chem. Int. Ed. 64 (2025) e202503860, https://doi.org/10.1002/anie.202503860. doi: 10.1002/anie.202503860

    52. [52]

      C. Chen, X. Zhang, E. Liu, J. Xu, J. Sun, H. Shi, J. Mater. Sci. Technol. 198 (2024) 1, https://doi.org/10.1016/j.jmst.2024.01.063. doi: 10.1016/j.jmst.2024.01.063

    53. [53]

      R. Chen, H. Zhang, Y. Dong, H. Shi, J. Mater. Sci. Technol. 170 (2024) 11, https://doi.org/10.1016/j.jmst.2023.07.005. doi: 10.1016/j.jmst.2023.07.005

    54. [54]

      S. Li, K. Rong, X. Wang, C. Shen, F. Yang, Q. Zhang, Acta Phys. Chim. Sin. 40 (2024) 2403005, https://doi.org/10.3866/PKU.WHXB202403005. doi: 10.3866/PKU.WHXB202403005

    55. [55]

      B. Zhang, B. Sun, F. Liu, T. Gao, G. Zhou, Sci. China Mater. 67 (2024) 424, https://doi.org/10.1007/s40843-023-2754-8. doi: 10.1007/s40843-023-2754-8

    56. [56]

      S. Li, X. Li, Y. Liu, P. Zhang, J. Zhang, B. Zhang, Chin. J. Catal. 72 (2025) 130, https://doi.org/10.1016/S1872-2067(25)64652-3. doi: 10.1016/S1872-2067(25)64652-3

    57. [57]

      T. Yang, B. Wang, P. Chu, J. Xia, H. Li, Chin. J. Catal. 59 (2024) 204, https://doi.org/10.1016/S1872-2067(24)60003-3. doi: 10.1016/S1872-2067(24)60003-3

    58. [58]

      Y. Wang, Y. Pan, H. Zhu, Y. Xiang, R. Han, R. Huang, C. Du, C. Pan, Acta Phys. Chim. Sin. 40 (2024) 2304050, https://doi.org/10.3866/PKU.WHXB202304050. doi: 10.3866/PKU.WHXB202304050

    59. [59]

      Z. Zhu, X. Xing, Q. Qi, W. Shen, H. Wu, D. Li, B. Li, J. Liang, X. Tang, J. Zhao, H. Li, P. Huo, Chin. J. Struct. Chem. 42 (2023) 100194, https://doi.org/10.1016/j.cjsc.2023.100194. doi: 10.1016/j.cjsc.2023.100194

    60. [60]

      X. Hu, H. Zhang, Y. Wang, B. Shiu, J. Lin, S. Zhang, C. Lou, T. Li, Chem. Eng. J. 450 (2022) 138129, https://doi.org/10.1016/j.cej.2022.138129. doi: 10.1016/j.cej.2022.138129

    61. [61]

      J. Karges, Angew. Chem. Int. Ed. 61 (2021) e202112236, https://doi.org/10.1002/anie.202112236. doi: 10.1002/anie.202112236

    62. [62]

      K. Teng, L. Niu, Q. Yang, J. Am. Chem. Soc. 145 (2023) 4081, https://doi.org/10.1021/jacs.2c11868. doi: 10.1021/jacs.2c11868

    63. [63]

      Q. Yao, J. Fan, S. Long, X. Zhao, H. Li, J. Du, K. Shao, X. Peng, Chem. 8 (2022) 197, https://doi.org/10.1016/j.chempr.2021.10.006. doi: 10.1016/j.chempr.2021.10.006

    64. [64]

      C. Zhang, X. Hu, L. Jin, L. Lin, H. Lin, Z. Yang, W. Huang, Adv. Healthcare. Mater. 12 (2023) 2300530, https://doi.org/10.1002/adhm.202300530. doi: 10.1002/adhm.202300530

    65. [65]

      L. Liang, J. Cao, J. Huan, M. Xing, Sci. China Mater. 67 (2024) 382, https://doi.org/10.1007/s40843-023-2722-y. doi: 10.1007/s40843-023-2722-y

    66. [66]

      R. Zhang, Z. Chen, Y. Li, D. Chen, T. Wang, B. Wang, Q. Zhou, S. Cheng, D. Xu, X. Wang, L. Niu, J. Tu, Q. Wu, J. Mater. Sci. Technol. 192 (2024) 173, https://doi.org/10.1016/j.jmst.2024.01.018. doi: 10.1016/j.jmst.2024.01.018

    67. [67]

      P. Li, Y. Zhang, C. Wang, S. Wang, W. Yan, D. Xiao, J. Kang, D. Yang, H. Wu, A. Dong, Rare Met. 42 (2023) 4167, https://doi.org/10.1007/s12598-023-02481-z. doi: 10.1007/s12598-023-02481-z

    68. [68]

      A. Fujishima, K. Honda, Nature 238 (1972) 37, https://doi.org/10.1038/238037a0. doi: 10.1038/238037a0

    69. [69]

      R. Wang, M. Shi, F. Xu, Y. Qiu, P. Zhang, K. Shen, Q. Zhao, J. Yu, Y. Zhang, Nat. Commun. 11 (2020) 4465, https://doi.org/10.1038/s41467-020-18267-1. doi: 10.1038/s41467-020-18267-1

    70. [70]

      B. He, C. Luo, Z. Wang, L. Zhang, J. Yu, Appl. Catal. B: Environ. 323 (2023) 122200, https://doi.org/10.1016/j.apcatb.2022.122200. doi: 10.1016/j.apcatb.2022.122200

    71. [71]

      F. Xu, K. Meng, B. Cheng, S. Wang, J. Xu, J. Yu, Nat. Commun. 11 (2020) 4613, https://doi.org/10.1038/s41467-020-18350-7. doi: 10.1038/s41467-020-18350-7

    72. [72]

      W. Li, H. Yu, D. Qin, Q. Li, X. Song, H. Wang, Y. Ma, Y. Shang, Y. Wang, J. Li, Y. Zhu, Sep. Purif. Technol. 361 (2025) 131354, https://doi.org/10.1016/j.seppur.2024.131354. doi: 10.1016/j.seppur.2024.131354

    73. [73]

      W. Wang, S. Mei, H. Jiang, L. Wang, H. Tang, Q. Liu, Chin. J. Catal. 55 (2023) 137, https://doi.org/10.1016/S1872-2067(23)64551-6. doi: 10.1016/S1872-2067(23)64551-6

    74. [74]

      E. Lu, J. Tao, C. Yang, Y. Hou, J. Zhang, X. Wang, X. Fu, Acta Phys. Chim. Sin. 39 (2023) 2211029, https://doi.org/ 10.3866/PKU.WHXB202211029. doi: 10.3866/PKU.WHXB202211029

    75. [75]

      K. Meng, J. Zhang, B. Cheng, X. Ren, Z. Xia, F. Xu, L. Zhang, J. Yu, Adv. Mater. 36 (2024) 2406460, https://doi.org/10.1002/adma.202406460. doi: 10.1002/adma.202406460

    76. [76]

      M. Sayed, F. Xu, P. Kuang, J. Low, S. Wang, L. Zhang, J. Yu, Nat. Commun. 12 (2021) 4936, https://doi.org/10.1038/s41467-021-25007-6. doi: 10.1038/s41467-021-25007-6

    77. [77]

      X. Chen, Z. Wu, D. Liu, Z. Gao, Nanoscale Res. Lett. 12 (2017) 143, https://doi.org/10.1186/s11671-017-1904-4. doi: 10.1186/s11671-017-1904-4

    78. [78]

      H. Hakki, M. Sillanpää, Mater. Sci. Semicond. Process. 181 (2024) 108592, https://doi.org/10.1016/j.mssp.2024.108592. doi: 10.1016/j.mssp.2024.108592

    79. [79]

      L. Yang, S. Dong, J. Sun, J. Feng, Q. Wu, S. Sun, J. Hazard. Mater. 179 (2010) 438, https://doi.org/10.1016/j.jhazmat.2010.03.023. doi: 10.1016/j.jhazmat.2010.03.023

    80. [80]

      Q. Xiao, T. Liu, Q. Zhou, L. Li, C. Chang, D. Gao, D. Li, F. You, Chem. Res. Chin. Univ. 40 (2024) 484, https://doi.org/10.1007/s40242-024-4022-8. doi: 10.1007/s40242-024-4022-8

    81. [81]

      Y. Wu, C. Cheng, K. Qi, B. Cheng, J. Zhang, J. Yu, L. Zhang, Acta Phys. Chim. Sin. 40 (2024) 2406027, https://doi.org/10.3866/PKU.WHXB202406027. doi: 10.3866/PKU.WHXB202406027

    82. [82]

      A. Raza, S. Farhan, Z. Yu, Y. Wu, Acta Phys. Chim. Sin. 40 (2024) 2406020, https://doi.org/10.3866/PKU.WHXB202406020. doi: 10.3866/PKU.WHXB202406020

    83. [83]

      J. Kong, J. Zhang, S. Zhang, J. Xi, M. Shen, Acta Phys. Chim. Sin. 39 (2023) 2212039, https://doi.org/10.3866/PKU.WHXB202212039. doi: 10.3866/PKU.WHXB202212039

    84. [84]

      X. Wang, Y. Zhang, S. Jiang, J. Su, S. Song, J. Mater. Sci. Technol. 171 (2024) 94, https://doi.org/10.1016/j.jmst.2023.06.041. doi: 10.1016/j.jmst.2023.06.041

    85. [85]

      B. Zhu, J. Liu, J. Sun, F. Xie, H. Tan, B. Cheng, J. Zhang, J. Mater. Sci. Technol. 162 (2023) 90, https://doi.org/10.1016/j.jmst.2023.03.054. doi: 10.1016/j.jmst.2023.03.054

    86. [86]

      K. Yu, P. He, N. He, X. Li, C. Dong, B. Jiang, Y. Zou, X. Pei, Y. Li, L. Ma, Sci. China Mater. 66 (2023) 4680, https://doi.org/10.1007/s40843-023-2599-9. doi: 10.1007/s40843-023-2599-9

    87. [87]

      H. Liu, J. Peng, X. Zhang, K. Zheng, L. Zheng, K. Lv, Q. Li, P. Zhou, Chem. Eng. J. 504 (2025) 158618, https://doi.org/10.1016/j.cej.2024.158618. doi: 10.1016/j.cej.2024.158618

    88. [88]

      J. Yu, Y. Yu, P. Zhou, W. Xiao, B. Cheng, Appl. Catal. B: Environ. 156–157 (2014) 184, https://doi.org/10.1016/j.apcatb.2014.03.013. doi: 10.1016/j.apcatb.2014.03.013

    89. [89]

      Y. Chen, W. Zhong, F. Chen, P. Wang, J. Fan, H. Yu, J. Mater. Sci. Technol. 121 (2022) 19, https://doi.org/10.1016/j.jmst.2021.12.051. doi: 10.1016/j.jmst.2021.12.051

    90. [90]

      I. Ahmad, Y. Zou, J. Yan, Y. Liu, S. Shukrullah, M. Naz, H. Hussain, W. Khan, N. Khalid, Adv. Colloid. Interface. Sci. 311 (2023) 102830, https://doi.org/10.1016/j.cis.2022.102830. doi: 10.1016/j.cis.2022.102830

    91. [91]

      T. Luo, L. Gilmanova, S. Kaskel, Coord. Chem. Rev. 490 (2023) 215210, https://doi.org/10.1016/j.ccr.2023.215210. doi: 10.1016/j.ccr.2023.215210

    92. [92]

      B. Wang, G. Biesold, M. Zhang, Z. Lin, Chem. Soc. Rev. 50 (2021) 6914, https://doi.org/10.1039/D0CS01134G. doi: 10.1039/D0CS01134G

    93. [93]

      G. Lu, F. Chu, X. Huang, Y. Li, K. Liang, G. Wang, Coord. Chem. Rev. 450 (2022) 214240, https://doi.org/10.1016/j.ccr.2021.214240. doi: 10.1016/j.ccr.2021.214240

    94. [94]

      Y. Chen, D. Jiang, Acc. Chem. Res. 57 (2024) 3182, https://doi.org/10.1021/acs.accounts.4c00517. doi: 10.1021/acs.accounts.4c00517

    95. [95]

      L. Jiao, J. Seow, W. Skinner, Z. Wang, H. Jiang, Mater. Today 27 (2019) 43, https://doi.org/10.1016/j.mattod.2018.10.038. doi: 10.1016/j.mattod.2018.10.038

    96. [96]

      M. Usman, S. Mendiratta, K. Lu, Adv. Mater. 29 (2017) 1605071, https://doi.org/10.1002/adma.201605071. doi: 10.1002/adma.201605071

    97. [97]

      T. Inoue, A. Fujishima, S. Konishi, K. Honda, Nature 277 (1979) 637, https://doi.org/10.1038/277637a0. doi: 10.1038/277637a0

    98. [98]

      K. Sun, Y. Qian, H. Jiang, Angew. Chem. Int. Ed. 135 (2023) e202217565, https://doi.org/10.1002/ange.202217565. doi: 10.1002/ange.202217565

    99. [99]

      D. Li, M. Kassymova, X. Cai, S. Zang, H. Jiang, Coord. Chem. Rev. 412 (2020) 213262, https://doi.org/10.1016/j.ccr.2020.213262. doi: 10.1016/j.ccr.2020.213262

    100. [100]

      N. Vu, S. Kaliaguine, T. Do, Adv. Funct. Mater. 29 (2019) 1901825, https://doi.org/10.1002/adfm.201901825. doi: 10.1002/adfm.201901825

    101. [101]

      D. Sun, Y. Fu, W. Liu, L. Ye, D. Wang, L. Yang, X. Fu, Z. Li, Chem. Eur. J. 19 (2013) 14279, https://doi.org/10.1002/chem.201301728. doi: 10.1002/chem.201301728

    102. [102]

      Y. Fu, D. Sun, Y. Chen, R. Huang, Z. Ding, X. Fu, Z. Li, Angew. Chem. Int. Ed. 124 (2012) 3364, https://doi.org/10.1002/anie.201108357. doi: 10.1002/anie.201108357

    103. [103]

      M. Sun, S. Yan, Y. Sun, X. Yang, Z. Guo, J. Du, D. Chen, P. Chen, H. Xing, Dalton Trans. 47 (2018) 909, https://doi.org/10.1039/C7DT04062H. doi: 10.1039/C7DT04062H

    104. [104]

      Y. Wei, Y. Liu, F. Guo, X. Dao, W. Sun, Dalton Trans. 48 (2019) 8221, https://doi.org/10.1039/C9DT01767D. doi: 10.1039/C9DT01767D

    105. [105]

      Y. Du, G. Jie, H. Jia, J. Liu, J. Wu, Y. Fu, F. Zhang, W. Zhu, M. Fan, J. Environ. Sci. 132 (2023) 22, https://doi.org/10.1016/j.jes.2022.10.037. doi: 10.1016/j.jes.2022.10.037

    106. [106]

      Y. Wei, S. Yang, P. Wang, J. Guo, J. Huang, W. Sun, Dalton Trans. 50 (2021) 384, https://doi.org/10.1039/D0DT03500A. doi: 10.1039/D0DT03500A

    107. [107]

      Y. Dong, H. Liu, S. Wang, G. Guan, Q. Yang, ACS Catal. 13 (2023) 2547, https://doi.org/10.1021/acscatal.2c04588. doi: 10.1021/acscatal.2c04588

    108. [108]

      H. Xu, J. Hu, D. Wang, Z. Li, Q. Zhang, Y. Luo, S. Yu, H. Jiang, J. Am. Chem. Soc. 137 (2015) 13440, https://doi.org/10.1021/jacs.5b08773. doi: 10.1021/jacs.5b08773

    109. [109]

      S. Wang, H. Huang, M. Liu, S. Yao, S. Guo, J. Wang, Z. Zhang, T. Lu, Inorg. Chem. 59 (2020) 6301, https://doi.org/10.1021/acs.inorgchem.0c00407. doi: 10.1021/acs.inorgchem.0c00407

    110. [110]

      E. Chen, M. Qiu, Y. Zhang, Y. Zhu, L. Liu, Y. Sun, X. Bu, J. Zhang, Q. Lin, Adv. Mater. 30 (2017) 1704388, https://doi.org/10.1002/adma.201704388. doi: 10.1002/adma.201704388

    111. [111]

      X. Kong, T. He, J. Zhou, C. Zhao, T. Li, X. Wu, K. Wang, J. Li, Small 17 (2021) 2005357, https://doi.org/10.1002/smll.202005357. doi: 10.1002/smll.202005357

    112. [112]

      Z. Huang, K. Hu, X. Li, Z. Bin, Q. Wu, Z. Zhang, Z. Guo, W. Wu, Z. Chai, L. Mei, W. Shi, J. Am. Chem. Soc. 145 (2023) 18148, https://doi.org/10.1021/jacs.3c07047. doi: 10.1021/jacs.3c07047

    113. [113]

      J. Zeng, X. Wang, B. Xie, Q. Li, X. Zhang, J. Am. Chem. Soc. 144 (2022) 1218, https://doi.org/10.1021/jacs.1c10110. doi: 10.1021/jacs.1c10110

    114. [114]

      F. Al-dolaimy, M. Kzar, S. Hussein, H. Bahir, A. Hamoody, A. Dawood, M. Qasim, A. Kareem, A. Alawadi, A. Alsaalamy, R. Riyad, J. Inorg. Organomet. Polym. 34 (2023) 864, https://doi.org/10.1007/s10904-023-02860-0. doi: 10.1007/s10904-023-02860-0

    115. [115]

      X. Gao, B. Guo, C. Guo, Q. Meng, J. Liang, J. Liu, ACS Appl. Mater. Inter. 12 (2020) 24059, https://doi.org/10.1021/acsami.0c05631. doi: 10.1021/acsami.0c05631

    116. [116]

      G. Zhai, Y. Liu, Y. Mao, H. Zhang, L. Lin, Y. Li, Z. Wang, H. Cheng, P. Wang, Z. Zheng, Y. Dai, B. Huang, Appl. Catal. B: Environ. 301 (2022) 120793, https://doi.org/10.1016/j.apcatb.2021.120793. doi: 10.1016/j.apcatb.2021.120793

    117. [117]

      X. He, X. Gao, X. Chen, S. Hu, F. Tan, Y. Xiong, R. Long, M. Liu, E. Tse, F. Wei, H. Yang, J. Hou, C. Song, X. Guo, Appl. Catal. B: Environ. 327 (2023) 122418, https://doi.org/10.1016/j.apcatb.2023.122418. doi: 10.1016/j.apcatb.2023.122418

    118. [118]

      M. Elcheikh Mahmoud, H. Audi, A. Assoud, T. Ghaddar, M. Hmadeh, J. Am. Chem. Soc. 141 (2019) 7115, https://doi.org/10.1021/jacs.9b01920. doi: 10.1021/jacs.9b01920

    119. [119]

      X. Wang, J. Li, M. Kou, W. Dou, D. Bai, X. Tang, Y. Tang, W. Liu, Inorg. Chem. 62 (2023) 19015, https://doi.org/10.1021/acs.inorgchem.3c02765. doi: 10.1021/acs.inorgchem.3c02765

    120. [120]

      H. Yang, C. Lai, M. Wu, S. Wang, Y. Xia, F. Pan, K. Lv, L. Wen, Chem. Eng. J. 455 (2023) 140425, https://doi.org/10.1016/j.cej.2022.140425. doi: 10.1016/j.cej.2022.140425

    121. [121]

      S. Chen, F. Yang, H. Gao, J. Wang, X. Chen, X. Zhang, J. Li, A. Li, J. CO2 Util. 48 (2021) 101528, https://doi.org/10.1016/j.jcou.2021.101528. doi: 10.1016/j.jcou.2021.101528

    122. [122]

      W. Xu, G. Zhang, J. Wang, H. Yu, W. Zhang, L. Shen, D. Mei, Adv. Funct. Mater. 34 (2024) 2312691, https://doi.org/10.1002/adfm.202312691. doi: 10.1002/adfm.202312691

    123. [123]

      L. Xia, W. Zhou, Y. Xu, Z. Xia, X. Wang, Q. Yang, G. Xie, S. Chen, S. Gao, Chem. Eng. J. 451 (2023) 138747, https://doi.org/10.1016/j.cej.2022.138747. doi: 10.1016/j.cej.2022.138747

    124. [124]

      S. Karmakar, S. Barman, F. Rahimi, D. Rambabu, S. Nath, T. Maji, Nat. Commun. 14 (2023) 4508, https://doi.org/10.1038/s41467-023-40117-z. doi: 10.1038/s41467-023-40117-z

    125. [125]

      H. Yin, Z. Zhang, T. Lu, Acc. Chem. Res. 56 (2023) 2676, https://doi.org/10.1021/acs.accounts.3c00380. doi: 10.1021/acs.accounts.3c00380

    126. [126]

      S. Parambil, S. Karmakar, F. Rahimi, T. Maji, ACS Appl. Mater. Inter. 15 (2023) 27821, https://doi.org/10.1021/acsami.3c01153. doi: 10.1021/acsami.3c01153

    127. [127]

      P. Stanley, C. Thomas, E. Thyrhaug, A. Urstoeger, M. Schuster, J. Hauer, B. Rieger, J. Warnan, R. Fischer, ACS Catal. 11 (2021) 871, https://doi.org/10.1021/acscatal.0c04673. doi: 10.1021/acscatal.0c04673

    128. [128]

      P. Stanley, J. Haimerl, C. Thomas, A. Urstoeger, M. Schuster, N. Shustova, A. Casini, B. Rieger, J. Warnan, R. Fischer, Angew. Chem. Int. Ed. 60 (2021) 17854, https://doi.org/10.1002/anie.202102729. doi: 10.1002/anie.202102729

    129. [129]

      M. Li, H. Zhang, C. Li, F. Lang, S. Yao, J. Pang, X. Bu, Precis. Chem. (2025), https://doi.org/10.1021/prechem.5c00009. doi: 10.1021/prechem.5c00009

    130. [130]

      C. Ezugwu, S. Ghosh, S. Bera, M. Faraldos, M. Mosquera, R. Rosal, Sep. Purif. Technol. 308 (2023) 122868, https://doi.org/10.1016/j.seppur.2022.122868. doi: 10.1016/j.seppur.2022.122868

    131. [131]

      X. Su, T. Xu, R. Ye, C. Guo, S. Wabaidur, D. Chen, S. Aftab, Y. Zhong, Y. Hu, J. Colloid. Interface Sci. 646 (2023) 129, https://doi.org/10.1016/j.jcis.2023.05.041. doi: 10.1016/j.jcis.2023.05.041

    132. [132]

      K. Yang, L. Chen, X. Duan, G. Song, J. Sun, A. Chen, X. Xie, Ceram. Int. 49 (2023) 16061, https://doi.org/10.1016/j.ceramint.2023.01.204. doi: 10.1016/j.ceramint.2023.01.204

    133. [133]

      S. Chen, G. Hai, H. Gao, X. Chen, A. Li, X. Zhang, W. Dong, Chem. Eng. J. 406 (2021) 126886, https://doi.org/10.1016/j.cej.2020.126886. doi: 10.1016/j.cej.2020.126886

    134. [134]

      H. Dong, X. Zhang, Y. Lu, Y. Yang, Y. Zhang, H. Tang, F. Zhang, Z. Yang, X. Sun, Y. Feng, Appl. Catal. B: Environ. 276 (2020) 119173, https://doi.org/10.1016/j.apcatb.2020.119173. doi: 10.1016/j.apcatb.2020.119173

    135. [135]

      J. Zhou, J. Li, L. Kan, L. Zhang, Q. Huang, Y. Yan, Y. Chen, J. Liu, S. Li, Y. Lan, Nat. Commun. 13 (2022) 4681, https://doi.org/10.1038/s41467-022-32449-z. doi: 10.1038/s41467-022-32449-z

    136. [136]

      Z. Fang, B. Bueken, D. DeVos, R. Fischer, Angew. Chem. Int. Ed. 54 (2015) 7234, https://doi.org/10.1002/anie.201411540. doi: 10.1002/anie.201411540

    137. [137]

      S. Li, W. Han, Q. An, K. Yong, M. Yin, Adv. Funct. Mater. 33 (2023) 2303447, https://doi.org/10.1002/adfm.202303447. doi: 10.1002/adfm.202303447

    138. [138]

      J. Ren, M. Ledwaba, N. Musyoka, H. Langmi, M. Mathe, S. Liao, W. Pang, Coord. Chem. Rev. 349 (2017) 169, https://doi.org/10.1016/j.ccr.2017.08.017. doi: 10.1016/j.ccr.2017.08.017

    139. [139]

      X. Niu, Y. Wang, Y. Liu, M. Yuan, J. Zhang, H. Li, K. Wang, Microchim Acta. 191 (2024) 458, https://doi.org/10.1007/s00604-024-06534-7. doi: 10.1007/s00604-024-06534-7

    140. [140]

      Y. He, C. Li, X. Chen, Z. Shi, S. Feng, ACS Appl. Mater. Inter. 25 (2022) 28977, https://doi.org/10.1021/acsami.2c06993. doi: 10.1021/acsami.2c06993

    141. [141]

      X. Zhao, M. Xu, X. Song, X. Liu, W. Zhou, H. Wang, P. Huo, Inorg. Chem 61 (2022) 1765, https://doi.org/10.1021/acs.inorgchem.1c03690. doi: 10.1021/acs.inorgchem.1c03690

    142. [142]

      S. Wang, X. Gu, X. Wang, X. Zhang, X. Dao, X. Cheng, J. Ma, W. Sun, Chem. Eng. J. 429 (2022) 132147, https://doi.org/10.1016/j.cej.2021.132147. doi: 10.1016/j.cej.2021.132147

    143. [143]

      S. Wang, X. Wang, X. Zhang, X. Cheng, J. Ma, W. Sun, ACS Appl. Mater. Inter. 13 (2021) 61578, https://doi.org/10.1021/acsami.1c21663. doi: 10.1021/acsami.1c21663

    144. [144]

      Y. Zhou, Z. Wang, L. Huang, S. Zaman, K. Lei, T. Yue, Z. Li, B. You, B. Xia, Adv. Energy Mater. 11 (2021) 2003159, https://doi.org/10.1002/aenm.202003159. doi: 10.1002/aenm.202003159

    145. [145]

      H. Chang, Y. Zhou, S. Zhang, X. Zheng, Q. Xu, Adv. Mater. Interfaces. 8 (2021) 2100205, https://doi.org/10.1002/admi.202100205. doi: 10.1002/admi.202100205

    146. [146]

      M. Hu, J. Liu, S. Song, W. Wang, J. Yao, Y. Gong, C. Li, H. Li, Y. Li, X. Yuan, Z. Fang, H. Xu, W. Song, Z. Li, ACS Catal. 12 (2022) 3238, https://doi.org/10.1021/acscatal.1c05984. doi: 10.1021/acscatal.1c05984

    147. [147]

      Q. Zuo, R. Cui, L. Wang, Y. Wang, C. Yu, L. Wu, Y. Mai, Y. Zhou, Sci. China. Chem. 66 (2023) 570, https://doi.org/10.1007/s11426-022-1498-y. doi: 10.1007/s11426-022-1498-y

    148. [148]

      J. Liang, H. Yu, J. Shi, B. Li, L. Wu, M. Wang, Adv. Mater. 35 (2023) 2209814, https://doi.org/10.1002/adma.202209814. doi: 10.1002/adma.202209814

    149. [149]

      W. Yang, H. Wang, R. Liu, J. Wang, C. Zhang, C. Li, D. Zhong, T. Lu, Angew. Chem. Int. Ed. 60 (2020) 409, https://doi.org/10.1002/anie.202011068. doi: 10.1002/anie.202011068

    150. [150]

      X. Zhang, P. Wang, Y. Zhang, X. Cheng, W. Sun, ACS Appl. Mater. Inter. 15 (2023) 3348, https://doi.org/10.1021/acsami.2c19236. doi: 10.1021/acsami.2c19236

    151. [151]

      X. Cheng, X. Dao, S. Wang, J. Zhao, W. Sun, ACS Catal. 11 (2020) 650, https://doi.org/10.1021/acscatal.0c04426. doi: 10.1021/acscatal.0c04426

    152. [152]

      X. Cheng, Y. Gu, X. Zhang, X. Dao, S. Wang, J. Ma, J. Zhao, W. Sun, Appl. Catal. B: Environ. 298 (2021) 120524, https://doi.org/10.1016/j.apcatb.2021.120524. doi: 10.1016/j.apcatb.2021.120524

    153. [153]

      X. Cheng, X. Zhang, X. Dao, S. Wang, J. Zhao, W. Sun, Chem. Eng. J. 431 (2022) 13412, https://doi.org/10.1016/j.cej.2021.134125. doi: 10.1016/j.cej.2021.134125

    154. [154]

      F. Guo, M. Yang, R. Li, Z. He, Y. Wang, W. Sun, ACS Catal. 12 (2022) 9486, https://doi.org/10.1021/acscatal.2c02789. doi: 10.1021/acscatal.2c02789

    155. [155]

      B. He, Y. Wang, X. Bai, H. Bian, Y. Xie, R. Li, J. Li, Chem. Eng. J. 482 (2024) 149000, https://doi.org/10.1016/j.cej.2024.149000. doi: 10.1016/j.cej.2024.149000

    156. [156]

      Z. Wang, X. Yue, Q. Xiang, Coord. Chem. Rev. 45 (2024) 1011033, https://doi.org/10.1016/j.coche.2024.101033. doi: 10.1016/j.coche.2024.101033

    157. [157]

      M. Song, X. Song, X. Liu, W. Zhou, P. Huo, Chin. J. Catal. 51 (2023) 180, https://doi.org/10.1016/S1872-2067(23)64480-8. doi: 10.1016/S1872-2067(23)64480-8

    158. [158]

      Y. Jiao, Y. Chen, L. Liu, X. Yu, G. Tian, Small 20 (2024) 2309094, https://doi.org/10.1002/smll.202309094. doi: 10.1002/smll.202309094

    159. [159]

      Y. Zou, Y. Huang, D. Si, Q. Yin, Q. Wu, Z. Weng, R. Cao, Angew. Chem. Int. Ed. 60 (2021) 20915, https://doi.org/10.1002/ange.202107156. doi: 10.1002/ange.202107156

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  13
  • HTML全文浏览量:  1
文章相关
  • 发布日期:  2026-02-15
  • 收稿日期:  2025-07-12
  • 接受日期:  2025-08-17
  • 修回日期:  2025-08-14
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章