Citation: Xin Zhou, Yiting Huo, Songyu Yang, Bowen He, Xiaojing Wang, Zhen Wu, Jianjun Zhang. Understanding the effect of pH on protonated COF during photocatalytic H2O2 production by femtosecond transient absorption spectroscopy[J]. Acta Physico-Chimica Sinica, ;2025, 41(12): 100160. doi: 10.1016/j.actphy.2025.100160 shu

Understanding the effect of pH on protonated COF during photocatalytic H2O2 production by femtosecond transient absorption spectroscopy

  • Corresponding author: Xiaojing Wang, wang_xiao_jing@hotmail.com Zhen Wu, wuzhen@oit.edu.cn Jianjun Zhang, zhangjianjun@cug.edu.cn
  • Received Date: 25 July 2025
    Revised Date: 12 August 2025
    Accepted Date: 14 August 2025

    Fund Project: National Natural Science Foundation of China 52202375National Natural Science Foundation of China 22469001National Natural Science Foundation of China 22409181the Natural Science Foundation of Hubei Province of China 2022CFA001the Natural Science Foundation of Hubei Province of China 2025AFB631Ordos Institute of Technology Research Programs KYQN25Z012Ordos Institute of Technology Research Programs KYYB2023014the Scientific Research Funds at China University of Geosciences (Wuhan) 2025034Natural Science Foundation of Inner Mongolia Autonomous Region of China 2025QN05107Natural Science Foundation of Inner Mongolia Autonomous Region of China 2025ZDLH002

  • Covalent organic frameworks (COFs), recognized for their precisely tunable microstructures and high surface area, are promising photocatalysts for H2O2 production. However, the critical influence of pH on the stability of COF during the photocatalytic H2O2 production remains poorly understood. In this work, the photocatalytic H2O2 production performance of an imine-linked COF is significantly enhanced through a simple protonation strategy. Crucially, the protonated COF exhibits excellent stability under weakly acidic conditions (pH ≥ 3), but undergoes irreversible hydrolyzed under strongly acidic conditions (pH < 3). The protonation occurs specifically at the nitrogen atoms of imine units and serves a dual function: it suppresses ultrafast charge recombination (as revealed by femtosecond transient absorption spectroscopy) and directly provides a proton source for H2O2 generation. Moreover, fluoride ions (F) are introduced into the photocatalytic system to further improve the photocatalytic H2O2 production rate. The strong electronegativity of F facilitates electron transfer from COF to F, thus realizing the spatial separation of photogenerated carriers. Mechanistic studies confirm that H2O2 production follows a two-electron oxygen reduction reaction pathway. These findings elucidate the pH-dependent stability and activity of protonated COFs, provide fundamental insights into charge carrier dynamics, and establishe design principles to develop highly efficient and stable COF-based photocatalysts for solar-driven H2O2 generation.
  • 加载中
    1. [1]

      T. He, Y. Zhao, Angew. Chem. Int. Ed. 62 (2023) e202303086, https://doi.org/10.1002/anie.202303086.  doi: 10.1002/anie.202303086

    2. [2]

      Z. Yu, J. Hua, ACS Appl. Energy Mater. 8 (2025) 8830-8849, https://doi.org/10.1021/acsaem.5c01191.  doi: 10.1021/acsaem.5c01191

    3. [3]

      Y. Zhang, Y. Wang, Y. Liu, S. Zhang, Y. Zhao, J. Zhang, J. Materiomics 11 (2025) 100985, https://doi.org/10.1016/j.jmat.2024.100985.  doi: 10.1016/j.jmat.2024.100985

    4. [4]

      Y. Zhang, J. Qiu, B. Zhu, G. Sun, B. Cheng, L. Wang, Chin. J. Catal. 57 (2024) 143, https://doi.org/10.1016/S1872-2067(23)64580-2.  doi: 10.1016/S1872-2067(23)64580-2

    5. [5]

      J. Zhang, C. Yuan, Y. Zhang, C. Sun, J. Yu, L. Zhang, J. Colloid Interface Sci. 692 (2025) 137544, https://doi.org/10.1016/j.jcis.2025.137544.  doi: 10.1016/j.jcis.2025.137544

    6. [6]

      Y. Kuai, Y. Wang, Carbon Neutrality 3 (2024) 36, https://doi.org/10.1007/s43979-024-00110-x.  doi: 10.1007/s43979-024-00110-x

    7. [7]

      C.-Y. Lin, D. Zhang, Z. Zhao, Z. Xia, Adv. Mater. 30 (2018) 1703646, https://doi.org/10.1002/adma.201703646.  doi: 10.1002/adma.201703646

    8. [8]

      L. Zhu, Y. Cao, T. Xu, H. Yang, L. Wang, L. Dai, F. Pan, C. Chen, C. Si, Energy Environ. Sci. 18 (2025) 5675-5739, https://doi.org/10.1039/D5EE00494B.  doi: 10.1039/D5EE00494B

    9. [9]

      W. Huang, W. Zhang, S. Yang, L. Wang, G. Yu, Small 20 (2024) 2308019, https://doi.org/10.1002/smll.202308019.  doi: 10.1002/smll.202308019

    10. [10]

      M. Gordo-Lozano, M. Martínez-Fernández, R. P. Paitandi, J. I. Martínez, J. L. Segura, S. Seki, Small 21 (2025) 2406211, https://doi.org/10.1002/smll.202406211.  doi: 10.1002/smll.202406211

    11. [11]

      H.-C. Ma, M.-Y. Gu, M.-Z. Li, C.-Y. Gu, D.-F. Zhu, G.-J. Chen, Y.-B. Dong, Angew. Chem. Int. Ed. 64 (2025) e202506509, https://doi.org/10.1002/anie.202506509.  doi: 10.1002/anie.202506509

    12. [12]

      H. Dong, C. Qu, C. Li, B. Hu, X. Li, G. Liang, J. Jiang, Chin. J. Catal. 70 (2025) 142-206, https://doi.org/10.1016/S1872-2067(24)60184-1.  doi: 10.1016/S1872-2067(24)60184-1

    13. [13]

      L. Yuan, Y. Peng, Z.-J. Guan, Y. Fang, Acta Phys. Chim. Sin. 41 (2025) 100086, https://doi.org/10.1016/j.actphy.2025.100086.  doi: 10.1016/j.actphy.2025.100086

    14. [14]

      G. Liu, R. Chen, B. Xia, Z. Wu, S. Liu, A. Talebian-Kiakalaieh, J. Ran, Chin. J. Catal. 61 (2024) 97-110, https://doi.org/10.1016/S1872-2067(24)60014-8.  doi: 10.1016/S1872-2067(24)60014-8

    15. [15]

      X. Wang, H. Li, S. Zhou, J. Ning, H. Wei, X. Li, S. Wang, L. Hao, D. Cao, Adv. Funct. Mater. (2025) 2424035, https://doi.org/10.1002/adfm.202424035.  doi: 10.1002/adfm.202424035

    16. [16]

      H. Zhang, J. Liu, Y. Zhang, B. Cheng, B. Zhu, L. Wang, J. Mater. Sci. Technol. 166 (2023) 241, https://doi.org/10.1016/j.jmst.2023.05.030.  doi: 10.1016/j.jmst.2023.05.030

    17. [17]

      S.-S. Zhu, Z. Zhang, Z. Li, H. Yue, X. Liu, Chem Catal. 4 (2024) 100963, https://doi.org/10.1016/j.checat.2024.100963.  doi: 10.1016/j.checat.2024.100963

    18. [18]

      X. Wang, K. Qi, K. Xu, Chin. J. Catal. 70 (2025) 1, https://doi.org/10.1016/S1872-2067(24)60246-9.  doi: 10.1016/S1872-2067(24)60246-9

    19. [19]

      J. Chen, Y. Wang, Y. Yu, J. Wang, J. Liu, H. Ihara, H. Qiu, Exploration 3 (2023) 20220144, https://doi.org/10.1002/EXP.20220144.  doi: 10.1002/EXP.20220144

    20. [20]

      Y. Yang, J. Liu, M. Gu, B. Cheng, L. Wang, J. Yu, Appl. Catal. B 333 (2023) 122780, https://doi.org/10.1016/j.apcatb.2023.122780.  doi: 10.1016/j.apcatb.2023.122780

    21. [21]

      L. Dai, A. Dong, X. Meng, H. Liu, Y. Li, P. Li, B. Wang, Angew. Chem. Int. Ed. 62 (2023) e202300224, https://doi.org/10.1002/anie.202300224.  doi: 10.1002/anie.202300224

    22. [22]

      K. Paliušytė, L. Leão Nascimento, H. Illner, M. Wiedmaier, R. Guntermann, M. Döblinger, T. Bein, A. O. T. Patrocinio, J. Schneider, Small 21 (2025) 2500870, https://doi.org/10.1002/smll.202500870.  doi: 10.1002/smll.202500870

    23. [23]

      X. Zhang, C. Gao, Y. Zhou, R. Chen, X. Guan, Z. Shen, B. Hu, Q.-H. Xu, Sci. China Chem 68 (2025) 3277, https://doi.org/10.1007/s11426-024-2446-7.  doi: 10.1007/s11426-024-2446-7

    24. [24]

      H. He, R. Shen, Y. Yan, D. Chen, Z. Liu, L. Hao, X. Zhang, P. Zhang, X. Li, Chem. Sci. 15 (2024) 20002, https://doi.org/10.1039/D4SC07028C.  doi: 10.1039/D4SC07028C

    25. [25]

      J. Yang, A. Acharjya, M.-Y. Ye, J. Rabeah, S. Li, Z. Kochovski, S. Youk, J. Roeser, J. Grüneberg, C. Penschke, M. Schwarze, T. Wang, Y. Lu, R. van de Krol, M. Oschatz, R. Schomäcker, P. Saalfrank, A. Thomas, Angew. Chem. Int. Ed. 60 (2021) 19797, https://doi.org/10.1002/anie.202104870.  doi: 10.1002/anie.202104870

    26. [26]

      F. Ma, Y. Wang, Q. Wang, C. Li, Z. Jiang, R. Xu, J. Li, X. Mu, W. Liu, L. Ye, Surf. Interf 66 (2025) 106503, https://doi.org/10.1016/j.surfin.2025.106503.  doi: 10.1016/j.surfin.2025.106503

    27. [27]

      P. Dong, X. Xu, T. Wu, R. Luo, W. Kong, Z. Xu, S. Yuan, J. Zhou, J. Lei, Angew. Chem. Int. Ed. 63 (2024) e202405313, https://doi.org/10.1002/anie.202405313.  doi: 10.1002/anie.202405313

    28. [28]

      X. Li, Z. Wang, Acta Phys. Chim. Sin. 41 (2025) 100080, https://doi.org/10.1016/j.actphy.2025.100080.  doi: 10.1016/j.actphy.2025.100080

    29. [29]

      L. Wang, J. Zhao, J. Mater. Sci. Technol. 241 (2026) 18, https://doi.org/10.1016/j.jmst.2025.04.009.  doi: 10.1016/j.jmst.2025.04.009

    30. [30]

      K. Meng, J. Zhang, B. Cheng, X. Ren, Z. Xia, F. Xu, L. Zhang, J. Yu, Adv. Mater. 36 (2024) 2406460, https://doi.org/10.1002/adma.202406460.  doi: 10.1002/adma.202406460

    31. [31]

      B. Zhu, J. Liu, J. Sun, F. Xie, H. Tan, B. Cheng, J. Zhang, J. Mater. Sci. Technol. 162 (2023) 90, https://doi.org/10.1016/j.jmst.2023.03.054.  doi: 10.1016/j.jmst.2023.03.054

    32. [32]

      X. Zhou, C. Ai, X. Wang, Z. Wu, J. Zhang, J. Materiomics 11 (2025) 100974, https://doi.org/10.1016/j.jmat.2024.100974.  doi: 10.1016/j.jmat.2024.100974

    33. [33]

      S. Xu, K. Chen, Y. Cai, S. Ren, W. Chu, M. Song, Y. Xu, C. Tan, Water Res. 285 (2025) 124139, https://doi.org/10.1016/j.watres.2025.124139.  doi: 10.1016/j.watres.2025.124139

    34. [34]

      W. Zhong, A. Meng, Y. Su, H. Yu, P. Han, J. Yu, Angew. Chem. Int. Ed. 64 (2025) e202425038, https://doi.org/10.1002/anie.202425038.  doi: 10.1002/anie.202425038

    35. [35]

      X. Zhou, S. Yang, X. Wang, Z. Wu, Y. Huo, J. Zhang, J. Mater. Sci. Technol. 234 (2025) 60, https://doi.org/10.1016/j.jmst.2025.02.027.  doi: 10.1016/j.jmst.2025.02.027

    36. [36]

      X. Huang, C. Sun, X. Feng, Sci. Chin. Chem 63 (2020) 1367, https://doi.org/10.1007/s11426-020-9836-x.  doi: 10.1007/s11426-020-9836-x

    37. [37]

      Y.-P. Zhang, W. Han, Y. Yang, H.-Y. Zhang, Y. Wang, L. Wang, X.-J. Sun, F.-M. Zhang, Chem. Eng. J. 446 (2022) 137213, https://doi.org/10.1016/j.cej.2022.137213.  doi: 10.1016/j.cej.2022.137213

    38. [38]

      T. Cao, Q. Xu, J. Zhang, S. Wang, T. Di, Q. Deng, Chin. J. Catal. 72 (2025) 118, https://doi.org/10.1016/S1872-2067(24)60277-9.  doi: 10.1016/S1872-2067(24)60277-9

    39. [39]

      B. Liu, J. Zhang, H. Li, B. Cheng, C. Bie, Acta Phys. Chim. Sin. 41 (2025) 100121, https://doi.org/10.1016/j.actphy.2025.100121.  doi: 10.1016/j.actphy.2025.100121

    40. [40]

      J. Ning, B. Zhang, L. Siqin, G. Liu, Q. Wu, S. Xue, T. Shao, F. Zhang, W. Zhang, X. Liu, Exploration 3 (2023) 20230050, https://doi.org/10.1002/EXP.20230050.  doi: 10.1002/EXP.20230050

    41. [41]

      Z. Lu, C. Yang, L. He, J. Hong, C. Huang, T. Wu, X. Wang, Z. Wu, X. Liu, Z. Miao, B. Zeng, Y. Xu, C. Yuan, L. Dai, J. Am. Chem. Soc. 144 (2022) 9624, https://doi.org/10.1021/jacs.2c00429.  doi: 10.1021/jacs.2c00429

    42. [42]

      Y. Wu, C. Cheng, K. Qi, B. Cheng, J. Zhang, J. Yu, L. Zhang, Acta Phys. Chim. Sin. 40 (2024) 2406027, https://doi.org/10.3866/PKU.WHXB202406027.  doi: 10.3866/PKU.WHXB202406027

    43. [43]

      Y. Liu, M. Li, T. Liu, Z. Wu, L. Zhang, J. Mater. Sci. Technol. 233 (2025) 201, https://doi.org/10.1016/j.jmst.2025.03.005.  doi: 10.1016/j.jmst.2025.03.005

    44. [44]

      T. Yang, H. Hu, Y. Wang, X. Chen, J. Fan, D. Li, S. Liu, J. Li, T. He, S. Lu, L. Qiu, Adv. Mater. 37 (2025) 2419547, https://doi.org/10.1002/adma.202419547.  doi: 10.1002/adma.202419547

    45. [45]

      M. Sayed, F. Xu, P. Kuang, J. Low, S. Wang, L. Zhang, J. Yu, Nat. Commun. 12 (2021) 4936, https://doi.org/10.1038/s41467-021-25007-6.  doi: 10.1038/s41467-021-25007-6

    46. [46]

      Y. Fan, X. Hao, N. Yi, Z. Jin, Appl. Catal. B 357 (2024) 124313, https://doi.org/10.1016/j.apcatb.2024.124313.  doi: 10.1016/j.apcatb.2024.124313

    47. [47]

      Q. Che, C. Li, Z. Chen, S. Yang, W. Zhang, G. Yu, Angew. Chem. Int. Ed. 63 (2024) e202409926, https://doi.org/10.1002/anie.202409926.  doi: 10.1002/anie.202409926

    48. [48]

      Q. Zhang, H. Miao, J. Wang, T. Sun, E. Liu, Chin. J. Catal. 63 (2024) 176, https://doi.org/10.1016/S1872-2067(24)60077-X.  doi: 10.1016/S1872-2067(24)60077-X

    49. [49]

      K. Meng, J. Zhang, B. Zhu, C. Jiang, H. García, J. Yu, Adv. Mater. 37 (2025) 2505088, https://doi.org/10.1002/adma.202505088.  doi: 10.1002/adma.202505088

    50. [50]

      Y. Ma, S. Wang, Y. Zhang, B. Cheng, L. Zhang, J. Materiomics 11 (2025) 100978, https://doi.org/10.1016/j.jmat.2024.100978.  doi: 10.1016/j.jmat.2024.100978

    51. [51]

      J. Yang, X. Hao, J. Jing, Y. Hao, Z. Jin, Acta Phys. Chim. Sin. 41 (2025) 100131, https://doi.org/10.1016/j.actphy.2025.100131.  doi: 10.1016/j.actphy.2025.100131

    52. [52]

      J. Qiu, K. Meng, Y. Zhang, B. Cheng, J. Zhang, L. Wang, J. Yu, Adv. Mater. 36 (2024) 2400288, https://doi.org/10.1002/adma.202400288.  doi: 10.1002/adma.202400288

    53. [53]

      C. Jiang, C. Yuan, K. Xu, X. Zhou, C. Bie, J. Mater. Sci. Technol. 231 (2025) 36, https://doi.org/10.1016/j.jmst.2024.12.071.  doi: 10.1016/j.jmst.2024.12.071

    54. [54]

      W. Deng, X. Hao, J. Yang, Z. Jin, Appl. Catal. B 360 (2025) 124551, https://doi.org/10.1016/j.apcatb.2024.124551.  doi: 10.1016/j.apcatb.2024.124551

    55. [55]

      M. Gu, Y. Yang, B. Cheng, L. Zhang, P. Xiao, T. Chen, Chin. J. Catal. 59 (2024) 185, https://doi.org/10.1016/S1872-2067(23)64610-8.  doi: 10.1016/S1872-2067(23)64610-8

    56. [56]

      M. Gu, Y. Yang, L. Zhang, B. Zhu, G. Liang, J. Yu, Appl. Catal. B 324 (2023) 122227, https://doi.org/10.1016/j.apcatb.2022.122227.  doi: 10.1016/j.apcatb.2022.122227

    57. [57]

      J. Hu, M. Zhu, Z. A. Ghazi, Y. Cao, Chin. J. Catal. 71 (2025) 319, https://doi.org/10.1016/S1872-2067(24)60240-8.  doi: 10.1016/S1872-2067(24)60240-8

    58. [58]

      J. Zhang, B. Zhu, L. Zhang, J. Yu, Chem. Commun. 59 (2023) 688, https://doi.org/10.1039/D2CC06300J.  doi: 10.1039/D2CC06300J

    59. [59]

      Z. Yu, D. Zhang, C. Ai, J. Zhang, Q. Xiang, Chin. J. Catal. 67 (2024) 71, https://doi.org/10.1016/S1872-2067(24)60159-2.  doi: 10.1016/S1872-2067(24)60159-2

    60. [60]

      J. Zhang, J. Liu, Z. Meng, S. Jana, L. Wang, B. Zhu, J. Mater. Sci. Technol. 159 (2023) 1, https://doi.org/10.1016/j.jmst.2023.02.044.  doi: 10.1016/j.jmst.2023.02.044

    61. [61]

      X. Deng, J. Zhang, K. Qi, G. Liang, F. Xu, J. Yu, Nat. Commun. 15 (2024) 4807, https://doi.org/10.1038/s41467-024-49004-7.  doi: 10.1038/s41467-024-49004-7

    62. [62]

      C. Cheng, J. Yu, D. Xu, L. Wang, G. Liang, L. Zhang, M. Jaroniec, Nat. Commun. 15 (2024) 1313, https://doi.org/10.1038/s41467-024-45604-5.  doi: 10.1038/s41467-024-45604-5

    63. [63]

      X. Zhang, D. Gao, B. Zhu, B. Cheng, J. Yu, H. Yu, Nat. Commun. 15 (2024) 3212, https://doi.org/10.1038/s41467-024-47624-7.  doi: 10.1038/s41467-024-47624-7

    64. [64]

      Z. Jiang, J. Zhang, B. Cheng, Y. Zhang, J. Yu, L. Zhang, Small 21 (2025) 2409079, https://doi.org/10.1002/smll.202409079.  doi: 10.1002/smll.202409079

    65. [65]

      L. Li, X. Lv, Y. Xue, H. Shao, G. Zheng, Q. Han, Angew. Chem. Int. Ed. 63 (2024) e202320218, https://doi.org/10.1002/anie.202320218.  doi: 10.1002/anie.202320218

    66. [66]

      Y. Zhao, Y. Zhang, H. Tan, C. Ai, J. Zhang, J. Materiomics 11 (2025) 100970, https://doi.org/10.1016/j.jmat.2024.100970.  doi: 10.1016/j.jmat.2024.100970

    67. [67]

      W. Yu, Chin. J. Catal. 73 (2025) 8, https://doi.org/10.1016/S1872-2067(25)60706-1.  doi: 10.1016/S1872-2067(25)60706-1

    68. [68]

      Q. Zhu, L. Shi, Z. Li, G. Li, X. Xu, Angew. Chem. Int. Ed. 63 (2024) e202408041, https://doi.org/10.1002/anie.202408041.  doi: 10.1002/anie.202408041

    69. [69]

      M. Sayed, H. Li, C. Bie, Acta Phys. Chim. Sin. 41 (2025) 100117, https://doi.org/10.1016/j.actphy.2025.100117.  doi: 10.1016/j.actphy.2025.100117

    70. [70]

      Y. Yang, X. Zhou, M. Gu, B. Cheng, Z. Wu, J. Zhang, Acta Phys. Chim. Sin. 41 (2025) 100064, https://doi.org/10.1016/j.actphy.2025.100064.  doi: 10.1016/j.actphy.2025.100064

    71. [71]

      Y. Xu, Z. Sun, S. Fan, X. Han, L. Li, Z. Gao, C. Wang, J. Mater. Chem. A 12 (2024) 27180, https://doi.org/10.1039/D4TA05404K.  doi: 10.1039/D4TA05404K

  • 加载中
    1. [1]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    2. [2]

      Jizhou LiuChenbin AiChenrui HuBei ChengJianjun Zhang . Accelerated Interfacial Electron Transfer in Perovskite Solar Cell by Ammonium Hexachlorostannate Modification and fs-TAS Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-0. doi: 10.3866/PKU.WHXB202402006

    3. [3]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    4. [4]

      Yueshuai Xu Wei Liu Xudong Chen Zhikun Zheng . 水相中制备共价有机框架单晶的实验教学设计. University Chemistry, 2025, 40(6): 256-265. doi: 10.12461/PKU.DXHX202408045

    5. [5]

      Yihong ShaoRongchen ShenSong WangShijie LiPeng ZhangXin Li . Composition engineering in covalent organic frameworks for tailored photocatalysis. Acta Physico-Chimica Sinica, 2025, 41(12): 100176-0. doi: 10.1016/j.actphy.2025.100176

    6. [6]

      Mian WeiChang ChengBowen HeBei ChengKezhen QiChuanbiao Bie . Inorganic-organic CdS/YBTPy S-scheme photocatalyst for efficient hydrogen production and its mechanism. Acta Physico-Chimica Sinica, 2025, 41(12): 100158-0. doi: 10.1016/j.actphy.2025.100158

    7. [7]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    8. [8]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    9. [9]

      Wei Li Jinfan Xu Yongjun Zhang Ying Guan . 共价有机框架整体材料的制备及食品安全非靶向筛查应用——推荐一个仪器分析综合化学实验. University Chemistry, 2025, 40(6): 276-285. doi: 10.12461/PKU.DXHX202406013

    10. [10]

      Xinwan ZhaoYue CaoMinjun LeiZhiliang JinTsubaki Noritatsu . Constructing S-scheme heterojunctions by integrating covalent organic frameworks with transition metal sulfides for efficient noble-metal-free photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(12): 100152-0. doi: 10.1016/j.actphy.2025.100152

    11. [11]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    12. [12]

      Yiting HuoXin ZhouFeifan ZhaoChenbin AiZhen WuZhidong ChangBicheng Zhu . Boosting photocatalytic CO2 methanation through TiO2/CdS S-scheme heterojunction and fs-TAS mechanism study. Acta Physico-Chimica Sinica, 2025, 41(11): 100148-0. doi: 10.1016/j.actphy.2025.100148

    13. [13]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    14. [14]

      Shumin ZhangYaqi WangZelin WangLibo WangChangsheng AnDifa Xu . Ultrafast electron transfer at the ZIS1−x/UCN S-scheme interface enables efficient H2O2 photosynthesis coupled with tetracycline degradation. Acta Physico-Chimica Sinica, 2025, 41(11): 100136-0. doi: 10.1016/j.actphy.2025.100136

    15. [15]

      Fei XieChengcheng YuanHaiyan TanAlireza Z. MoshfeghBicheng ZhuJiaguo Yud-Band Center Regulated O2 Adsorption on Transition Metal Single Atoms Loaded COF: A DFT Study. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-0. doi: 10.3866/PKU.WHXB202407013

    16. [16]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    17. [17]

      Yawen GuoDawei LiYang GaoCuihong Li . Recent Progress on Stability of Organic Solar Cells Based on Non-Fullerene Acceptors. Acta Physico-Chimica Sinica, 2024, 40(6): 2306050-0. doi: 10.3866/PKU.WHXB202306050

    18. [18]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    19. [19]

      Xiaogang YANGXinya ZHANGJing LIHuilin WANGMin LIXiaotian WEIXinci WULufang MA . Synthesis, structure, and photoelectric properties of Zinc(Ⅱ)-triphenylamine based metal-organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2078-2086. doi: 10.11862/CJIC.20250167

    20. [20]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

Metrics
  • PDF Downloads(1)
  • Abstract views(72)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return