Citation: Ruyan Liu, Zhenrui Ni, Olim Ruzimuradov, Khayit Turayev, Tao Liu, Luo Yu, Panyong Kuang. Ni-induced modulation of Pt 5d-H 1s antibonding orbitals for enhanced hydrogen evolution and urea oxidation[J]. Acta Physico-Chimica Sinica, ;2025, 41(12): 100159. doi: 10.1016/j.actphy.2025.100159 shu

Ni-induced modulation of Pt 5d-H 1s antibonding orbitals for enhanced hydrogen evolution and urea oxidation

  • Corresponding author: Panyong Kuang, kuangpanyong@cug.edu.cn
  • These authors contributed equally to this work
  • Received Date: 24 July 2025
    Revised Date: 12 August 2025
    Accepted Date: 14 August 2025

    Fund Project: the National Key Research and Development Program of China 2022YFB3803600National Natural Science Foundation of China 22272153National Natural Science Foundation of China 22479132National Natural Science Foundation of China 22238009National Natural Science Foundation of China U23A20102National Natural Science Foundation of China 22361142704National Natural Science Foundation of China 22309168the Natural Science Foundation of Hubei Province of China 2022CFA001Key R&D Program Projects in Hubei Province 2023BAB113

  • While H2 features high energy density, environmental friendliness, and renewability, its efficient production is limited by the sluggish kinetics of the oxygen evolution reaction (OER). Here, we report a Pt@PtNi3 core@shell alloy electrocatalyst that, through Ni incorporation, modulates the occupancy of Pt 5d antibonding orbitals and simultaneously enhances both hydrogen evolution reaction (HER) and urea oxidation reaction (UOR) activities. The optimized Pt@PtNi3-500 delivers an ultralow overpotential of 21 mV at 10 mA cm-2 for HER under acidic conditions and a low onset potential of 1.27 V for UOR under alkaline conditions, surpassing monometallic Pt and Ni counterparts. When employed in an asymmetric acid-alkaline electrolyzer (HER/UOR), Pt@PtNi3-500 achieves a 68.3% reduction in electrical energy consumption for H2 production compared to traditional alkaline water splitting (HER/OER). Mechanistic investigations reveal that appropriate Ni incorporation in Pt@PtNi3 increases the occupancy of Pt 5d–H 1s antibonding orbitals, which not only reinforces H+ adsorption but also weakens the overly strong H* binding. Simultaneously, it reduces the energy barrier for *NH2 dehydrogenation, thereby synergistically accelerating both H2 generation and urea decomposition. This work provides new insights into the design of alloy electrocatalysts for high-efficiency H2 production.
  • 加载中
    1. [1]

      A. A. Feidenhans'l, Y. N. Regmi, C. Wei, D. Xia, J. Kibsgaard, L. A. King, Chem. Rev. 124 (2024) 5617, https://doi.org/10.1021/acs.chemrev.3c00712.  doi: 10.1021/acs.chemrev.3c00712

    2. [2]

      J. C. Ehlers, A. A. Feidenhans'l, K. T. Therkildsen, G. O. Larrazábal, ACS Energy Lett. 8 (2023) 1502, https://doi.org/10.1021/acsenergylett.2c02897.  doi: 10.1021/acsenergylett.2c02897

    3. [3]

      W. Yu, M. H. Richter, P. Buabthong, I. A. Moreno-Hernandez, C. G. Read, E. Simonoff, B. S. Brunschwig, N. S. Lewis, Energy Environ. Sci. 14 (2021) 6007, https://doi.org/10.1039/D1EE02809J.  doi: 10.1039/D1EE02809J

    4. [4]

      H.-M. Zhang, S.-F. Zhang, L.-H. Zuo, J.-K. Li, J.-X. Guo, P. Wang, J.-F. Sun, L. Dai, Rare Met. 43 (2024) 2371, https://doi.org/10.1007/s12598-024-02619-7.  doi: 10.1007/s12598-024-02619-7

    5. [5]

      W. Yu, J. L. Young, T. G. Deutsch, N. S. Lewis, ACS Appl. Mater. Interfaces 13 (2021) 57350, https://doi.org/10.1021/acsami.1c18243.  doi: 10.1021/acsami.1c18243

    6. [6]

      B. Zhong, B. Cheng, Y. Zhu, R. Ding, P. Kuang, J. Yu, J. Colloid Interface Sci. 629 (2023) 846, https://doi.org/10.1016/j.jcis.2022.09.007.  doi: 10.1016/j.jcis.2022.09.007

    7. [7]

      J. Y. Loh, J. J. Foo, F. M. Yap, H. Liang, W.-J. Ong, Chin. J. Catal. 58 (2024) 37, https://doi.org/10.1016/S1872-2067(23)64581-4.  doi: 10.1016/S1872-2067(23)64581-4

    8. [8]

      S.-Y. Lu, W. Dou, J. Zhang, L. Wang, C. Wu, H. Yi, R. Wang, M. Jin, Acta Phys.-Chim. Sin. 40 (2024) 2308024, https://doi.org/10.3866/PKU.WHXB202308024.  doi: 10.3866/PKU.WHXB202308024

    9. [9]

      B.-J. Zhang, B. Chang, S.-P. Qiu, G. Zhao, X. Wang, X.-J. Xu, L. Mu, W.-B. Liao, X.-J. Dong, Rare Met. 43 (2024) 2613, https://doi.org/10.1007/s12598-023-02587-4.  doi: 10.1007/s12598-023-02587-4

    10. [10]

      B. Zhong, S. Wan, P. Kuang, B. Cheng, L. Yu, J. Yu, Appl. Catal. B 340 (2024) 123195, https://doi.org/10.1016/j.apcatb.2023.123195.  doi: 10.1016/j.apcatb.2023.123195

    11. [11]

      C. Qin, S. Chen, H. Gomaa, M. A. Shenashen, S. A. El-Safty, Q. Liu, C. An, X. Liu, Q. Deng, N. Hu, Acta Phys.-Chim. Sin. 40 (2024) 2307059, https://doi.org/10.3866/PKU.WHXB202307059.  doi: 10.3866/PKU.WHXB202307059

    12. [12]

      P. A. Kempler, Z. P. Ifkovits, W. Yu, A. I. Carim, N. S. Lewis, Energy Environ. Sci. 14 (2021) 414, https://doi.org/10.1039/D0EE02796K.  doi: 10.1039/D0EE02796K

    13. [13]

      Y. Ding, P. Cai, Z. Wen, Chem. Soc. Rev. 50 (2021) 1495, https://doi.org/10.1039/D0CS01239D.  doi: 10.1039/D0CS01239D

    14. [14]

      Y. Guo, S. Li, W. Abebe, J. Wang, L. Shi, D. Liu, S. Zhao, Chin. J. Catal. 67 (2024) 21, https://doi.org/10.1016/S1872-2067(24)60153-1.  doi: 10.1016/S1872-2067(24)60153-1

    15. [15]

      W. Zhao, C. Luo, Y. Lin, G.-B. Wang, H. M. Chen, P. Kuang, J. Yu, ACS Catal. 12 (2022) 5540, https://doi.org/10.1021/acscatal.2c00851.  doi: 10.1021/acscatal.2c00851

    16. [16]

      S. Xu, Q. Wu, B.-A. Lu, T. Tang, J.-N. Zhang, J.-S. Hu, Acta Phys.-Chim. Sin. 39 (2023) 2209001, https://doi.org/10.3866/pku.Whxb202209001.  doi: 10.3866/pku.Whxb202209001

    17. [17]

      P. Kuang, Y. Wang, B. Zhu, F. Xia, C. W. Tung, J. Wu, H. M. Chen, J. Yu, Adv. Mater. 33 (2021) 2008599, https://doi.org/10.1002/adma.202008599.  doi: 10.1002/adma.202008599

    18. [18]

      S. Battiato, L. Bruno, A. Terrasi, S. Mirabella, ACS Appl. Energy Mater. 5 (2022) 2391, https://doi.org/10.1021/acsaem.1c03880.  doi: 10.1021/acsaem.1c03880

    19. [19]

      R. Subbaraman, D. Tripkovic, D. Strmcnik, K. C. Chang, M. Uchimura, A. P. Paulikas, V. Stamenkovic, N. M. Markovic, Science 334 (2011) 1256, https://doi.org/10.1126/science.1211934.  doi: 10.1126/science.1211934

    20. [20]

      Z. Li, X. Liu, Q. Yu, X. Qu, J. Wan, Z. Xiao, J. Chi, L. Wang, Chin. J. Catal. 63 (2024) 33, https://doi.org/10.1016/S1872-2067(24)60076-8.  doi: 10.1016/S1872-2067(24)60076-8

    21. [21]

      T. Zhang, X. Yan, G. Zhou, K. Wang, J. Zhang, H. Zhang, J. Guo, Appl. Surf. Sci. 636 (2023) 157860, https://doi.org/10.1016/j.apsusc.2023.157860.  doi: 10.1016/j.apsusc.2023.157860

    22. [22]

      X. Sun, R. Wang, Q. Wang, K. Ostrikov, Inorg. Chem. Front. 11 (2024) 1540, https://doi.org/10.1039/D3QI01993D.  doi: 10.1039/D3QI01993D

    23. [23]

      Y. Qiao, J. Cui, F. Qian, X. Xue, X. Zhang, H. Zhang, W. Liu, X. Li, Q. Chen, ACS Appl. Nano Mater. 5 (2022) 318, https://doi.org/10.1021/acsanm.1c03046.  doi: 10.1021/acsanm.1c03046

    24. [24]

      F. Guo, Z. Zou, Z. Zhang, T. Zeng, Y. Tan, R. Chen, W. Wu, N. Cheng, X. Sun, J. Mater. Chem. A 9 (2021) 5468, https://doi.org/10.1039/D0TA10500G.  doi: 10.1039/D0TA10500G

    25. [25]

      E. B. Tetteh, C. Gyan-Barimah, H.-Y. Lee, T.-H. Kang, S. Kang, S. Ringe, J.-S. Yu, ACS Appl. Mater. Interfaces 14 (2022) 25246, https://doi.org/10.1021/acsami.2c00398.  doi: 10.1021/acsami.2c00398

    26. [26]

      J. Chen, G. Qian, H. Zhang, S. Feng, Y. Mo, L. Luo, S. Yin, Adv. Funct. Mater. 32 (2022) 2107597, https://doi.org/10.1002/adfm.202107597.  doi: 10.1002/adfm.202107597

    27. [27]

      W. Zhang, B. Huang, K. Wang, W. Yang, F. Lv, N. Li, Y. Chao, P. Zhou, Y. Yang, Y. Li, J. Zhou, W. Zhang, Y. Du, D. Su, S. Guo, Adv. Energy Mater. 11 (2021) 2003192, https://doi.org/10.1002/aenm.202003192.  doi: 10.1002/aenm.202003192

    28. [28]

      A. E. Noua, D. Kaya, F. Karadag, A. Ekicibil, J. Nanopart. Res. 26 (2023) 8, https://doi.org/10.1007/s11051-023-05918-9.  doi: 10.1007/s11051-023-05918-9

    29. [29]

      Z. Zhao, H. Liu, W. Gao, W. Xue, Z. Liu, J. Huang, X. Pan, Y. Huang, J. Am. Chem. Soc. 140 (2018) 9046, https://doi.org/10.1021/jacs.8b04770.  doi: 10.1021/jacs.8b04770

    30. [30]

      M. Zhou, H. Li, A. Long, B. Zhou, F. Lu, F. Zhang, F. Zhan, Z. Zhang, W. Xie, X. Zeng, D. Yi, X. Wang, Adv. Energy Mater. 11 (2021) 2101789, https://doi.org/10.1002/aenm.202101789.  doi: 10.1002/aenm.202101789

    31. [31]

      N. Zhang, Q. Shao, X. Xiao, X. Huang, Adv. Funct. Mater. 29 (2019) 1808161, https://doi.org/10.1002/adfm.201808161.  doi: 10.1002/adfm.201808161

    32. [32]

      H. Huang, L. Fu, W. Kong, H. Ma, X. Zhang, J. Cai, S. Wang, Z. Xie, S. Xie, Small 18 (2022) 2201333, https://doi.org/10.1002/smll.202201333.  doi: 10.1002/smll.202201333

    33. [33]

      C. Liu, Z. Wei, M. Cao, R. Cao, Nano Res. 17 (2024) 4844, https://doi.org/10.1007/s12274-024-6454-3.  doi: 10.1007/s12274-024-6454-3

    34. [34]

      B. Pang, X. Liu, T. Liu, T. Chen, X. Shen, W. Zhang, S. Wang, T. Liu, D. Liu, T. Ding, Z. Liao, Y. Li, C. Liang, T. Yao, Energy Environ. Sci. 15 (2022) 102, https://doi.org/10.1039/D1EE02518J.  doi: 10.1039/D1EE02518J

    35. [35]

      F. S. M. Ali, R. L. Arevalo, M. Vandichel, F. Speck, E.-L. Rautama, H. Jiang, O. Sorsa, K. Mustonen, S. Cherevko, T. Kallio, Appl. Catal. B 315 (2022) 121541, https://doi.org/10.1016/j.apcatb.2022.121541.  doi: 10.1016/j.apcatb.2022.121541

    36. [36]

      G. Zhao, K. Lu, Y. Li, F. Lu, P. Gao, B. Nan, L. Li, Y. Zhang, P. Xu, X. Liu, L. Chen, Chin. J. Catal. 62 (2024) 156, https://doi.org/10.1016/S1872-2067(24)60067-7.  doi: 10.1016/S1872-2067(24)60067-7

    37. [37]

      C. Li, L. Zhang, Y. Zhang, Y. Zhou, J. Sun, X. Ouyang, X. Wang, J. Zhu, Y. Fu, Chem. Eng. J. 428 (2022) 131085, https://doi.org/10.1016/j.cej.2021.131085.  doi: 10.1016/j.cej.2021.131085

    38. [38]

      C. Zhang, X. Liang, R. Xu, C. Dai, B. Wu, G. Yu, B. Chen, X. Wang, N. Liu, Adv. Funct. Mater. 31 (2021) 2008298, https://doi.org/10.1002/adfm.202008298.  doi: 10.1002/adfm.202008298

    39. [39]

      P. Kuang, Z. Ni, B. Zhu, Y. Lin, J. Yu, Adv. Mater. 35 (2023) 2303030, https://doi.org/10.1002/adma.202303030.  doi: 10.1002/adma.202303030

    40. [40]

      Z. Ni, C. Luo, B. Cheng, P. Kuang, Y. Li, J. Yu, Appl. Catal. B 321 (2023) 122072, https://doi.org/10.1016/j.apcatb.2022.122072.  doi: 10.1016/j.apcatb.2022.122072

    41. [41]

      R. Li, P. Kuang, S. Wageh, A. A. Al-Ghamdi, H. Tang, J. Yu, Chem. Eng. J. 453 (2023) 139797, https://doi.org/10.1016/j.cej.2022.139797.  doi: 10.1016/j.cej.2022.139797

    42. [42]

      M. Li, Y. Song, X. Wan, Y. Li, Y. Luo, Y. He, B. Xia, H. Zhou, M. Shao, Acta Phys.-Chim. Sin. 40 (2024) 2306007, https://doi.org/10.3866/PKU.WHXB202306007.  doi: 10.3866/PKU.WHXB202306007

    43. [43]

      E. A. Moges, C.-Y. Chang, M.-C. Tsai, W.-N. Su, B. J. Hwang, EES Catal. 1 (2023) 413, https://doi.org/10.1039/D3EY00017F.  doi: 10.1039/D3EY00017F

    44. [44]

      V. M. Zemtsova, A. G. Oshchepkov, E. R. Savinova, ACS Catal. 13 (2023) 13466, https://doi.org/10.1021/acscatal.3c03126.  doi: 10.1021/acscatal.3c03126

    45. [45]

      Q.-X. Huang, F. Wang, Y. Liu, B.-Y. Zhang, F.-Y. Guo, Z.-Q. Jia, H. Wang, T.-X. Yang, H.-T. Wu, F.-Z. Ren, T.-F. Yi, Rare Met. 43 (2024) 3607, https://doi.org/10.1007/s12598-024-02668-y.  doi: 10.1007/s12598-024-02668-y

    46. [46]

      X. Feng, K. Guo, C. Jia, B. Liu, S. Ci, J. Chen, Z. Wen, Acta Phys.-Chim. Sin. 40 (2024) 2303050, https://doi.org/10.3866/pku.Whxb202303050.  doi: 10.3866/pku.Whxb202303050

    47. [47]

      G. Wang, J. Chen, Y. Li, J. Jia, P. Cai, Z. Wen, Chem. Commun. 54 (2018) 2603, https://doi.org/10.1039/C7CC09653D.  doi: 10.1039/C7CC09653D

    48. [48]

      R. Li, F. Xie, P. Kuang, T. Liu, J. Yu, Small 20 (2024) 2402867, https://doi.org/10.1002/smll.202402867.  doi: 10.1002/smll.202402867

    49. [49]

      R. Li, C. W. Tung, B. Zhu, Y. Lin, F. Z. Tian, T. Liu, H. M. Chen, P. Kuang, J. Yu, J. Colloid Interface Sci. 674 (2024) 326, https://doi.org/10.1016/j.jcis.2024.06.176.  doi: 10.1016/j.jcis.2024.06.176

    50. [50]

      Y. Wang, B. Zhu, B. Cheng, W. Macyk, P. Kuang, J. Yu, Appl. Catal. B 314 (2022) 121503, https://doi.org/10.1016/j.apcatb.2022.121503.  doi: 10.1016/j.apcatb.2022.121503

    51. [51]

      K. Wang, Y. Wang, S. Geng, Y. Wang, S. Song, Adv. Funct. Mater. 32 (2022) 2113399, https://doi.org/10.1002/adfm.202113399.  doi: 10.1002/adfm.202113399

    52. [52]

      H. Jin, Z. Xu, Z.-Y. Hu, Z. Yin, Z. Wang, Z. Deng, P. Wei, S. Feng, S. Dong, J. Liu, S. Luo, Z. Qiu, L. Zhou, L. Mai, B.-L. Su, D. Zhao, Y. Liu, Nat. Commun. 14 (2023) 1518, https://doi.org/10.1038/s41467-023-37268-4.  doi: 10.1038/s41467-023-37268-4

    53. [53]

      P. Wang, Q. Shao, J. Guo, L. Bu, X. Huang, Chem. Mater. 32 (2020) 3144, https://doi.org/10.1021/acs.chemmater.0c00172.  doi: 10.1021/acs.chemmater.0c00172

    54. [54]

      H. Luo, V. Y. Yukuhiro, P. S. Fernández, J. Feng, P. Thompson, R. R. Rao, R. Cai, S. Favero, S. J. Haigh, J. R. Durrant, I. E. L. Stephens, M.-M. Titirici, ACS Catal. 12 (2022) 14492, https://doi.org/10.1021/acscatal.2c03907.  doi: 10.1021/acscatal.2c03907

    55. [55]

      J. Wang, S. Xin, Y. Xiao, Z. Zhang, Z. Li, W. Zhang, C. Li, R. Bao, J. Peng, J. Yi, S. Chou, Agnew. Chem. Int. Ed. 61 (2022) e202202518, https://doi.org/10.1002/anie.202202518.  doi: 10.1002/anie.202202518

    56. [56]

      W. Li, Z. Ni, O. Akdim, T. Liu, B. Zhu, P. Kuang, J. Yu, Adv. Mater. 37 (2025) 2503742, https://doi.org/10.1002/adma.202503742.  doi: 10.1002/adma.202503742

    57. [57]

      Q. Jia, Z. Zhao, L. Cao, J. Li, S. Ghoshal, V. Davies, E. Stavitski, K. Attenkofer, Z. Liu, M. Li, X. Duan, S. Mukerjee, T. Mueller, Y. Huang, Nano Lett. 18 (2018) 798, https://doi.org/10.1021/acs.nanolett.7b04007.  doi: 10.1021/acs.nanolett.7b04007

    58. [58]

      H. Gong, D. Zhang, T. Liu, P. Kuang, J. Yu, Small 21 (2025) 2407790, https://doi.org/10.1002/smll.202407790.  doi: 10.1002/smll.202407790

    59. [59]

      D. Zhang, H. Gong, T. Liu, J. Yu, P. Kuang, J. Colloid Interface Sci. 672 (2024) 423, https://doi.org/10.1016/j.jcis.2024.06.023.  doi: 10.1016/j.jcis.2024.06.023

  • 加载中
    1. [1]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    2. [2]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    3. [3]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    4. [4]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    5. [5]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    6. [6]

      Mingjie LeiWenting HuKexin LinXiujuan SunHaoshen ZhangYe QianTongyue KangXiulin WuHailong LiaoYuan PanYuwei ZhangDiye WeiPing Gao . Accelerating the reconstruction of NiSe2 by Co/Mn/Mo doping for enhanced urea electrolysis. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-0. doi: 10.1016/j.actphy.2025.100083

    7. [7]

      Zhengyu ZhouHuiqin YaoYoulin WuTeng LiNoritatsu TsubakiZhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-0. doi: 10.3866/PKU.WHXB202312010

    8. [8]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    9. [9]

      Huasen LuShixu SongQisen JiaGuangbo LiuLuhua Jiang . Advances in Cu2O-based Photocathodes for Photoelectrochemical Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(2): 2304035-0. doi: 10.3866/PKU.WHXB202304035

    10. [10]

      Kai PENGXinyi ZHAOZixi CHENXuhai ZHANGYuqiao ZENGJianqing JIANG . Progress in the application of high-entropy alloys and high-entropy ceramics in water electrolysis. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1257-1275. doi: 10.11862/CJIC.20240454

    11. [11]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    12. [12]

      Chunling QinShuang ChenHassanien GomaaMohamed A. ShenashenSherif A. El-SaftyQian LiuCuihua AnXijun LiuQibo DengNing Hu . Regulating HER and OER Performances of 2D Materials by the External Physical Fields. Acta Physico-Chimica Sinica, 2024, 40(9): 2307059-0. doi: 10.3866/PKU.WHXB202307059

    13. [13]

      Wenjuan TanYong YeXiujuan SunBei LiuJiajia ZhouHailong LiaoXiulin WuRui DingEnhui LiuPing Gao . Building P-Poor Ni2P and P-Rich CoP3 Heterojunction Structure with Cation Vacancy for Enhanced Electrocatalytic Hydrazine and Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(6): 2306054-0. doi: 10.3866/PKU.WHXB202306054

    14. [14]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    15. [15]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    16. [16]

      Ruizhi DuanXiaomei WangPanwang ZhouYang LiuCan Li . The role of hydroxyl species in the alkaline hydrogen evolution reaction over transition metal surfaces. Acta Physico-Chimica Sinica, 2025, 41(9): 100111-0. doi: 10.1016/j.actphy.2025.100111

    17. [17]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    18. [18]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    19. [19]

      Ruige ZHANGZhe ZHANGHe ZHENGZhan SHI . Recent advances of metal-organic frameworks for alkaline electrocatalytic oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2011-2028. doi: 10.11862/CJIC.20250185

    20. [20]

      Xiaofang LiZhigang Wang . 调节金助催化剂的dz2占据轨道增强光催化合成H2O2. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-0. doi: 10.1016/j.actphy.2025.100080

Metrics
  • PDF Downloads(0)
  • Abstract views(65)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return