Citation: Mian Wei, Chang Cheng, Bowen He, Bei Cheng, Kezhen Qi, Chuanbiao Bie. Inorganic-organic CdS/YBTPy S-scheme photocatalyst for efficient hydrogen production and its mechanism[J]. Acta Physico-Chimica Sinica, ;2025, 41(12): 100158. doi: 10.1016/j.actphy.2025.100158 shu

Inorganic-organic CdS/YBTPy S-scheme photocatalyst for efficient hydrogen production and its mechanism

  • Corresponding author: Kezhen Qi, qikezhen@dali.edu.cn Chuanbiao Bie, biechuanbiao@cug.edu.cn
  • Received Date: 4 August 2025
    Revised Date: 12 August 2025
    Accepted Date: 14 August 2025

    Fund Project: the financial support from the National Key Research and Development Program of China 2022YFB3803600the National Natural Science Foundation of China 22202187the National Natural Science Foundation of China U24A2071the National Natural Science Foundation of China 22278324the National Natural Science Foundation of China 22361142704the National Natural Science Foundation of China 22409181the National Natural Science Foundation of China U23A20102the Hubei Provincial Natural Science Foundation of China 2025AFB492the Hubei Provincial Natural Science Foundation of China 2022CFA001the Key R & D Program Projects in Hubei Province 2023BAB113

  • S-scheme heterojunctions have garnered significant attention for efficient photocatalytic H2 evolution due to their superior charge separation and maximized redox potential. In this study, we developed a novel pyrene-benzothiadiazole conjugated polymer (YBTPy) through Yamamoto coupling, followed by the in situ deposition of CdS nanoparticles via a solvothermal method to construct a CdS/YBTPy S-scheme heterojunction photocatalyst. The optimized composite, designated as CP5, demonstrated a hydrogen production rate of 5.01 mmol h−1 g−1, representing a 4.2-fold enhancement compared to pristine CdS (1.20 mmol h−1 g−1). The characteristic S-scheme charge transfer pathway at the heterojunction interface was elucidated using in situ irradiated X-ray photoelectron spectroscopy in conjunction with Kelvin probe force microscopy. Additionally, femtosecond transient absorption spectroscopy was employed to investigate the dynamics of photogenerated charge carriers. This work provides a new theoretical foundation for the design of organic–inorganic hybrid S-scheme photocatalytic systems.
  • 加载中
    1. [1]

      S. Mao, R. He, S. Song, Chin. J. Catal. 64 (2024) 1, https://doi.org/10.1016/S1872-2067(24)60102-6.  doi: 10.1016/S1872-2067(24)60102-6

    2. [2]

      M. Sayed, H. Li, C. Bie, Acta Phys. -Chim. Sin. 41 (2025) 100117, https://doi.org/10.1016/j.actphy.2025.100117.  doi: 10.1016/j.actphy.2025.100117

    3. [3]

      R. Zhang, B. Zhang, J. Lv, Y. Wang, H. Liu, L. Jewell, X. Liu, S. Qiao, Carbon Neutralization 4 (2025) e70016, https://doi.org/10.1002/cnl2.70016.  doi: 10.1002/cnl2.70016

    4. [4]

      J. Bian, W. Zhang, Y. H. Ng, Z. Hu, Z. Wei, Y. Liu, J. Deng, H. Dai, L. Jing, Angew. Chem. Int. Ed. 63 (2024) e202409179, https://doi.org/10.1002/anie.202409179.  doi: 10.1002/anie.202409179

    5. [5]

      K. Shu, B. Guan, Z. Zhuang, J. Chen, L. Zhu, Z. Ma, X. Hu, C. Zhu, S. Zhao, H. Dang, T. Zhu, Z. Huang, Int. J. Hydrogen Energy 97 (2025) 160, https://doi.org/10.1016/j.ijhydene.2024.11.110.  doi: 10.1016/j.ijhydene.2024.11.110

    6. [6]

      X. Zhai, Z. Wei, Z. Lu, X. Zhang, X. Chen, Y. Liu, J. Deng, Y. Zhu, H. Dai, L. Jing, Adv. Funct. Mater. 35 (2025) 2503667, https://doi.org/10.1002/adfm.202503667.  doi: 10.1002/adfm.202503667

    7. [7]

      B. Zhai, J. He, H. Li, X. Li, S. Nurmanov, O. Ruzimuradov, P. Niu, S. Chun, S. Wang, L. Li, Carbon Neutral. 3 (2024) 888, https://doi.org/10.1002/cnl2.154.  doi: 10.1002/cnl2.154

    8. [8]

      A. Fujishima, K. Honda, Nature 238 (1972) 37, https://doi.org/10.1038/238037a0.  doi: 10.1038/238037a0

    9. [9]

      C. Bie, J. Yang, X. Zeng, Z. Wang, X. Sun, Z. Yang, J. Yu, X. Zhang, Small 21 (2025) 2411184, https://doi.org/10.1002/smll.202411184.  doi: 10.1002/smll.202411184

    10. [10]

      Y. Wang, H. Sun, Z. Yang, Y. Zhu, Y. Xia, Carbon Neutralization 3 (2024) 737, https://doi.org/10.1002/cnl2.153.  doi: 10.1002/cnl2.153

    11. [11]

      M. Wei, X. Zhou, C. Cheng, J. Zhang, C. Jiang, B. Cheng, J. Mater. Sci. Technol. 232 (2025) 302, https://doi.org/10.1016/j.jmst.2025.01.036.  doi: 10.1016/j.jmst.2025.01.036

    12. [12]

      H. Long, X. Zhang, Z. Zhang, J. Zhang, J. Yu, H. Yu, Nat. Commun. 16 (2025) 946, https://doi.org/10.1038/s41467-025-56306-x.  doi: 10.1038/s41467-025-56306-x

    13. [13]

      B. Liu, K. Meng, B. Cheng, L. Wang, G. Liang, C. Bie, J. Mater. Sci. Technol. 231 (2025) 286, https://doi.org/10.1016/j.jmst.2025.02.013.  doi: 10.1016/j.jmst.2025.02.013

    14. [14]

      Z. Abou Khalil, R. Del Angel, G. Mouchaham, C. Serre, M. Daturi, M. El-Roz, J. Photochem. Photobiol. C 60-61 (2024) 100680, https://doi.org/10.1016/j.jphotochemrev.2024.100680.  doi: 10.1016/j.jphotochemrev.2024.100680

    15. [15]

      C. Bie, C. Jiang, J. Yang, X. Sun, X. Zeng, J. Zhang, B. Zhu, J. Mater. Sci. Technol. 229 (2025) 48, https://doi.org/10.1016/j.jmst.2024.12.047.  doi: 10.1016/j.jmst.2024.12.047

    16. [16]

      W. Yu, J. L. Young, T. G. Deutsch, N. S. Lewis, ACS Appl. Mater. Interfaces 13 (2021) 57350, https://doi.org/10.1021/acsami.1c18243.  doi: 10.1021/acsami.1c18243

    17. [17]

      C. Bie, Z. Meng, B. He, B. Cheng, G. Liu, B. Zhu, J. Mater. Sci. Technol. 173 (2024) 11, https://doi.org/10.1016/j.jmst.2023.07.019.  doi: 10.1016/j.jmst.2023.07.019

    18. [18]

      Z. Wang, X. Huang, Y. Jia, L. Guo, H. Wang, W. Dai, Chem. Eng. J. 482 (2024) 148942, https://doi.org/10.1016/j.cej.2024.148942.  doi: 10.1016/j.cej.2024.148942

    19. [19]

      S. Cao, B. Zhong, C. Bie, B. Cheng, F. Xu, Acta Phys. -Chim. Sin. 40 (2024) 2307016, https://doi.org/10.3866/PKU.WHXB202307016.  doi: 10.3866/PKU.WHXB202307016

    20. [20]

      B. Liu, J. Zhang, H. Li, B. Cheng, C. Bie, Acta Phys. -Chim. Sin. 41 (2025) 100121, https://doi.org/10.1016/j.actphy.2025.100121.  doi: 10.1016/j.actphy.2025.100121

    21. [21]

      J. Sun, H. Liu, S. Wang, Y. Zhang, C. Bie, L. Zhang, J. Materiomics 11 (2025) 100975, https://doi.org/10.1016/j.jmat.2024.100975.  doi: 10.1016/j.jmat.2024.100975

    22. [22]

      J. Yang, H. Yin, A. Du, M. Tebyetekerwa, C. Bie, Z. Wang, Z. Sun, Z. Zhang, X. Zeng, X. Zhang, Appl. Catal. B 361 (2025) 124586, https://doi.org/10.1016/j.apcatb.2024.124586.  doi: 10.1016/j.apcatb.2024.124586

    23. [23]

      Z. Zhou, C. Bie, P. Li, B. Tan, Y. Shen, Chin. J. Catal. 43 (2022) 2699, https://doi.org/10.1016/S1872-2067(22)64118-4.  doi: 10.1016/S1872-2067(22)64118-4

    24. [24]

      J. Tang, C. Guo, T. Wang, X. Cheng, L. Huo, X. Zhang, C. Huang, Z. Major, Y. Xu, Carbon Neutralization 3 (2024) 557, https://doi.org/10.1002/cnl2.121.  doi: 10.1002/cnl2.121

    25. [25]

      K. Meng, J. Zhang, B. Zhu, C. Jiang, H. García, J. Yu, Adv. Mater. 37 (2025) 2505088, https://doi.org/10.1002/adma.202505088.  doi: 10.1002/adma.202505088

    26. [26]

      M. Liras, M. Barawi, V. A. de la Peña O'Shea, Chem. Soc. Rev. 48 (2019) 5454, http://dx. doi.org/10.1039/C9CS00377K.

    27. [27]

      Z. Wang, C. Bie, J. Mater. Sci. Technol. 243 (2026) 206, https://doi.org/10.1016/j.jmst.2025.04.028.  doi: 10.1016/j.jmst.2025.04.028

    28. [28]

      J. Zhu, S. Zhang, R. He, Chin. J. Catal. 59 (2024) 4, https://doi.org/10.1016/S1872-2067(24)60011-2.  doi: 10.1016/S1872-2067(24)60011-2

    29. [29]

      H. -T. Vuong, D. -V. Nguyen, L. P. Phuong, P. P. D. Minh, B. N. Ho, H. A. Nguyen, Carbon Neutral. 2 (2023) 425, https://doi.org/10.1002/cnl2.65.  doi: 10.1002/cnl2.65

    30. [30]

      C. Cheng, J. Yu, D. Xu, L. Wang, G. Liang, L. Zhang, M. Jaroniec, Nat. Commun. 15 (2024) 1313, https://doi.org/10.1038/s41467-024-45604-5.  doi: 10.1038/s41467-024-45604-5

    31. [31]

      J. Yang, X. Zeng, B. Zhu, S. Rahman, C. Bie, M. Yong, K. Sun, M. Tebyetekerwa, Z. Wang, L. Guo, X. Sun, Y. Kang, L. Thomsen, Z. Sun, Z. Zhang, X. Zhang, Adv. Mater. 37 (2025) 2505653, https://doi.org/10.1002/adma.202505653.  doi: 10.1002/adma.202505653

    32. [32]

      J. Freudenberg, D. Jänsch, F. Hinkel, U. H. F. Bunz, Chem. Rev. 118 (2018) 5598, https://doi.org/10.1021/acs.chemrev.8b00063.  doi: 10.1021/acs.chemrev.8b00063

    33. [33]

      J. H. Lee, E. S. Shim, B. Nketia-Yawson, H. Opoku, H. Ahn, S. Bae, J. W. Jo, Appl. Surf. Sci. 665 (2024) 160347, https://doi.org/10.1016/j.apsusc.2024.160347.  doi: 10.1016/j.apsusc.2024.160347

    34. [34]

      S. Wang, L. Wang, S. Ren, W. Li, Z. Wang, Z. Yi, Y. Liu, Adv. Electron. Mater. 10 (2024) 2300816, https://doi.org/10.1002/aelm.202300816.  doi: 10.1002/aelm.202300816

    35. [35]

      J. Wang, Z. Wang, K. Dai, J. Zhang, J. Mater. Sci. Technol. 165 (2023) 187, https://doi.org/10.1016/j.jmst.2023.03.067.  doi: 10.1016/j.jmst.2023.03.067

    36. [36]

      L. Zhang, J. Zhang, J. Yu, H. García, Nat. Rev. Chem. 9 (2025) 328, https://doi.org/10.1038/s41570-025-00698-3.  doi: 10.1038/s41570-025-00698-3

    37. [37]

      F. Xu, Y. He, J. Zhang, G. Liang, C. Liu, J. Yu, Angew. Chem. Int. Ed. 64 (2025) e202414672, https://doi.org/10.1002/anie.202414672.  doi: 10.1002/anie.202414672

    38. [38]

      R. He, D. Xu, M. Sayed, J. Materiomics 11 (2025) 100989, https://doi.org/10.1016/j.jmat.2024.100989.  doi: 10.1016/j.jmat.2024.100989

    39. [39]

      W. Zhong, A. Meng, Y. Su, H. Yu, P. Han, J. Yu, Angew. Chem. Int. Ed. 64 (2025) e202425038, https://doi.org/10.1002/anie.202425038.  doi: 10.1002/anie.202425038

    40. [40]

      W. Yu, M. H. Richter, P. Buabthong, I. A. Moreno-Hernandez, C. G. Read, E. Simonoff, B. S. Brunschwig, N. S. Lewis, Energy Environ. Sci. 14 (2021) 6007, https://doi.org/10.1039/D1EE02809J.  doi: 10.1039/D1EE02809J

    41. [41]

      B. Zhu, C. Jiang, J. Xu, Z. Zhang, J. Fu, J. Yu, Mater. Today 82 (2025) 251, https://doi.org/10.1016/j.mattod.2024.11.012.  doi: 10.1016/j.mattod.2024.11.012

    42. [42]

      J. Pan, A. Zhang, L. Zhang, P. Dong, Chin. J. Catal. 58 (2024) 180, https://doi.org/10.1016/S1872-2067(23)64609-1.  doi: 10.1016/S1872-2067(23)64609-1

    43. [43]

      B. He, P. Xiao, S. Wan, J. Zhang, T. Chen, L. Zhang, J. Yu, Angew. Chem. Int. Ed. 62 (2023) e202313172, https://doi.org/10.1002/anie.202313172.  doi: 10.1002/anie.202313172

    44. [44]

      S. Wan, W. Wang, B. Cheng, G. Luo, Q. Shen, J. Yu, J. Zhang, S. Cao, L. Zhang, Nat. Commun. 15 (2024) 9612, https://doi.org/10.1038/s41467-024-53951-6.  doi: 10.1038/s41467-024-53951-6

    45. [45]

      L. Wang, W. Cheng, J. Wang, J. Yang, Q. Liu, Chin. J. Catal. 58 (2024) 194, https://doi.org/10.1016/S1872-2067(23)64602-9.  doi: 10.1016/S1872-2067(23)64602-9

    46. [46]

      M. Sayed, K. Qi, X. Wu, L. Zhang, H. García, J. Yu, Chem. Soc. Rev. 54 (2025) 4874, https://doi.org/10.1039/D4CS01091D.  doi: 10.1039/D4CS01091D

    47. [47]

      J. Yan, L. Wei, Acta Phys. -Chim. Sin. 40 (2024) 2312024, https://doi.org/10.3866/PKU.WHXB202312024.  doi: 10.3866/PKU.WHXB202312024

    48. [48]

      J. -X. Jiang, A. Trewin, D. J. Adams, A. I. Cooper, Chem. Sci. 2 (2011) 1777, https://doi.org/10.1039/c1sc00329a.  doi: 10.1039/c1sc00329a

    49. [49]

      J. Cai, B. Liu, S. Zhang, L. Wang, Z. Wu, J. Zhang, B. Cheng, J. Mater. Sci. Technol. 197 (2024) 183, https://doi.org/10.1016/j.jmst.2024.02.012.  doi: 10.1016/j.jmst.2024.02.012

    50. [50]

      M. Gu, J. Zhang, I. V. Kurganskii, A. S. Poryvaev, M. V. Fedin, B. Cheng, J. Yu, L. Zhang, Adv. Mater. 37 (2025) 2414803, https://doi.org/10.1002/adma.202414803.  doi: 10.1002/adma.202414803

    51. [51]

      J. Cai, C. Cheng, B. Liu, J. Zhang, C. Jiang, B. Cheng, Acta Phys. -Chim. Sin. 41 (2025) 100084, https://doi.org/10.1016/j.actphy.2025.100084.  doi: 10.1016/j.actphy.2025.100084

    52. [52]

      H. Li, R. Li, Y. Jing, B. Liu, Q. Xu, T. Tan, G. Liu, L. Zheng, L. -Z. Wu, ACS Catal. 14 (2024) 7308, https://doi.org/10.1021/acscatal.4c00758.  doi: 10.1021/acscatal.4c00758

    53. [53]

      Y. Li, S. Wan, W. Liang, B. Cheng, W. Wang, Y. Xiang, J. Yu, S. Cao, Small 20 (2024) 2312104, https://doi.org/10.1002/smll.202312104.  doi: 10.1002/smll.202312104

    54. [54]

      B. Zhang, Z. Genene, J. Wang, D. Wang, C. Zhao, J. Pan, D. Liu, W. Sun, J. Zhu, E. Wang, Small 20 (2024) 2402649, https://doi.org/10.1002/smll.202402649.  doi: 10.1002/smll.202402649

    55. [55]

      Z. Jin, Q. Li, C. Xi, Z. Jian, Z. Chen, Appl. Surf. Sci. 32 (1988) 218, https://doi.org/10.1016/0169-4332(88)90082-7.  doi: 10.1016/0169-4332(88)90082-7

    56. [56]

      Y. Zhao, Y. Zhang, H. Tan, C. Ai, J. Zhang, J. Materiomics 11 (2025) 100970, https://doi.org/10.1016/j.jmat.2024.100970.  doi: 10.1016/j.jmat.2024.100970

    57. [57]

      G. Sun, Z. Tai, J. Zhang, B. Cheng, H. Yu, J. Yu, Appl. Catal. B 358 (2024) 124459, https://doi.org/10.1016/j.apcatb.2024.124459.  doi: 10.1016/j.apcatb.2024.124459

    58. [58]

      Y. Wu, Y. Yang, M. Gu, C. Bie, H. Tan, B. Cheng, J. Xu, Chin. J. Catal. 53 (2023) 123, https://doi.org/10.1016/S1872-2067(23)64514-0.  doi: 10.1016/S1872-2067(23)64514-0

    59. [59]

      C. Cheng, B. He, J. Fan, B. Cheng, S. Cao, J. Yu, Adv. Mater. 33 (2021) 2100317, https://doi.org/10.1002/adma.202100317.  doi: 10.1002/adma.202100317

    60. [60]

      L. Zhou, Q. Fang, M. Liu, S. Farhan, S. Yang, Y. Wu, Inorg. Chem. 63 (2024) 21202, https://doi.org/10.1021/acs.inorgchem.4c03502.  doi: 10.1021/acs.inorgchem.4c03502

    61. [61]

      Z. Meng, J. Zhang, H. Long, H. García, L. Zhang, B. Zhu, J. Yu, Angew. Chem. Int. Ed. 64 (2025) e202505456, https://doi.org/10.1002/anie.202505456.  doi: 10.1002/anie.202505456

    62. [62]

      C. Cheng, J. Zhang, B. Zhu, G. Liang, L. Zhang, J. Yu, Angew. Chem. Int. Ed. 62 (2023) e202218688, https://doi.org/10.1002/anie.202218688.  doi: 10.1002/anie.202218688

    63. [63]

      J. Liu, X. Yang, X. Guo, Z. Jin, J. Mater. Sci. Technol. 196 (2024) 112, https://doi.org/10.1016/j.jmst.2024.01.058.  doi: 10.1016/j.jmst.2024.01.058

    64. [64]

      B. Liu, J. Cai, J. Zhang, H. Tan, B. Cheng, J. Xu, Chin. J. Catal. 51 (2023) 204, https://doi.org/10.1016/S1872-2067(23)64466-3.  doi: 10.1016/S1872-2067(23)64466-3

    65. [65]

      Z. Meng, J. Zhang, C. Jiang, C. Trapalis, L. Zhang, J. Yu, Small 20 (2024) 2308952, https://doi.org/10.1002/smll.202308952.  doi: 10.1002/smll.202308952

    66. [66]

      C. Jiang, C. Yuan, K. Xu, X. Zhou, C. Bie, J. Mater. Sci. Technol. 231 (2025) 36, https://doi.org/10.1016/j.jmst.2024.12.071.  doi: 10.1016/j.jmst.2024.12.071

    67. [67]

      H. Liu, Z. Chen, L. Zhang, D. Zhu, Q. Zhang, Y. Luo, X. Shao, J. Phys. Chem. C 122 (2018) 6388, https://doi.org/10.1021/acs.jpcc.7b12305.  doi: 10.1021/acs.jpcc.7b12305

    68. [68]

      J. Liu, Y. Yang, W. Lin, W. Wang, S. Xiao, X. Guo, C. Zhu, L. Zhang, J. Colloid Interface Sci. 672 (2024) 744, https://doi.org/10.1016/j.jcis.2024.06.030.  doi: 10.1016/j.jcis.2024.06.030

    69. [69]

      J. Yan, J. Zhang, J. Mater. Sci. Technol. 193 (2024) 18, https://doi.org/10.1016/j.jmst.2023.12.054.  doi: 10.1016/j.jmst.2023.12.054

    70. [70]

      M. Gu, Y. Yang, B. Cheng, L. Zhang, P. Xiao, T. Chen, Chin. J. Catal. 59 (2024) 185, https://doi.org/10.1016/S1872-2067(23)64610-8.  doi: 10.1016/S1872-2067(23)64610-8

  • 加载中
    1. [1]

      Jinhui JiangJiaqi SunYongyi ChenLei ZhangPengyu Dong . W18O49/Al-doped SrTiO3 S-scheme heterojunction aided by the LSPR effect for full-spectrum solar light-driven photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(11): 100145-0. doi: 10.1016/j.actphy.2025.100145

    2. [2]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    3. [3]

      Xin ZhouYiting HuoSongyu YangBowen HeXiaojing WangZhen WuJianjun Zhang . Understanding the effect of pH on protonated COF during photocatalytic H2O2 production by femtosecond transient absorption spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(12): 100160-0. doi: 10.1016/j.actphy.2025.100160

    4. [4]

      Yiting HuoXin ZhouFeifan ZhaoChenbin AiZhen WuZhidong ChangBicheng Zhu . Boosting photocatalytic CO2 methanation through TiO2/CdS S-scheme heterojunction and fs-TAS mechanism study. Acta Physico-Chimica Sinica, 2025, 41(11): 100148-0. doi: 10.1016/j.actphy.2025.100148

    5. [5]

      You WuChang ChengKezhen QiBei ChengJianjun ZhangJiaguo YuLiuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027

    6. [6]

      Shuang CaoBo ZhongChuanbiao BieBei ChengFeiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016

    7. [7]

      Xinwan ZhaoYue CaoMinjun LeiZhiliang JinTsubaki Noritatsu . Constructing S-scheme heterojunctions by integrating covalent organic frameworks with transition metal sulfides for efficient noble-metal-free photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(12): 100152-0. doi: 10.1016/j.actphy.2025.100152

    8. [8]

      Fanpeng MengFei ZhaoJingkai LinJinsheng ZhaoHuayang ZhangShaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095

    9. [9]

      Shumin ZhangYaqi WangZelin WangLibo WangChangsheng AnDifa Xu . Ultrafast electron transfer at the ZIS1−x/UCN S-scheme interface enables efficient H2O2 photosynthesis coupled with tetracycline degradation. Acta Physico-Chimica Sinica, 2025, 41(11): 100136-0. doi: 10.1016/j.actphy.2025.100136

    10. [10]

      Yi YangXin ZhouMiaoli GuBei ChengZhen WuJianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064

    11. [11]

      Jiaqi YangXuqiang HaoJiejie JingYuqiang HaoZhiliang Jin . 3D/2D ReSe2/ZnCdS S-scheme photocatalyst with efficient interfacial charge separation for optimized hydrogen production. Acta Physico-Chimica Sinica, 2025, 41(10): 100131-0. doi: 10.1016/j.actphy.2025.100131

    12. [12]

      Changjun YouChunchun WangMingjie CaiYanping LiuBaikang ZhuShijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014

    13. [13]

      Deyun MaFenglan LiangQingquan XueYanping LiuChunqiang ZhuangShijie Li . Interfacial engineering of Cd0.5Zn0.5S/BiOBr S-scheme heterojunction with oxygen vacancies for effective photocatalytic antibiotic removal. Acta Physico-Chimica Sinica, 2025, 41(12): 100190-0. doi: 10.1016/j.actphy.2025.100190

    14. [14]

      Jizhou LiuChenbin AiChenrui HuBei ChengJianjun Zhang . Accelerated Interfacial Electron Transfer in Perovskite Solar Cell by Ammonium Hexachlorostannate Modification and fs-TAS Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-0. doi: 10.3866/PKU.WHXB202402006

    15. [15]

      Jiali LeiJuan WangWenhui ZhangGuohong WangZihui LiangJinmao Li . TiO2/CdIn2S4 S-scheme heterojunction photocatalyst promotes photocatalytic hydrogen evolution coupled vanillyl alcohol oxidation. Acta Physico-Chimica Sinica, 2025, 41(12): 100174-0. doi: 10.1016/j.actphy.2025.100174

    16. [16]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    17. [17]

      Xinyu MiaoHao YangJie HeJing WangZhiliang Jin . Adjusting the electronic structure of Keggin-type polyoxometalates to construct S-scheme heterojunction for photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-0. doi: 10.1016/j.actphy.2025.100051

    18. [18]

      Chunchun WangChangjun YouKe RongChuqi ShenFang YangShijie Li . An S-Scheme MIL-101(Fe)-on-BiOCl Heterostructure with Oxygen Vacancies for Boosting Photocatalytic Removal of Cr(Ⅵ). Acta Physico-Chimica Sinica, 2024, 40(7): 2307045-0. doi: 10.3866/PKU.WHXB202307045

    19. [19]

      Yuejiao AnWenxuan LiuYanfeng ZhangJianjun ZhangZhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-0. doi: 10.3866/PKU.WHXB202407021

    20. [20]

      Ziyang LongQuanzheng LiChengliang ZhangHaifeng Shi . BiVO4/WO3-x S-scheme heterojunctions with amplified internal electric field for boosting photothermal-catalytic activity. Acta Physico-Chimica Sinica, 2025, 41(10): 100122-0. doi: 10.1016/j.actphy.2025.100122

Metrics
  • PDF Downloads(0)
  • Abstract views(87)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return