Citation: Chengxin Chen, Hongfei Shi, Xiaoyan Cai, Liang Mao, Zhe Chen. Enhanced bifunctional photocatalytic performances for H2 evolution and HCHO elimination with an S-scheme CoWO4/CdIn2S4 heterojunction[J]. Acta Physico-Chimica Sinica, ;2025, 41(12): 100155. doi: 10.1016/j.actphy.2025.100155 shu

Enhanced bifunctional photocatalytic performances for H2 evolution and HCHO elimination with an S-scheme CoWO4/CdIn2S4 heterojunction

  • Corresponding author: Hongfei Shi, shihf813@nenu.edu.cn Liang Mao, maoliang@cumt.edu.cn Zhe Chen, chenz@jlict.edu.cn
  • Received Date: 11 July 2025
    Revised Date: 6 August 2025
    Accepted Date: 9 August 2025

    Fund Project: the National Natural Science Foundation of China 22309061the National Natural Science Foundation of China 22209203the National Natural Science Foundation of China 22309204the National Natural Science Foundation of China 22278172the Education Department project of Jilin Province JJKH20240305KJthe Science and Technology Department project of Jilin Province YDZJ202401372ZYTS

  • Designing and establishing dual-functional S-scheme heterojunction photocatalysts with efficient separation of photoproduced carriers and intense oxidation/reduction capabilities holds immense practical value for their photocatalytic application in energy conversion and environmental purification. Herein, a novel series of x% CoWO4/CdIn2S4 (x% reflects the weight ratio of CWO to CIS; x = 10, 20, 30, 40 and 50) composites have been systematically designed and synthesized via electrospinning technique and hydrothermal methods. Their photocatalytic properties were assessed through HCHO removal and H2 generation under visible light. As anticipated, the optimized 30% CWO/CIS heterojunction presented an outstanding H2 generation performance of 865.14 μmol g−1 h−1 with AQE = 3.6% at λ = 420 nm, and achieved a 69% removal percentage for HCHO within 1 h. Meanwhile, the pathway of HCHO degradation was presented based on in situ diffuse reflectance infrared Fourier transform spectroscopy (in situ DRIFTS) technique. The great catalytic performance was primarily ascribed to the enhancement in the visible-light absorption, number of active sites, and the construction of S-scheme heterojunction. Furthermore, the S-scheme charge transfer mechanism for the CWO/CIS catalyst system has been confirmed by in situ X-ray photoelectron spectroscopy (in situ XPS), electron spin resonance data, radical capturing experiments, and density functional theory (DFT) calculations. This research contributes valuable understanding for the systematic design and development of bifunctional S-scheme heterojunctions for gaseous pollutants removal and H2 production.
  • 加载中
    1. [1]

      Z. Wu, X. Meng, Z. Zhao, Nano Energy 132 (2024) 110364, https://doi.org/10.1016/j.nanoen.2024.110364.  doi: 10.1016/j.nanoen.2024.110364

    2. [2]

      Y. Li, Y. Ma, Y. Jiang, M. Sun, S. Zhou, W. Jiang, B. Liu, C. Liu, G. Che, Sep. Purif. Technol. 354 (2025) 128993, https://doi.org/10.1016/j.seppur.2024.128993.  doi: 10.1016/j.seppur.2024.128993

    3. [3]

      J. Cai, C. Cheng, B. Liu, J. Zhang, C. Jiang, B. Cheng, Acta Phys. Chim. Sin. 41 (2025) 100084, https://doi.org/10.1016/j.actphy.2025.100084.  doi: 10.1016/j.actphy.2025.100084

    4. [4]

      S. Li, R. Yan, M. Cai, W. Jiang, M. Zhang, X. Li, J. Mater. Sci. Technol. 164 (2023) 59, https://doi.org/10.1016/j.jmst.2023.05.009.  doi: 10.1016/j.jmst.2023.05.009

    5. [5]

      K. Meng, J. Zhang, B. Zhu, C. Jiang, H. García, J. Yu, Adv. Mater. 37 (2025) 2505088, https://doi.org/10.1002/adma.202505088.  doi: 10.1002/adma.202505088

    6. [6]

      L. Zhang, J. Zhang, J. Yu, H. García, Nat. Rev. Chem. 9 (2025) 328, https://doi.org/10.1038/s41570-025-00698-3  doi: 10.1038/s41570-025-00698-3

    7. [7]

      B. Liu, K. Meng, B. Cheng, L. Wang, G. Liang, C. Bie, J. Mater. Sci. Technol. 231 (2025) 286, https://doi.org/10.1016/j.jmst.2025.02.013.  doi: 10.1016/j.jmst.2025.02.013

    8. [8]

      H. Ding, R. Shen, K. Huang, C. Liang, P. Zhang, Adv. Funct. Mater. 34 (2024) 2400065, https://doi.org/10.1002/adfm.202400065.  doi: 10.1002/adfm.202400065

    9. [9]

      A. Rong, Q. Zhao, H. Shi, X. Cai, H. Zhu, C. Chen, X. Zhou, G. Yan, L. Mao, Sep. Purif. Technol. 356 (2025) 130010, https://doi.org/10.1016/j.seppur.2024.130010.  doi: 10.1016/j.seppur.2024.130010

    10. [10]

      X. Zhou, H. Shi, A. Rong, M. Wei, C. Chen, Z. Chen, Appl. Surf. Sci. 694 (2025) 162844, https://doi.org/10.1016/j.apsusc.2025.162844.  doi: 10.1016/j.apsusc.2025.162844

    11. [11]

      S. Cao, B. Zhong, C. Bie, B. Cheng, F. Xu, Acta Phys. Chim. Sin. 40 (2024) 2307016, https://doi.org/10.3866/PKU.WHXB202307016.  doi: 10.3866/PKU.WHXB202307016

    12. [12]

      K. Huang, G. Liang, S. Sun, H. Hu, X. Peng, R. Shen, X. Li, J. Mater. Sci. Technol. 193 (2024) 98, https://doi.org/10.1016/j.jmst.2024.01.034.  doi: 10.1016/j.jmst.2024.01.034

    13. [13]

      M. Sayed, K. Qi, X. Wu, L. Zhang, H. García, J. Yu, Chem. Soc. Rev. 54 (2025) 4874, https://doi.org/10.1039/d4cs01091d.  doi: 10.1039/d4cs01091d

    14. [14]

      H. Shi, E. Zhang, H. Zhu, H. Wang, A. Rong, L. Mao, Int. J. Hydrogen Energy. 51 (2024) 1287, https://doi.org/10.1016/j.ijhydene.2023.09.183.  doi: 10.1016/j.ijhydene.2023.09.183

    15. [15]

      A. Bhirud, N. Chaudhari, L. Nikam, R. Sonawane, K. Patil, B. Kale, Int. J. Hydrogen Energy. 36 (2011) 11628, https://doi.org/10.1016/j.ijhydene.2011.06.061.  doi: 10.1016/j.ijhydene.2011.06.061

    16. [16]

      Q. Wang, L. Wang, Y. Jiang, Y. Liu, W. Zhang, J. Zhang, A. L. O. Macauley, Environ. Res. 209 (2022) 112800, https://doi.org/10.1016/j.envres.2022.112800.  doi: 10.1016/j.envres.2022.112800

    17. [17]

      X. Ma, S. Hou, D. Li, Y. Wu, S. Li, Sep. Purif. Technol. 354 (2025) 129057, https://doi.org/10.1016/j.seppur.2024.129057.  doi: 10.1016/j.seppur.2024.129057

    18. [18]

      C. Bie, C. Jiang, J. Yang, X. Sun, X. Zeng, J. Zhang, B. Zhu, J. Mater. Sci. Technol. 229 (2025) 48, https://doi.org/10.1016/j.jmst.2024.12.047.  doi: 10.1016/j.jmst.2024.12.047

    19. [19]

      Y. Liu, Y. Liu, Z. Yao, Z. Yu, H. Zhu, C. Xing, Y. Wang, X. Tan, Y. Huang, Y. Hou, S. Wang, Appl. Catal. B Environ. 371 (2025) 125275, https://doi.org/10.1016/j.apcatb.2025.125275.  doi: 10.1016/j.apcatb.2025.125275

    20. [20]

      L. Li, K. Kuang, X. Zheng, J. Wang, W. Ren, J. Ge, S. Zhang, S. Chen, J. Colloid Interface Sci. 663 (2024) 981, https://doi.org/10.1016/j.jcis.2024.02.218.  doi: 10.1016/j.jcis.2024.02.218

    21. [21]

      F. Liu, B. Sun, Z. Liu, Y. Wei, T. Gao, G. Zhou, Chin. J. Catal. 64 (2024) 152, https://doi.org/10.1016/s1872-2067(24)60099-9.  doi: 10.1016/s1872-2067(24)60099-9

    22. [22]

      M. Gu, J. Zhang, I. V. Kurganskii, A. S. Poryvaev, M. V. Fedin, B. Cheng, J. Yu, L. Zhang, Adv. Mater. 37 (2025) 2414803, https://doi.org/10.1002/adma.202414803.  doi: 10.1002/adma.202414803

    23. [23]

      X. Zhou, S. Zhang, W. Liu, T. Liu, Adv. Compos. Hybrid Mater. 8 (2025) 102, https://doi.org/10.1007/s42114-024-01134-8.  doi: 10.1007/s42114-024-01134-8

    24. [24]

      D. Peng, Z. Zhao, A. Rong, J. Sun, X. Li, H. Shi, Z. Su, ACS Appl. Nano Mater. 8 (2025) 7419, https://doi.org/10.1021/acsanm.5c01092.  doi: 10.1021/acsanm.5c01092

    25. [25]

      C. Chen, H. Shi, A. Rong, M. Wei, X. Zhou, B. Feng, W. Wang, Int. J. Hydrogen. Energy. 130 (2025) 249, https://doi.org/10.1016/j.ijhydene.2025.04.330.  doi: 10.1016/j.ijhydene.2025.04.330

    26. [26]

      F. Rong, Y. Xue, W. Tang, Q. Lu, M. Wei, E. Guo, Y. Pang, J. Taiwan Inst. Chem. E. 133 (2022) 104267, https://doi.org/10.1016/j.jtice.2022.104267.  doi: 10.1016/j.jtice.2022.104267

    27. [27]

      G. Yang, H. Zhang, M. Dou, H. Yang, X. Yin, D. Li, H. Zhao, J. Dou, J. Colloid Interface Sci. 610 (2022) 1057, https://doi.org/10.1016/j.jcis.2021.11.159.  doi: 10.1016/j.jcis.2021.11.159

    28. [28]

      Z. Zeng, L. Mao, R. Zhang, Y. Liu, Y. Ling, X. Cai, J. Zhang, Chem. Eng. J. 496 (2024) 153769, https://doi.org/10.1016/j.cej.2024.153769.  doi: 10.1016/j.cej.2024.153769

    29. [29]

      W. Chen, T. Huang, Y. Hua, T. Liu, X. Liu, S. Chen, J. Hazard. Mater. 320 (2016) 529, https://doi.org/10.1016/j.jhazmat.2016.08.025.  doi: 10.1016/j.jhazmat.2016.08.025

    30. [30]

      P. Bagwade, V. Magdum, D. Malavekar, Y. Chitare, J. Gunjakar, J. Mater. Sci-Mater. El. 33 (2022) 24646, https://doi.org/10.1007/s10854-022-09174-w.  doi: 10.1007/s10854-022-09174-w

    31. [31]

      H. Zhu, H. Shi, J. Li, X. Qu, S. Zhao, H. Wang, A. Rong, Z. Chen, J. Alloys Compd. 976 (2024) 173072, https://doi.org/10.1016/j.jallcom.2023.173072.  doi: 10.1016/j.jallcom.2023.173072

    32. [32]

      J. Yan, L. Wei, Acta Phys. Chim. Sin. 40 (2024) 2312024, https://doi.org/10.3866/PKU.WHXB202312024.  doi: 10.3866/PKU.WHXB202312024

    33. [33]

      J. Wang, J. Li, Z. Li, J. Wu, H. Si, Y. Wu, Z. Guo, X. Wang, F. Liao, H. Huang, M. Shao, Y. Liu, Z. Kang, Nano Res. 17 (2024) 5956, https://doi.org/10.1007/s12274-024-6623-4.  doi: 10.1007/s12274-024-6623-4

    34. [34]

      M. Cai, Y. Liu, K. Dong, X. Chen, S. Li, Chin. J. Catal. 52 (2023) 239, https://doi.org/10.1016/s1872-2067(23)64496-1.  doi: 10.1016/s1872-2067(23)64496-1

    35. [35]

      Y. Zhang, S. Wang, Chin. J. Catal. 71 (2025) 1, https://doi.org/10.1016/S1872-2067(24)60253-6.  doi: 10.1016/S1872-2067(24)60253-6

    36. [36]

      G. Sun, Z. Tai, J. Zhang, B. Cheng, H. Yu, J. Yu, Appl. Catal. B. 358 (2024) 124459, https://doi.org/10.1016/j.apcatb.2024.124459.  doi: 10.1016/j.apcatb.2024.124459

    37. [37]

      S. Li, C. You, F. Yang, G. Liang, C. Zhuang, X. Li, Chin. J. Catal. 68 (2025) 259–271, https://doi.org/10.1016/s1872-2067(24)60181-6.  doi: 10.1016/s1872-2067(24)60181-6

    38. [38]

      Y. Deng, S. Wang, T. Zhou, B. Liu, L. Wang, C. Liu, W. Jiang, G. Che, Chem. Eng. J. 497 (2024) 154580, https://doi.org/10.1016/j.cej.2024.154580.  doi: 10.1016/j.cej.2024.154580

    39. [39]

      B. Zhu, C. Jiang, J. Xu, Z. Zhang, J. Fu, J. Yu, Mater. Today 82 (2025) 251, https://doi.org/10.1016/j.mattod.2024.11.012.  doi: 10.1016/j.mattod.2024.11.012

    40. [40]

      Z. Yan, X. Zhang, B. Yu, J. Yu, D. Han, Y. Jin, C. Wu, G. Dai, X. Xiong, Ceram. Int. 50 (2024) 3052, https://doi.org/10.1016/j.ceramint.2023.11.053.  doi: 10.1016/j.ceramint.2023.11.053

    41. [41]

      A. Rong, H. Shi, Q. Zhao, H. Zhu, H. Wang, G. Yan, Sep. Purif. Technol. 348 (2024) 127782, https://doi.org/10.1016/j.seppur.2024.127782.  doi: 10.1016/j.seppur.2024.127782

    42. [42]

      P. Li, Y. Cui, Z. Wang, G. Dawson, C. Shao, K. Dai, Acta Phys. Chim. Sin. 41 (2025) 100065, https://doi.org/10.1016/j.actphy.2025.100065.  doi: 10.1016/j.actphy.2025.100065

    43. [43]

      U. Sahoo, S. Pattnayak, S. Choudhury, P. Aparajita, DK. Pradhan, G. Hota, Appl. Catal. B–Environ. 343 (2024) 123524, https://doi.org/10.1016/j.apcatb.2023.123524.  doi: 10.1016/j.apcatb.2023.123524

    44. [44]

      H. Long, X. Zhang, Z. Zhang, J. Zhang, J. Yu, H. Yu, Nat. Commun. 16 (2025) 946, https://doi.org/10.1038/s41467-025-56306-x.  doi: 10.1038/s41467-025-56306-x

    45. [45]

      J. Wang, X. Xu, Y. Shen, J. Environ. Chem. Eng. 10 (2022) 107436, https://doi.org/10.1016/j.jece.2022.107436.  doi: 10.1016/j.jece.2022.107436

    46. [46]

      Y. Yang, T. Ji, Y. Lin, W. Su, J. Clean. Prod. 295 (2021) 126458, https://doi.org/10.1016/j.jclepro.2021.126458.  doi: 10.1016/j.jclepro.2021.126458

    47. [47]

      S. Xin, G. Liu, X. Ma, J. Gong, B. Ma, Q. Yan, Q. Chen, D. Ma, G. Zhang, M. Gao, Y. Xin, Appl. Catal. B–Environ. 280 (2021) 119386, https://doi.org/10.1016/j.apcatb.2020.119386.  doi: 10.1016/j.apcatb.2020.119386

    48. [48]

      Y. Li, W. Li, F. Liu, M. Li, X. Qi, M. Xue, Y. Wang, F. Han, J. Nanopart. Res. 22 (2020) 122, https://doi.org/10.1007/s11051-020-04860-4.  doi: 10.1007/s11051-020-04860-4

    49. [49]

      W. Yu, Z. Shu, M. Zhao, W. Ma, Sep. Purif. Technol. 327 (2023) 124966, https://doi.org/10.1016/j.seppur.2023.124966.  doi: 10.1016/j.seppur.2023.124966

    50. [50]

      J. Ye, M. Wu, B. Zhu, B. Cheng, J. Yu, J. Hazard. Mater. 474 (2024) 134672, https://doi.org/10.1016/j.jhazmat.2024.134672.  doi: 10.1016/j.jhazmat.2024.134672

    51. [51]

      Z. Ai, K. Deng, Q. Wan, L. Zhang, S. Lee, J. Phys. Chem. C. 114 (2010) 6237, https://doi.org/10.1021/jp910514f.  doi: 10.1021/jp910514f

    52. [52]

      J. Guo, C. Lin, C. Jiang, P. Zhang, Appl. Surf. Sci. 475 (2019) 237, https://doi.org/10.1016/j.apsusc.2018.12.238.  doi: 10.1016/j.apsusc.2018.12.238

    53. [53]

      X. Li, Y. Huang, W. Ho, S. Han, P. Wang, S. Lee, Z. Zhang, Appl. Catal. B-Environ. 338 (2023) 123048, https://doi.org/10.1016/j.apcatb.2023.123048.  doi: 10.1016/j.apcatb.2023.123048

    54. [54]

      S. Mao, R. He, S. Song, Chin. J. Catal. 64 (2024) 1, https://doi.org/10.1016/S1872-2067(24)60102-6.  doi: 10.1016/S1872-2067(24)60102-6

    55. [55]

      Y. Li, D. Han, Z. Wang, F. Gou, ACS Appl. Mater. Interfaces. 16 (2024) 7080, https://doi.org/10.1021/acsami.3c15898.  doi: 10.1021/acsami.3c15898

    56. [56]

      D. Peng, L. Mao, J. Sun, X. Li, H. Shi, Z. Su, Int. J. Hydrogen Energy. 114 (2025) 60–70, https://doi.org/10.1016/j.ijhydene.2025.03.029.  doi: 10.1016/j.ijhydene.2025.03.029

    57. [57]

      D. Xu, R. He, Z. Jiang, J. Mater. Sci. Technol. 236 (2025) 280, https://doi.org/10.1016/j.jmst.2025.02.040.  doi: 10.1016/j.jmst.2025.02.040

    58. [58]

      H. Moon, S. Kim, S. Joo, M. Kim, N. Park, Nano Today. 49 (2023) 101785, https://doi.org/10.1016/j.nantod.2023.101785.  doi: 10.1016/j.nantod.2023.101785

    59. [59]

      X. Wang, K. Sun, S. Gu, Y. Zhang, D. Wu, X. Zhou, K. Gao, Y. Ding, Appl. Surf. Sci. 549 (2021) 149341, https://doi.org/10.1016/j.apsusc.2021.149341.  doi: 10.1016/j.apsusc.2021.149341

    60. [60]

      D. Peng, Y. Wang, H. Shi, W. Jiang, T. Jin, Z. Jin, Z. Chen, J. Colloid Interface Sci. 613 (2022) 194, https://doi.org/10.1016/j.jcis.2021.10.179.  doi: 10.1016/j.jcis.2021.10.179

    61. [61]

      C. Shen, X. Li, B. Xue, D. Feng, Y. Liu, F. Yang, M. Zhang, S. Li, Appl. Surf. Sci. 679 (2025) 161303, https://doi.org/10.1016/j.apsusc.2024.161303.  doi: 10.1016/j.apsusc.2024.161303

    62. [62]

      H. Shi, T. Zhao, J. Wang, Y. Wang, Z. Chen, B. Liu, H. Ji, W. Wang, G. Zhang, Y. Li, J. Alloys Compd. 860 (2021) 157924, https://doi.org/10.1016/j.jallcom.2020.157924.  doi: 10.1016/j.jallcom.2020.157924

    63. [63]

      S. Wan, W. Wang, B. Cheng, G. Luo, Q. Shen, J. Yu, J. Zhang, S. Cao, Nat. Commun. 15 (2024) 9612, https://doi.org/10.1038/s41467-024-53951.  doi: 10.1038/s41467-024-53951

    64. [64]

      J. Sun, Y. Zhang, S. Fan, X. Li, Q. Zhao, Appl. Catal. B-Environ. 356 (2024) 124248, https://doi.org/10.1016/j.apcatb.2024.124248.  doi: 10.1016/j.apcatb.2024.124248

    65. [65]

      Z. Meng, J. Zhang, H. Long, H. García, L. Zhang, B. Zhu, J. Yu, Angew. Chem. Int. Ed. 64 (2025) e202425456, https://doi.org/10.1002/anie.202505456.  doi: 10.1002/anie.202505456

    66. [66]

      Z. Wu, L. Hou, W. Li, Q. Chen, C. Jin, Y. Chen, Q. Wei, H. Yang, Y. Jiang, D. Tang, J. Colloid Interface Sci. 610 (2022) 136, https://doi.org/10.1016/j.jcis.2021.12.036.  doi: 10.1016/j.jcis.2021.12.036

    67. [67]

      Z. Chen, Y. Gao, F. Chen, H. Shi, Chem. Eng. J. 413 (2021) 127474, https://doi.org/10.1016/j.cej.2020.127474.  doi: 10.1016/j.cej.2020.127474

    68. [68]

      T. Zhao, D. Peng, W. Hu, H. Shi, A. Rong, X. Li, G. Yan, Z. Su, J. Mol. Struct. 1335 (2025) 141934, https://doi.org/10.1016/j.molstruc.2025.141934.  doi: 10.1016/j.molstruc.2025.141934

    69. [69]

      M. Wei, X. Zhou, C. Cheng, J. Zhang, C. Jiang, B. Cheng, J. Mater. Sci. Technol. 232 (2025) 302, https://doi.org/10.1016/j.jmst.2025.01.036.  doi: 10.1016/j.jmst.2025.01.036

    70. [70]

      R. Li, H. Li, X. Zhang, B. Liu, B. Wu, B. Zhu, J. Yu, G. Liu, L. Zheng, Q. Zeng, Adv. Funct. Mater. 34 (2024) 2402797, https://doi.org/10.1002/adfm.202402797.  doi: 10.1002/adfm.202402797

    71. [71]

      H. Hu, X. Zhang, K. Zhang, Y. Ma, H. Wang, H. Li, H. Huang, X. Sun, T. Ma, Adv. Energy Mater. 14 (2024) 2303638, https://doi.org/10.1002/aenm.202303638.  doi: 10.1002/aenm.202303638

    72. [72]

      J. Zhu, S. Zhang, R. He, Chin. J. Catal. 59 (2024) 4, https://doi.org/10.1016/S1872-2067(24)60011-2.  doi: 10.1016/S1872-2067(24)60011-2

    73. [73]

      X. Jiang, Z. Chen, Y. Shu, A. Idris, S. Li, B. Peng, J. Wang, Z. Li, Appl. Catal. B-Environ. 348 (2024) 123840, https://doi.org/10.1016/j.apcatb.2024.123840.  doi: 10.1016/j.apcatb.2024.123840

  • 加载中
    1. [1]

      Yanyan ZhaoZhen WuYong ZhangBicheng ZhuJianjun Zhang . Enhancing photocatalytic H2O2 production via dual optimization of charge separation and O2 adsorption in Au-decorated S-vacancy-rich CdIn2S4. Acta Physico-Chimica Sinica, 2025, 41(11): 100142-0. doi: 10.1016/j.actphy.2025.100142

    2. [2]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    3. [3]

      Jingzhao ChengShiyu GaoBei ChengKai YangWang WangShaowen Cao . Construction of 4-Amino-1H-imidazole-5-carbonitrile Modified Carbon Nitride-Based Donor-Acceptor Photocatalyst for Efficient Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-0. doi: 10.3866/PKU.WHXB202406026

    4. [4]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    5. [5]

      Shuang CaoBo ZhongChuanbiao BieBei ChengFeiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016

    6. [6]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

    7. [7]

      Fanpeng MengFei ZhaoJingkai LinJinsheng ZhaoHuayang ZhangShaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095

    8. [8]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    9. [9]

      Xiaorui ChenXuan LuoTongming SuXinling XieLiuyun ChenYuejing BinZuzeng QinHongbing Ji . Ga-doped Cu/γ-Al2O3 bifunctional interface sites promote the direct hydrogenation of CO2 to DME. Acta Physico-Chimica Sinica, 2025, 41(10): 100126-0. doi: 10.1016/j.actphy.2025.100126

    10. [10]

      Peipei SunJinyuan ZhangYanhua SongZhao MoZhigang ChenHui Xu . Built-in Electric Fields Enhancing Photocarrier Separation and H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-0. doi: 10.3866/PKU.WHXB202311001

    11. [11]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    12. [12]

      Jiali LeiJuan WangWenhui ZhangGuohong WangZihui LiangJinmao Li . TiO2/CdIn2S4 S-scheme heterojunction photocatalyst promotes photocatalytic hydrogen evolution coupled vanillyl alcohol oxidation. Acta Physico-Chimica Sinica, 2025, 41(12): 100174-0. doi: 10.1016/j.actphy.2025.100174

    13. [13]

      Sumiya Akter DristyMd Ahasan HabibShusen LinMehedi Hasan JoniRutuja MandavkarYoung-Uk ChungMd NajibullahJihoon Lee . Exploring Zn doped NiBP microspheres as efficient and stable electrocatalyst for industrial-scale water splitting. Acta Physico-Chimica Sinica, 2025, 41(7): 100079-0. doi: 10.1016/j.actphy.2025.100079

    14. [14]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

    15. [15]

      Yi YangXin ZhouMiaoli GuBei ChengZhen WuJianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064

    16. [16]

      Jingzhuo TianChaohong GuanHaobin HuEnzhou LiuDongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-0. doi: 10.1016/j.actphy.2025.100068

    17. [17]

      Ruiyun LiuPing WangXuefei WangFeng ChenHuogen Yu . Work-function-engineered Mo 4d electronic structure modulation in Mo2C MXene cocatalyst for efficient photocatalytic H2 evolution. Acta Physico-Chimica Sinica, 2025, 41(11): 100137-0. doi: 10.1016/j.actphy.2025.100137

    18. [18]

      Menglan WeiXiaoxia OuYimeng WangMengyuan ZhangFei TengKaixuan Wang . S-scheme heterojunction g-C3N4/Bi2WO6 highly efficient degradation of levofloxacin: performance, mechanism and degradation pathway. Acta Physico-Chimica Sinica, 2025, 41(9): 100105-0. doi: 10.1016/j.actphy.2025.100105

    19. [19]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    20. [20]

      Mian WeiChang ChengBowen HeBei ChengKezhen QiChuanbiao Bie . Inorganic-organic CdS/YBTPy S-scheme photocatalyst for efficient hydrogen production and its mechanism. Acta Physico-Chimica Sinica, 2025, 41(12): 100158-0. doi: 10.1016/j.actphy.2025.100158

Metrics
  • PDF Downloads(1)
  • Abstract views(80)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return