自集成黑色NiO团簇与ZnIn2S4微球实现S型电子转移机制下光热辅助制氢

葛成艳 胡佳伟 刘星雨 宋玉玺 刘超 邹志刚

引用本文: 葛成艳, 胡佳伟, 刘星雨, 宋玉玺, 刘超, 邹志刚. 自集成黑色NiO团簇与ZnIn2S4微球实现S型电子转移机制下光热辅助制氢[J]. 物理化学学报, 2026, 42(1): 100154. doi: 10.1016/j.actphy.2025.100154 shu
Citation:  Chengyan Ge, Jiawei Hu, Xingyu Liu, Yuxi Song, Chao Liu, Zhigang Zou. Self-integrated black NiO clusters with ZnIn2S4 microspheres for photothermal-assisted hydrogen evolution by S-scheme electron transfer mechanism[J]. Acta Physico-Chimica Sinica, 2026, 42(1): 100154. doi: 10.1016/j.actphy.2025.100154 shu

自集成黑色NiO团簇与ZnIn2S4微球实现S型电子转移机制下光热辅助制氢

    通讯作者: 刘超, Email: cliu@ycit.edu.cn
摘要: 利用太阳能制氢(H2)技术是实现碳中和目标的关键策略,但是设计最优异质结构光催化剂仍面临重大挑战。本研究首次在溶剂热过程中成功实现了高度分散的黑色NiO团簇与ZIS微球的自组装。所构建的NiO/ZIS S型异质结构复合材料可提供更多活性位点用于可见光驱动光催化产氢(PHE)反应。最优样品2-NiO/ZIS表现出2474.0 μmol g−1 h−1的最佳产氢速率、36.67%的最高表观量子产率(AQY)以及优异的结构稳定性。此外,NiO/ZIS复合材料在天然海水中也展现出高产氢活性。通过原位X射线光电子能谱(XPS)、水相时间分辨光致发光光谱(TRPL)和瞬态吸收光谱(TAS)等先进表征技术,系统评估了催化剂的电荷分离行为。实验分析与理论计算结果共同阐明了NiO/ZIS的S型电荷转移机制。提升的PHE活性源于黑色NiO团簇与ZIS之间的协同效应,包括增强光捕获能力、加速载流子传输与分离、保持高氧化还原能力以及改善表面反应动力学。本研究为构建具有光热效应的S型异质结构复合材料提供了新思路。

English

    1. [1]

      P. Zhou, I. A. Navid, Y. Ma, Y. Xiao, P. Wang, Z. Ye, B. Zhou, K. Sun, Z. Mi, Nature 613 (2023) 66, https://doi.org/10.1038/s41586-022-05399-1. doi: 10.1038/s41586-022-05399-1

    2. [2]

      J. Tian, J. Li, Y. Guo, Z. Liu, B. Liu, J. Li, Adv. Powder Mater. 3 (2024) 100201, https://doi.org/10.1016/j.apmate.2024.100201. doi: 10.1016/j.apmate.2024.100201

    3. [3]

      H. Nishiyama, T. Yamada, M. Nakabayashi, Y. Maehara, M. Yamaguchi, Y. Kuromiya, Y. Nagatsuma, H. Tokudome, S. Akiyama, T. Watanabe, R. Narushima, S. Okunaka, N. Shibata, T. Takata, T. Hisatomi, K. Domen, Nature 598 (2021) 304, https://doi.org/10.1038/s41586-021-03907-3. doi: 10.1038/s41586-021-03907-3

    4. [4]

      J. Liu, Y. Liu, N. Liu, Y. Han, X. Zhang, H. Huang, Y. Lifshitz, S. -T. Lee, J. Zhong, Z. Kang, Science 347 (2015) 970, https://doi.org/10.1126/science.aaa3145. doi: 10.1126/science.aaa3145

    5. [5]

      D. Liu, B. Sun, S. Bai, T. Gao, G. Zhou, Chin. J. Catal. 50 (2023) 273, https://doi.org/10.1016/S1872‐2067(23)64462‐6. doi: 10.1016/S1872‐2067(23)64462‐6

    6. [6]

      C. Liu, Q. Zhang, Z. Zou, J. Mater. Sci. Technol. 139 (2023) 167, https://doi.org/10.1016/j.jmst.2022.08.030. doi: 10.1016/j.jmst.2022.08.030

    7. [7]

      Q. Luan, X. Xue, H. Feng, L. Tao, D. Zhou, T. Chen, M. Tan, W. Dong, Appl. Catal. B Environ. 337 (2023) 122932, https://doi.org/10.1016/j.apcatb.2023.122932. doi: 10.1016/j.apcatb.2023.122932

    8. [8]

      X. Jia, Y. Lu, K. Du, H. Zheng, L. Mao, H. Li, Z. Ma, R. Wang, J. Zhang, Adv. Funct. Mater. 33 (2023) 2304072, https://doi.org/10.1002/adfm.202304072. doi: 10.1002/adfm.202304072

    9. [9]

      X. Xin, Y. Li, Y. Zhang, Y. Wang, X. Chi, Y. Wei, C. Diao, J. Su, R. Wang, P. Guo, J. Yu, J. Zhang, A. J. Sobrido, M. M. Titirici, X. Li, Nat. Commun. 15 (2024) 337, https://doi.org/10.1038/s41467-024-44725-1. doi: 10.1038/s41467-024-44725-1

    10. [10]

      G. Sun, Z. Tai, F. Li, Q. Ye, T. Wang, Z. Fang, L. Jia, W. Liu, H. Wang, Small 19 (2023) 2207758, https://doi.org/10.1002/smll.202207758. doi: 10.1002/smll.202207758

    11. [11]

      Z. Yu, X. Luan, H. Xiao, Y. Yang, D. Luo, J. Zi, Z. Lian, Appl. Catal. B Environ. 347 (2024) 123702, https://doi.org/10.1016/j.apcatb.2024.123702. doi: 10.1016/j.apcatb.2024.123702

    12. [12]

      Y. Yin, Y. Xu, H. Zhang, H. Zheng, Z. Xu, C. Xu, G. Zuo, S. Yang, H. He, Y. Liu, J. Colloid Interface Sci. 666 (2024) 648, https://doi.org/10.1016/j.jcis.2024.03.194. doi: 10.1016/j.jcis.2024.03.194

    13. [13]

      L. Yang, J. Guo, S. Chen, A. Li, J. Tang, N. Guo, J. Yang, Z. Zhang, J. Zhou, J. Colloid Interface Sci. 659 (2024) 776, https://doi.org/10.1016/j.jcis.2024.01.022. doi: 10.1016/j.jcis.2024.01.022

    14. [14]

      Q. Xi, F. Xie, J. Liu, X. Zhang, J. Wang, Y. Wang, Y. Wang, H. Li, Z. Yu, Z. Sun, X. Jian, X. Gao, J. Ren, C. Fan, R. Li, Small 19 (2023) 2300717, https://doi.org/10.1002/smll.202300717. doi: 10.1002/smll.202300717

    15. [15]

      P. Su, D. Zhang, X. Yao, T. Liang, N. Yang, D. Zhang, X. Pu, J. Liu, P. Cai, Z. Li, J. Colloid Interface Sci. 662 (2024) 276, https://doi.org/10.1016/j.jcis.2024.02.058. doi: 10.1016/j.jcis.2024.02.058

    16. [16]

      M. Sayed, K. Qi, X. Wu, L. Zhang, H. Garcia, J. Yu, Chem. Soc. Rev. 54 (2025) 4874, https://doi.org/10.1039/d4cs01091d. doi: 10.1039/d4cs01091d

    17. [17]

      J. Yan, L. Wei., Acta Phys. Chim. Sin. 40 (2024) 2312024, https://doi.org/10.3866/PKU.WHXB202312024. doi: 10.3866/PKU.WHXB202312024

    18. [18]

      R. Kavitha, C. Manjunatha, J. Yu, S. G. Kumar, EnergyChem 7 (2025) 100159, https://doi.org/10.1016/j.enchem.2025.100159. doi: 10.1016/j.enchem.2025.100159

    19. [19]

      B. Zhu, J. Sun, Y. Zhao, L. Zhang, J. Yu, Adv. Mater. 36 (2024) 2310600, https://doi.org/10.1002/adma.202310600. doi: 10.1002/adma.202310600

    20. [20]

      B. Xia, G. Liu, K. Fan, R. Chen, X. Liu, L. Li, Chin. J. Catal. 69 (2025) 315, https://doi.org/10.1016/s1872-2067(24)60210-x. doi: 10.1016/s1872-2067(24)60210-x

    21. [21]

      H. Du, R. Huo, A. Liu, Y. Hui, B. Shen, N. Li, Y. Ji, Q. Jin, B. Zheng, G. Yang, Z. Zhang, Q. Wang, Appl. Catal. B Environ. 357 (2024) 124283, https://doi.org/10.1016/j.apcatb.2024.124283. doi: 10.1016/j.apcatb.2024.124283

    22. [22]

      R. Niu, Q. Liu, B. Huang, Z. Liu, W. Zhang, Z. Peng, Z. Wang, Y. Yang, Z. Gu, J. Li, Appl. Catal. B Environ. 317 (2022) 121727, https://doi.org/10.1016/j.apcatb.2022.121727. doi: 10.1016/j.apcatb.2022.121727

    23. [23]

      X. Li, W. Zhang, F. Yang, S. Yao, L. Li, X. An, B. Xi, S. Xiong, C. An, Adv. Energy Mater. 14 (2024) 2401877, https://doi.org/10.1002/aenm.202401877. doi: 10.1002/aenm.202401877

    24. [24]

      F. -F. Tao, Y. Dong, L. Yang, ACS Sustainable Chem. Eng. 12 (2024) 6709, https://doi.org/10.1021/acssuschemeng.4c00579. doi: 10.1021/acssuschemeng.4c00579

    25. [25]

      M. H. Aziz, M. Latif, M. Asif, F. Shaheen, H. M. Fahad, J. Yang, R. Wahab, M. Alam, Q. Huang, J. Energy Storage 98 (2024) 113000, https://doi.org/10.1016/j.est.2024.113000. doi: 10.1016/j.est.2024.113000

    26. [26]

      Y. Li, W. Si, Y. Pan, R. Chen, H. Tan, Y. Wang, J. Liang, F. Hou, Appl. Surf. Sci. 662 (2024) 160111, https://doi.org/10.1016/j.apsusc.2024.160111. doi: 10.1016/j.apsusc.2024.160111

    27. [27]

      C. Suppaso, C. Khamdang, S. Suthirakun, K. Maeda, N. Khaorapapong, Int. J. Hydrogen Energy 97 (2025) 994, https://doi.org/10.1016/j.ijhydene.2024.11.390. doi: 10.1016/j.ijhydene.2024.11.390

    28. [28]

      Y. Wu, J. Liu, J. Rong, Y. Zhang, Q. Liang, M. Zhou, Z. Li, S. Xu, Int. J. Hydrogen Energy 48 (2023) 12723, https://doi.org/10.1016/j.ijhydene.2022.12.239. doi: 10.1016/j.ijhydene.2022.12.239

    29. [29]

      J. Liu, Y. Li, J. Ke, S. Wang, L. Wang, H. Xiao, Appl. Catal. B Environ 224 (2018) 705, https://doi.org/10.1016/j.apcatb.2017.11.028. doi: 10.1016/j.apcatb.2017.11.028

    30. [30]

      J. Hu, J. Li, Z. Pu, W. Xiao, H. Yu, Z. Zhang, F. Yu, C. Liu, Q. Zhang, J. Colloid Interface Sci. 665 (2024) 780, https://doi.org/10.1016/j.jcis.2024.03.178. doi: 10.1016/j.jcis.2024.03.178

    31. [31]

      Z. Lei, X. Cao, J. Fan, X. Hu, J. Hu, N. Li, T. Sun, E. Liu, Chem. Eng. J. 457 (2023) 141249, https://doi.org/10.1016/j.cej.2022.141249. doi: 10.1016/j.cej.2022.141249

    32. [32]

      C. Liu, W. Xiao, X. Liu, Q. Wang, J. Hu, S. Zhang, J. Xu, Q. Zhang, Z. Zou, J. Mater. Sci. Technol. 161 (2023) 123, https://doi.org/10.1016/j.jmst.2023.04.007. doi: 10.1016/j.jmst.2023.04.007

    33. [33]

      J. W. Hu, K. Xia, A. Yang, Z. H. Zhang, W. Xiao, C. Liu, Q. F. Zhang, Acta Phys. Chim. Sin. 40 (2024) 2305043, https://doi.org/10.3866/p ku.Whxb202305043. doi: 10.3866/pku.Whxb202305043

    34. [34]

      Y. Wang, L. Gao, J. Huo, Y. Li, W. Kang, C. Zou, L. Jia, Chem. Eng. J. 460 (2023) 141667, https://doi.org/10.1016/j.cej.2023.141667. doi: 10.1016/j.cej.2023.141667

    35. [35]

      W. -N. Yang, J. Yang, H. Yang, L. Sun, H. -X. Li, D. -C. Li, J. -M. Dou, X. -G. Li, G. -D. Cao, Rare Met. 44 (2025) 2474, https://doi.org/10.1007/s12598-024-03060-6. doi: 10.1007/s12598-024-03060-6

    36. [36]

      Y. -X. Shao, Y. -Z. Li, X. -Q. Lian, X. -T. Che, Q. -Y. Li, Y. -F. Feng, H. -Z. Wang, J. -Y. Liao, Q. -B. Liu, H. Li, Rare Met. 44 (2025) 389, https://doi.org/10.1007/s12598-024-02949-6. doi: 10.1007/s12598-024-02949-6

    37. [37]

      W. Dong, S. -A. Zhou, Y. Ma, D. -J. Chi, R. Chen, H. -M. Long, T. -J. Chun, S. -J. Liu, F. -P. Qian, K. Zhang, Rare Met. 42 (2023) 1195, https://doi.org/10.1007/s12598-022-02196-7. doi: 10.1007/s12598-022-02196-7

    38. [38]

      W. Li, J. -J. Li, Z. -F. Liu, H. -Y. Ma, P. -F. Fang, R. Xiong, J. -H. Wei, Rare Met. 43 (2024) 533, https://doi.org/10.1007/s12598-023-02419-5. doi: 10.1007/s12598-023-02419-5

    39. [39]

      H. Yang, H. Hou, M. Yang, Z. Zhu, H. Fu, D. Zhang, Y. Luo, W. Yang, Chem. Eng. J. 474 (2023) 145813, https://doi.org/10.1016/j.cej.2023.145813. doi: 10.1016/j.cej.2023.145813

    40. [40]

      F. Tao, Y. Dong, L. Yang, Appl. Surf. Sci. 638 (2023) 158044, https://doi.org/10.1016/j.apsusc.2023.158044. doi: 10.1016/j.apsusc.2023.158044

    41. [41]

      S. Hu, Z. Han, G. Yan, X. Hou, S. Yi, Z. Zhang, Y. Zhou, L. Zhang, Appl. Surf. Sci. 639 (2023) 158206, https://doi.org/10.1016/j.apsusc.2023.158206. doi: 10.1016/j.apsusc.2023.158206

    42. [42]

      N. Chen, J. Cao, M. Guo, C. Liu, H. Lin, S. Chen, Int. J. Hydrogen Energy 46 (2021) 19363, https://doi.org/10.1016/j.ijhydene.2021.03.091. doi: 10.1016/j.ijhydene.2021.03.091

    43. [43]

      L. Pei, Y. Yu, Z. Ma, X. Wang, Q. Mao, J. Zhong, lnorg. Chem. 64 (2025) 9084, https://doi.org/10.1021/acs.inorgchem.5c00555. doi: 10.1021/acs.inorgchem.5c00555

    44. [44]

      S. Li, C. Wang, Y. Liu, M. Cai, Y. Wang, H. Zhang, Y. Guo, W. Zhao, Z. Wang, X. Chen, Chem. Eng. J. 429 (2022) 132519, https://doi.org/10.1016/j.cej.2021.132519. doi: 10.1016/j.cej.2021.132519

    45. [45]

      J. Hu, J. Li, X. Liu, W. Xiao, H. Yu, H. Abdelsalam, C. Liu, Z. Zou, Q. Zhang, J. Colloid Interface Sci. 680 (2025) 506, https://doi.org/10.1016/j.jcis.2024.11.014. doi: 10.1016/j.jcis.2024.11.014

    46. [46]

      S. Cao, B. Zhong, C. Bie, B. Cheng, F. Xu, Acta Phys. Chim. Sin. 40 (2024) 2307016, https://doi.org/10.3866/PKU.WHXB202307016. doi: 10.3866/PKU.WHXB202307016

    47. [47]

      C. Wang, H. Liu, G. Wang, H. Fang, X. Yuan, C. Lu, Chem. Eng. J. 450 (2022) 138167, https://doi.org/10.1016/j.cej.2022.138167. doi: 10.1016/j.cej.2022.138167

    48. [48]

      D. Liu, L. Jiang, D. Chen, Z. Hao, B. Deng, Y. Sun, X. Liu, B. Jia, L. Chen, H. Liu, Chem. Eng. J. 482 (2024) 149165, https://doi.org/10.1016/j.cej.2024.149165. doi: 10.1016/j.cej.2024.149165

    49. [49]

      J. Yan, J. Zhang, J. Mater. Sci. Technol. 193 (2024) 18, https://doi.org/10.1016/j.jmst.2023.12.054. doi: 10.1016/j.jmst.2023.12.054

    50. [50]

      Y. Lu, X. Jia, Z. Ma, Y. Li, S. Yue, X. Liu, J. Zhang, Adv. Funct. Mater. 32 (2022) 2203638, https://doi.org/10.1002/adfm.202203638. doi: 10.1002/adfm.202203638

    51. [51]

      L. Zhang, J. Zhang, J. Yu, H. Garcia, Nat. Rev. Chem. 9 (2025) 328, https://doi.org/10.1038/s41570-025-00698-3. doi: 10.1038/s41570-025-00698-3

    52. [52]

      Y. Yang, X. Zhou, M. Gu, B. Cheng, Z. Wu, J. Zhang, Acta Phys. Chim. Sin. 41 (2025) 100064, https://doi.org/10.1016/j.actphy.2025.100064. doi: 10.1016/j.actphy.2025.100064

    53. [53]

      X. Yan, W. Chen, W. Xiao, G. Yu, H. Hou, C. Liu, Surf. Interfaces 46 (2024) 104183, https://doi.org/10.1016/j.surfin.2024.104183. doi: 10.1016/j.surfin.2024.104183

    54. [54]

      C. Liu, H. Yu, W. Xiao, C. Gu, J. Yu, J. Li, J. Song, Y. Song, T. Sun, Z. Zou, Q. Zhang, Appl. Surf. Sci. 682 (2025) 161717, https://doi.org/10.1016/j.apsusc.2024.161717. doi: 10.1016/j.apsusc.2024.161717

    55. [55]

      B. Huang, X. Fu, K. Wang, L. Wang, H. Zhang, Z. Liu, B. Liu, J. Li, Adv. Powder Mater. 3 (2024) 100140, https://doi.org/10.1016/j.apmate.2023.100140. doi: 10.1016/j.apmate.2023.100140

    56. [56]

      B. Li, M. Chen, Q. Hu, J. Zhu, X. Yang, Z. Li, C. Hu, Y. Li, P. Ni, Y. Ding, Appl. Catal. B Environ. 346 (2024) 123733, https://doi.org/10.1016/j.apcatb.2024.123733. doi: 10.1016/j.apcatb.2024.123733

    57. [57]

      B. Xia, B. He, J. Zhang, L. Li, Y. Zhang, J. Yu, J. Ran, S. Z. Qiao, Adv. Energy Mater. 12 (2022) 2201449, https://doi.org/10.1002/aenm.202201449. doi: 10.1002/aenm.202201449

    58. [58]

      L. Jing, X. Qin, Y. Luan, Y. Qu, M. Xie, Appl. Surf. Sci. 258 (2012) 3340, https://doi.org/10.1016/j.apsusc.2011.07.101. doi: 10.1016/j.apsusc.2011.07.101

    59. [59]

      H. Liao, K. Huang, W. Hou, H. Guo, C. Lian, J. Zhang, Z. Liu, L. Wang, Adv. Powder Mater. 3 (2024) 100243, https://doi.org/10.1016/j.apmate.2024.100243. doi: 10.1016/j.apmate.2024.100243

    60. [60]

      W. Xiao, H. Yu, C. Xu, Z. Pu, X. Cheng, F. Yu, C. Liu, Q. Zhang, Z. Zou, J. Mater. Sci. Technol. 180 (2024) 193, https://doi.org/10.1016/j.jmst.2023.08.021. doi: 10.1016/j.jmst.2023.08.021

    61. [61]

      C. Liu, Y. Zhang, J. Wu, H. Dai, C. Ma, Q. Zhang, Z. Zou, J. Mater. Sci. Technol. 114 (2022) 81, https://doi.org/10.1016/j.jmst.2021.12.003. doi: 10.1016/j.jmst.2021.12.003

    62. [62]

      C. Liu, H. Yu, J. Li, X. Yu, Z. Yu, Y. Song, F. Zhang, Q. Zhang, Z. Zou, Acta Phys. Chim. Sin. 41 (2025) 100075, https://doi.org/10.1016/j.actphy.2025.100075. doi: 10.1016/j.actphy.2025.100075

    63. [63]

      D. Zhang, C. Zhang, k. Chai, Y. Li, Z. Lv, Sep. Purif. Technol. 337 (2024) 126408, https://doi.org/10.1016/j.seppur.2024.126408. doi: 10.1016/j.seppur.2024.126408

    64. [64]

      Z. -P. Lv, D. -H. Zhang, M. -L. Zang, S. -L. Li, J. -L. He, J. -X. Song, Rare Met. 43 (2024) 5848, https://doi.org/10.1007/s12598-024-02859-7. doi: 10.1007/s12598-024-02859-7

    65. [65]

      C. Du, B. Yan, G. Yang, Chem. Eng. J. 404 (2021) 126477, https://doi.org/10.1016/j.cej.2020.126477. doi: 10.1016/j.cej.2020.126477

    66. [66]

      S. Wang, D. Zhang, X. Pu, L. Zhang, D. Zhang, J. Jiang, Small (2024) 2311504, https://doi.org/10.1002/smll.202311504. doi: 10.1002/smll.202311504

    67. [67]

      K. Chen, Y. Shi, P. Shu, Z. Luo, W. Shi, F. Guo, Chem. Eng. J. 454 (2023) 140053, https://doi.org/10.1016/j.cej.2022.140053. doi: 10.1016/j.cej.2022.140053

    68. [68]

      H. Liu, F. Sun, X. Li, Q. Ma, G. Liu, H. Yu, W. Yu, X. Dong, Z. Su, Compos. Part B Eng. 259 (2023) 110746, https://doi.org/10.1016/j.compositesb.2023.110746. doi: 10.1016/j.compositesb.2023.110746

    69. [69]

      X. Liu, Y. Su, Y. Li, Q. Ma, J. Luo, Small 21 (2025) 2410721, https://doi.org/10.1002/smll.202410721. doi: 10.1002/smll.202410721

    70. [70]

      X. Ding, X. Xu, J. Wang, Y. Xue, J. Wang, Y. Qin, J. Tian, J. Colloid Interface Sci. 662 (2024) 727, https://doi.org/10.1016/j.jcis.2024.02.124. doi: 10.1016/j.jcis.2024.02.124

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  27
  • HTML全文浏览量:  2
文章相关
  • 发布日期:  2026-01-15
  • 收稿日期:  2025-06-29
  • 接受日期:  2025-08-07
  • 修回日期:  2025-08-04
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章