Citation: Xinwan Zhao, Yue Cao, Minjun Lei, Zhiliang Jin, Tsubaki Noritatsu. Constructing S-scheme heterojunctions by integrating covalent organic frameworks with transition metal sulfides for efficient noble-metal-free photocatalytic hydrogen evolution[J]. Acta Physico-Chimica Sinica, ;2025, 41(12): 100152. doi: 10.1016/j.actphy.2025.100152 shu

Constructing S-scheme heterojunctions by integrating covalent organic frameworks with transition metal sulfides for efficient noble-metal-free photocatalytic hydrogen evolution

  • Corresponding author: Zhiliang Jin, zl-jin@nun.edu.cn
  • These authors contributed equally to this work.
  • Received Date: 26 June 2025
    Revised Date: 1 August 2025
    Accepted Date: 6 August 2025

    Fund Project: the National Natural Science Foundation of China 22062001

  • Two-dimensional covalent organic frameworks (COFs) are considered among the most potential crystalline porous materials for solar-driven hydrogen production. However, it is usually necessary to introduce noble metal cocatalysts to boost the hydrogen evolution capacity of COFs. In this work, a unique S-scheme heterojunction structured TtTfp-COF/NiS composite material was effectively developed by growing metal sulfide on the typical two-dimensional covalent organic framework TtTfp-COF through a simple solvothermal synthesis method. In this structure, linear structure of rod-like NiS is more stable and convenient for further surface modification. It also provides key active sites and promotes efficient electron transfer, significantly enhancing the hydrogen evolution efficiency. The covalent organic framework enhances charge carrier transport efficiency by controlling the spatial organization of precursors and ligands. It is indicated by the experimental findings that a hydrogen evolution rate of 5978 μmol·g−1·h−1 can be achieved for the NT-20 sample, which about 11.5 times higher than that of the initial TtTfp-COF (520 μmol·g−1·h−1). In addition, the material exhibits a notable quantum efficiency of 1.96% when exposed to 420 nm illumination. Both experimental results and theoretical analyses have been confirmed to improve the hydrogen evolution rate via photocatalysis and the charge transfer mechanism within the S-scheme heterojunction has been thoroughly elucidated. The design and development of non-precious metal COF-based photocatalysts are provided with new insights in this article, and new ideas for the construction of S-scheme heterojunctions are offered by the synergistic combination of inorganic and organic materials in photocatalysis.
  • 加载中
    1. [1]

      F. Y. Xu, K. Meng, B. Cheng, S. Y. Wang, J. S. Xu, J. Yu, Nat. Commun. 11 (2020) 4613, https://doi.org/10.1038/s41467-020-18350-7  doi: 10.1038/s41467-020-18350-7

    2. [2]

      X. Y. Deng, J. J. Zhang, K. Z. Qi, G. J. Liang, F. Y. Xu, J. G. Yu, Nat. Commun. 15 (2024) 4807, https://doi.org/10.1038/s41467-024-49004-7  doi: 10.1038/s41467-024-49004-7

    3. [3]

      Y. L. Wu, H. Y. Wang, Z. L. Jin, J. Ningxia Univ. (Nat. Sci. Ed. ), 45 (2024) 361.

    4. [4]

      Z. Y. Zhou, Z. L. Jin, Chin. J. Catal. 74 (2024) 294, https://doi.org/10.1016/S1872-2067(25)64690-0  doi: 10.1016/S1872-2067(25)64690-0

    5. [5]

      X. Y. Chu, S. K. Liu, B. B. Luan, Y. Zhang, Y. M. Xi, L. H. Shao, F. M. Zhang, Y. Q. Lan, Angew. Chem. Int. Ed. (2025) e202422940, https://doi.org/10.1002/ange.202422940.  doi: 10.1002/ange.202422940

    6. [6]

      C. Yang, X. Li, M. li, Z. L. Jin, Chin. J. Catal. 56 (2024) 88, https://doi.org/10.1016/S1872‐2067(23)64563‐2  doi: 10.1016/S1872‐2067(23)64563‐2

    7. [7]

      X. W. Zhao, X. Y. Zhang, M. J. Lei, X. L. Ma, Y. J. Li, Z. L. Jin, J. Mater. Sci. Technol. 245 (2026) 238, https://doi.org/10.1016/j.jmst.2025.05.024.  doi: 10.1016/j.jmst.2025.05.024

    8. [8]

      Z. Y. Zhou, J. Wang, M. Reheimujiang, Z. L. Jin, J. Mater. Sci. Technol. 213 (2025) 241, https://doi.org/ 10.1016/j.jmst.2024.05.080.  doi: 10.1016/j.jmst.2024.05.080

    9. [9]

      X. Li, J. G. Yu, M. Jaroniec, Chem. Soc. Rev. 45 (2016) 2603, https://doi.org/10.1039/C5CS00838G  doi: 10.1039/C5CS00838G

    10. [10]

      L. Y. Zhang, J. J. Zhang, J. G. Yu, H, Nat. Rev. Chem. 9 (2025) 328, 10.1038/s41570-025-00698-3.  doi: 10.1038/s41570-025-00698-3

    11. [11]

      X. Guo, J. Y. Liu, X. Y. Yang, Z. L. Jin, N. Tsubaki, Chem. Res. Chinese U. 2025, https://doi.org/10.1007/s40242-025-5125-6.  doi: 10.1007/s40242-025-5125-6

    12. [12]

      Z. L. Jin, Z. K. Liu, Y. X. Zhang, J. Xihua Univ. (Nat. Sci. Ed.) 44 (2025) 1.https://doi.org/10.12198/j.issn.1673-159X.5718.  doi: 10.12198/j.issn.1673-159X.5718

    13. [13]

      J. F. Gao, X. Lin, B. W. Jiang, S. P. Tang, H. Y. Zhang, F. T. Chen, Z. L. Jin, Y. J. Li, N. Tsubaki, Chem. Res. Chinese U. 2025 1, https://doi.org/10.1007/s40242-025-5111-z.  doi: 10.1007/s40242-025-5111-z

    14. [14]

      Z. W. Zhang, Q. Zhang, Y. X. Hou, J. L. Li, S. S. Zhu, H. Xia, H. J. Yue, X. M. Liu, Angew. Chem. Int. Ed. 63 (2024) e202411546, https://doi.org/10.1002/ange.202411546.  doi: 10.1002/ange.202411546

    15. [15]

      H. C. Xu, Y. D. Wang, Y. Xu, Q. M. Wang, M. Y. Zhuang, Q. B. Liao, K. Xi, Angew. Chem. Int. Ed. 136 (2024) e202408802, https://doi.org/10.1002/ange.202408802.  doi: 10.1002/ange.202408802

    16. [16]

      A. Alam, B. Kumbhakar, A. Chakraborty, B. Mishra, S. Ghosh, A. Thomas, P. Pachfule, ACS Mater. Lett. 6 (2024) 2007, https://doi.org/10.1021/acsmaterialslett.4c00418  doi: 10.1021/acsmaterialslett.4c00418

    17. [17]

      Z. Z. Liang, R. C. Shen, Y. Ng, Y. Fu, T. Y. Ma, P. Zhang, Y. J. Li, X. Li, Chem. Catal. 2 (2022) 2157, https://doi.org/10.1021/10.1016/j.checat.2022.06.006  doi: 10.1021/10.1016/j.checat.2022.06.006

    18. [18]

      H. Yang, M. J. Hao, Y. H. Xie, X. L. Liu, Y. F. Liu, Z. S. Chen, X. K. Wang, G. N. Waterhouse, S. Q. Ma, Angew. Chem. Int. Ed. 62 (2023) e202303129, https://doi.org/10.1002/anie.202303129.  doi: 10.1002/anie.202303129

    19. [19]

      C. Z. Li, J. L. Liu, H. Li, K. F. Wu, J. H. Wang, Q. H. Yang, Nat. Commun. 13 (2022) 2357, https://doi.org/10.1038/s41467-022-30035-x  doi: 10.1038/s41467-022-30035-x

    20. [20]

      C. Yang, C. Qian, M. Q. Yu, Y. Z. Liao, Chem. Eng. J. 454 (2023) 140341, https://doi.org/ 10.1016/j.cej. 2022.140341.  doi: 10.1016/j.cej.2022.140341

    21. [21]

      F. M. Zhang, J. L. Sheng, Z. D. Yang, X. J. Sun, H. L. Tang, M. Lu, H. Dong, F. C. Shen, J. Liu, Y. Q. Lan, Angew. Chem. Int. Ed. 57 (2018) 12106, https://doi.org/10.1002/anie.201806862.  doi: 10.1002/anie.201806862

    22. [22]

      X. Y. Wang, L. J. Chen, S. Y. Chong, M. A. Little, Y. Z. Wu, W. H. Zhu, R. Clowes, Y. Yan, M. A. Zwijnenburg, R. S. Sprick, Andrew I. Cooper, Nat. Chem. 10 (2018) 1180, https://doi.org/10.1038/s41557-018-0141-5  doi: 10.1038/s41557-018-0141-5

    23. [23]

      J. L. Sheng, H. Dong, X. B. Meng, H. L. Tang, Y. H. Yao, D. Q. Liu, L. L. Bai, F. M. Zhang, J. Z. Wei, X. J. Sun, ChemCatChem, 11 (2019) 2313, https://doi.org/10.1002/cctc.201900058.  doi: 10.1002/cctc.201900058

    24. [24]

      Y. P. Zhang, H. L. Tang, H. Dong, M. Y. Gao, C. C. Li, X. J. Sun, J. Z. Wei, Y. Qu, Z. J. Li, F. M. Zhang, J. Mater. Chem. A. 8 (2020) 4334, https://doi.org/10.1039/c9ta12870k.  doi: 10.1039/c9ta12870k

    25. [25]

      M. Y. Gao, C. C. Li, H. Tang, X. J. Sun, H. Dong, F. M. Zhang, J. Mater. Chem. A. 7 (2019) 20193, https://doi.org/10.1039/c9ta07319a.  doi: 10.1039/c9ta07319a

    26. [26]

      H. Dong, X. B. Meng, X. Zhang, H. L. Tang, J. W. Liu, J. H. Wang, J. Z. Wei, F. M. Zhang, L. L. Bai, X. J. Sun, Chem. Eng. J. 379 (2020) 122342, https://doi.org/10.1016/j.cej.2019.122342.  doi: 10.1016/j.cej.2019.122342

    27. [27]

      J. Z. Cheng, B. Cheng, J. S. Xu, J. G. Yu, S. W. Cao, eScience (2024) 100354, https://doi.org/10.1016/j.esci.2024.100354.  doi: 10.1016/j.esci.2024.100354

    28. [28]

      M. Wei, X. Zhou, C. Cheng, J. J. Zhang, C. J. Jiang, B. Cheng, J. Mater. Sci. Technol. 232 (2025) 302, https://doi.org/10.1016/j.jmst.2025.01.036.  doi: 10.1016/j.jmst.2025.01.036

    29. [29]

      M. L. Gu, J. J. Zhang, I. V. Kurganskii, A. S. Poryvaev, M. V. FedinUnveiling, B. Cheng, J. G. Yu, L. Y. Zhang, Adv. Mater. 37 (2025) 2414803, https://doi.org/10.1002/adma.202414803.  doi: 10.1002/adma.202414803

    30. [30]

      J. J. Cai, C. Cheng, B. W. Liu, J. Zhang, C. J. Jiang, B. Cheng, Acta Phys. Chim. Sin. 41 (2025) 100084, https://doi.org/10.1016/j.actphy.2025.100084.  doi: 10.1016/j.actphy.2025.100084

    31. [31]

      Y. Wu, C. Cheng, K. Z. Qi, B. Cheng, J. J. Zhang, J. G. Yu, L. Y. Zhang, Acta Phys. Chim. Sin. 40 (2024) 2406027, https://doi.org/10.3866/PKU.WHXB202406027.  doi: 10.3866/PKU.WHXB202406027

    32. [32]

      K. Meng, J. J. Zhang, B. C. Zhu, C. J. Jiang, H. García, J. G. Yu, Adv. Mater. 37 (2025) 2505088, https://doi.org/10.1002/adma.202505088.  doi: 10.1002/adma.202505088

    33. [33]

      Y. Xia, K. Y. zhang, H. Yang, L. J. Shi, Q. Yi, Acta Phys. Chim. Sin. 40 (2024) 2407012, https://doi.org/10.3866/PKU.WHXB202407012.  doi: 10.3866/PKU.WHXB202407012

    34. [34]

      S. Zhou, D. Wen, W. Zhong, J. J. Zhang, Y. R. Su, A. Y. Meng, J. Mater. Sci. Technol. 199 (2024) 53, https://doi.org/10.1016/j.jmst.2024.02.048  doi: 10.1016/j.jmst.2024.02.048

    35. [35]

      S. Chandrasekaran, L. Yao, L. B. Deng, C. Bowen, Y. Zhang, S. M. Chen, Z. Q. Lin, F. Peng, P. X. Zhang, Chem. Soc. Rev. 48 (2019) 4178, https://doi.org/10.1039/c8cs00664d.  doi: 10.1039/c8cs00664d

    36. [36]

      J. J. Wang, S. Lin, N. Tian, T. Y. Ma, Y. H. Zhang, H. W. Huang, Adv. Funct. Mater. 31 (2021) 2008008, https://doi.org/10.1002/adfm.202008008.  doi: 10.1002/adfm.202008008

    37. [37]

      X. L. Li, C. L. Zhang, S. L. Cai, X. H. Lei, V. Altoe, F. Hong, J. J. Urban, J. Ciston, E. M. Chan, Y. Liu, Nat. Commun. 9 (2018) 2998, https://doi.org/10.1038/s41467-018-05462-4.  doi: 10.1038/s41467-018-05462-4

    38. [38]

      N. X. Li, H. L. Huang, R. Bibi, Q. H. Shen, R. Ngulube, J. C. Zhou, M. C. Liu, Appl. Surf. Sci. 476 (2019) 378-386, https://doi.org/10.1016/j.apsusc.2019.01.105.  doi: 10.1016/j.apsusc.2019.01.105

    39. [39]

      X. T. Zhang, Q. F. Lu, H. Liu, K. Li, M. Z. Wei, Appl. Surf. Sci. 528 (2020) 146976, https://doi.org/10.1016/j.apsusc.2020.146976  doi: 10.1016/j.apsusc.2020.146976

    40. [40]

      T. Li, L. J. Zhang, X. H. Li, X. P. Wang, Z. L. Jin, J. Liaocheng Univ. (Nat. Sci.) 36 (2023) 25, https://doi.org/10.19728/j.issn1672-6634.2022030011.  doi: 10.19728/j.issn1672-6634.2022030011

    41. [41]

      Y. X. Chen, X. Luo, J. J. Zhang, L. Hu, T. Xu, W. Li, L. Chen, M. Shen, S. B. Ren, D. M. Han, G. H. Ning, D. Li, J. Mater. Chem. A, 10 (2022) 24620, https://doi.org/10.1039/d2ta07271h.  doi: 10.1039/d2ta07271h

    42. [42]

      Z. P. Xu, X. Li, L. L. Zang, X. Wang, Y. M. Zhao, K. Yang, W. P. Cheng, L. G. Sun, Int. J. Hydrog. Energy. 89 (2024) 443, https://doi.org/10.1016/j.ijhydene.2024.09.365.  doi: 10.1016/j.ijhydene.2024.09.365

    43. [43]

      H. Ren, H. Shao, L. J. Zhang, D. Guo, Q. Jin, R. B. Yu, L. Wang, Y. L. Li, Y. Wang, H. J. Zhao, D. Wang, Adv. Energy Mater. 5 (2015) 1500296, https://doi.org/10.1016/10.1002/aenm.201570066.  doi: 10.1016/10.1002/aenm.201570066

    44. [44]

      R. Z. Katal, S. Masudy-Panah, M. Sabbaghan, Z. Hossaini, M. H. D. A. Farahani, Sep. Purif. Technol, 250 (2020) 117239, https://doi.org/10.1016/j.seppur.2020.117239.  doi: 10.1016/j.seppur.2020.117239

    45. [45]

      J. Gautam, D. Chanda, M. M. Meshesha, S. G. Jang, B. L. Yang, J. Colloid Interface Sci. 638 (2023) 658, https://doi.org/10.1016/j.jcis.2023.02.029.  doi: 10.1016/j.jcis.2023.02.029

    46. [46]

      W. Y. Bi, Q. Zhou, Y. H. Sun, J. F. Wan, S. Z. Xie, Y. K. Hou, M. L. Yu, T. E. Li, J. J. Lian, B. Z. Liu, J. Alloy. Compd. 1005 (2024) 175847, https://doi.org/10.1016/j.jallcom.2024.175847.  doi: 10.1016/j.jallcom.2024.175847

    47. [47]

      X. W, Zhao, M. J. Lei, Z. Chen, Z. L. Jin, J. Environ. Chem. Eng. 12 (2024) 114181, https://doi.org/10.1016/j.jece.2024.114181  doi: 10.1016/j.jece.2024.114181

    48. [48]

      Z. L. Jin, X. D. Jiang, Y. N. Liu, Renew. Energy, 12 (2024) 114181, https://doi.org/10.1016/j.renene.2022.11.004.  doi: 10.1016/j.renene.2022.11.004

    49. [49]

      T. Banerjee, F. Haase, G. Savasci, K. Gottschling, C. Ochsenfeld, B. Lotsch, J. Am. Chem. Soc. 139 (2017) 16228, https://doi.org/10.1021/jacs.7b07489.  doi: 10.1021/jacs.7b07489

    50. [50]

      B. P. BiswalHugo, H. A. Vignolo-Gonález, T. Banerjee, L. Grunenberg, G. Savasci, K. Gottschling, J. Nuss, C. Ochsenfeld, B. Lotsch, J. Am. Chem. Soc, 141 (2019) 11082, https://doi.org/10.1021/jacs.9b03243  doi: 10.1021/jacs.9b03243

    51. [51]

      Z. Xu, Y. Cui, B. Guo, H. Y. Li, H. X. Li, ChemCatChem, 13 (2021) 958, https://doi.org/10.1002/cctc.202001631.  doi: 10.1002/cctc.202001631

    52. [52]

      S. Altınşık, G. Yanalak, İ. Patır, S. Koyuncu, ACS Appl. Mater. Interfaces. 15 (2023) 18836, https://doi.org/ 10.1021/acsami.2c23233  doi: 10.1021/acsami.2c23233

    53. [53]

      L. Wang, R. Lian, Y. Zhang, X. L. Ma, J. W. Huang, H. D. She, C. L. Liu, Q. Z. Wang, App. Catal. B: Environ. 315 (2022) 121568, https://doi.org/10.1016/j.apcatb.2022.121568  doi: 10.1016/j.apcatb.2022.121568

    54. [54]

      X. Li, J. G. Yu, J. X. Low, Y. P. Fang, J. Xiao, X. B. Chen, J. Mater. Chem. A, 3 (2015) 2485, https://doi.org/10.1039/c4ta04461d.  doi: 10.1039/c4ta04461d

    55. [55]

      X. J. Wang, X. Tian, Y. J. Sun, J. Y. Zhu, F. T. Li, H. Y. Mu, J. Zhao, Nanoscale, 10 (2018) 12315, https://doi.org/10.1039/c8nr03846e.  doi: 10.1039/c8nr03846e

    56. [56]

      L. B. Wang, B. Cheng, L. Y. Zhang, J. G. Small. 17 (2021) 2103447, https://doi.org/10.1002/smll.202103447.  doi: 10.1002/smll.202103447

    57. [57]

      R. Q. Gao, H. He, J. X. Bai, L. Hao, R. C. Shen, P. Zhang, Y. J. Li, X. Li, Chin. J. Struct. Chem 41 (2022) 2206031, https://doi.org/10.14102/j.cnki.0254-5861.2022-0096  doi: 10.14102/j.cnki.0254-5861.2022-0096

    58. [58]

      X. Y. Chen, Z. Han, Z. H. Lu, T. T. Qu, C. Liang, Y. Wang, B. Zhang, X. J. Han, P. Xu, Sustainable Energy & Fuels. 7 (2023) 1311, https://doi.org/10.1039/d2se01717b  doi: 10.1039/d2se01717b

    59. [59]

      R. Kavitha, C. Manjunatha, J. G. Yu, S. G. Kuma, Energy Chem. 7 (2025) 100159, https://doi.org/10.1016/j.enchem.2025.100159.  doi: 10.1016/j.enchem.2025.100159

    60. [60]

      L. Y. zhang, J. J. Zhang, J. G. Yu, H. García, Nat. Rev. Chem. 9, 2025, 328, https://doi.org/10.1038/s41570-025-00698-3.  doi: 10.1038/s41570-025-00698-3

    61. [61]

      J. Liu, J. Phys. Chem. C. 119 (2015) 28417, https://doi.org/10.1021/acs.jpcc.5b09092.  doi: 10.1021/acs.jpcc.5b09092

    62. [62]

      B. B. Zhao, J. C. Xu, D. D. Gao, F. Chen, X. F. Wang, T. Liu, X. H. Wu, H. G. Yu, S, Appl. Catal. B Environ. 355 (2024) 124215, https://doi.org/10.1016/j.apcatb.2024.124215.  doi: 10.1016/j.apcatb.2024.124215

    63. [63]

      J. C. Wang, N. Mu, T. T. Bo, T. Z. Lin, Y. G. Hu, Y. Y. Lu, W. Zhou, Int. J. Hydrogen Energy. 83 (2024) 784, https://doi.org/10.1016/j.ijhydene.2024.08.114.  doi: 10.1016/j.ijhydene.2024.08.114

  • 加载中
    1. [1]

      Kaihui HuangDejun ChenXin ZhangRongchen ShenPeng ZhangDifa XuXin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-0. doi: 10.3866/PKU.WHXB202407020

    2. [2]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    3. [3]

      Yihong ShaoRongchen ShenSong WangShijie LiPeng ZhangXin Li . Composition engineering in covalent organic frameworks for tailored photocatalysis. Acta Physico-Chimica Sinica, 2025, 41(12): 100176-0. doi: 10.1016/j.actphy.2025.100176

    4. [4]

      Shuang CaoBo ZhongChuanbiao BieBei ChengFeiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016

    5. [5]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    6. [6]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    7. [7]

      Jiaxing CaiWendi XuHaoqiang ChiQian LiuWa GaoLi ShiJingxiang LowZhigang ZouYong Zhou . Highly Efficient InOOH/ZnIn2S4 Hollow Sphere S-Scheme Heterojunction with 0D/2D Interface for Enhancing Photocatalytic CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-0. doi: 10.3866/PKU.WHXB202407002

    8. [8]

      Mian WeiChang ChengBowen HeBei ChengKezhen QiChuanbiao Bie . Inorganic-organic CdS/YBTPy S-scheme photocatalyst for efficient hydrogen production and its mechanism. Acta Physico-Chimica Sinica, 2025, 41(12): 100158-0. doi: 10.1016/j.actphy.2025.100158

    9. [9]

      Deyun MaFenglan LiangQingquan XueYanping LiuChunqiang ZhuangShijie Li . Interfacial engineering of Cd0.5Zn0.5S/BiOBr S-scheme heterojunction with oxygen vacancies for effective photocatalytic antibiotic removal. Acta Physico-Chimica Sinica, 2025, 41(12): 100190-0. doi: 10.1016/j.actphy.2025.100190

    10. [10]

      Xinyu MiaoHao YangJie HeJing WangZhiliang Jin . Adjusting the electronic structure of Keggin-type polyoxometalates to construct S-scheme heterojunction for photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-0. doi: 10.1016/j.actphy.2025.100051

    11. [11]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    12. [12]

      Jiali LeiJuan WangWenhui ZhangGuohong WangZihui LiangJinmao Li . TiO2/CdIn2S4 S-scheme heterojunction photocatalyst promotes photocatalytic hydrogen evolution coupled vanillyl alcohol oxidation. Acta Physico-Chimica Sinica, 2025, 41(12): 100174-0. doi: 10.1016/j.actphy.2025.100174

    13. [13]

      Chunchun WangChangjun YouKe RongChuqi ShenFang YangShijie Li . An S-Scheme MIL-101(Fe)-on-BiOCl Heterostructure with Oxygen Vacancies for Boosting Photocatalytic Removal of Cr(Ⅵ). Acta Physico-Chimica Sinica, 2024, 40(7): 2307045-0. doi: 10.3866/PKU.WHXB202307045

    14. [14]

      Yuejiao AnWenxuan LiuYanfeng ZhangJianjun ZhangZhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-0. doi: 10.3866/PKU.WHXB202407021

    15. [15]

      Ziyang LongQuanzheng LiChengliang ZhangHaifeng Shi . BiVO4/WO3-x S-scheme heterojunctions with amplified internal electric field for boosting photothermal-catalytic activity. Acta Physico-Chimica Sinica, 2025, 41(10): 100122-0. doi: 10.1016/j.actphy.2025.100122

    16. [16]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    17. [17]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    18. [18]

      Wenlong WangWentao HaoLang HeJia QiaoNing LiChaoqiu ChenYong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116

    19. [19]

      Jinwang WuQijing XieChengliang ZhangHaifeng Shi . Rationally Designed ZnFe1.2Co0.8O4/BiVO4 S-Scheme Heterojunction with Spin-Polarization for the Elimination of Antibiotic. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-0. doi: 10.1016/j.actphy.2025.100050

    20. [20]

      Xiutao XuChunfeng ShaoJinfeng ZhangZhongliao WangKai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-0. doi: 10.3866/PKU.WHXB202309031

Metrics
  • PDF Downloads(6)
  • Abstract views(204)
  • HTML views(31)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return