轨道杂化在光催化与电催化中的研究进展

吕宪伟 丁信元 龚家兴 闫旭焕 黄大勇 耿建新 袁忠勇

引用本文: 吕宪伟, 丁信元, 龚家兴, 闫旭焕, 黄大勇, 耿建新, 袁忠勇. 轨道杂化在光催化与电催化中的研究进展[J]. 物理化学学报, 2026, 42(2): 100151. doi: 10.1016/j.actphy.2025.100151 shu
Citation:  Xian-Wei Lv, Xinyuan Ding, Jiaxing Gong, Xuhuan Yan, Dayong Huang, Jianxin Geng, Zhong-Yong Yuan. Research progress on orbital hybridization in photocatalysis and electrocatalysis[J]. Acta Physico-Chimica Sinica, 2026, 42(2): 100151. doi: 10.1016/j.actphy.2025.100151 shu

轨道杂化在光催化与电催化中的研究进展

摘要: 轨道杂化是调控光、电催化剂性能及能源器件转换效率的重要手段。本文系统综述了轨道杂化在光、电催化领域的研究进展、瓶颈及前景,涵盖其基本定义及典型分类。本文揭示了轨道杂化在调节材料成键效能、本征活性、选择性和稳定性方面的重要作用,综述了轨道杂化在光催化过程(包括光解水、光催化二氧化碳还原、光催化合成氨)和电催化过程(包括电催化析氢析氧、氧还原、二氧化碳还原等)的研究进展,并重点总结了轨道杂化的设计与调控策略(如合金化、元素掺杂、异质结构筑、缺陷工程、配位环境调控等)。最后,本文展望了基于轨道杂化调控催化剂性能所面临的关键挑战及发展前景。总之,轨道杂化为设计高活性、高选择性的光/电催化剂及构筑高效率、可持续的储能器件提供了新思路和新方向。

English

    1. [1]

      S. Li, Y. Zhou, X. Fu, J. B. Pedersen, M. Saccoccio, S. Z. Andersen, K. Enemark-Rasmussen, P. J. Kempen, C. D. Damsgaard, A. Xu, Nature 629 (2024) 92, https://doi.org/10.1038/s41586-024-07276-5. doi: 10.1038/s41586-024-07276-5

    2. [2]

      M. Chung, J. H. Maalouf, J. S. Adams, C. Jiang, Y. Román-Leshkov, K. Manthiram, Science 383 (2024) 49, https://www.science.org/doi/10.1126/science.adh4355. doi: 10.1126/science.adh4355

    3. [3]

      W. Fang, W. Guo, R. Lu, Y. Yan, X. Liu, D. Wu, F. M. Li, Y. Zhou, C. He, C. Xia, Nature 626 (2024) 86, https://doi.org/10.1038/s41586-023-06917-5. doi: 10.1038/s41586-023-06917-5

    4. [4]

      M. A. Hoque, J. B. Gerken, S. S. Stahl, Science 383 (2024) 173, https://www.science.org/doi/10.1126/science.adk5097. doi: 10.1126/science.adk5097

    5. [5]

      A. E. Thorarinsdottir, D. P. Erdosy, C. Costentin, J. A. Mason, D. G. Nocera, Nature Catal. 6 (2023) 425, https://doi.org/10.1038/s41929-023-00958-9. doi: 10.1038/s41929-023-00958-9

    6. [6]

      R. Zeng, H. Li, Z. Shi, L. Xu, J. Meng, W. Xu, H. Wang, Q. Li, C. J. Pollock, T. Lian, Nat. Mater. 23 (2024) 1695, https://doi.org/10.1038/s41563-024-01998-7. doi: 10.1038/s41563-024-01998-7

    7. [7]

      W. Shi, T. Shen, C. Xing, K. Sun, Q. Yan, W. Niu, X. Yang, J. Li, C. Wei, R. Wang, Science 387 (2025) 791, https://www.science.org/doi/10.1126/science.adr3149. doi: 10.1126/science.adr3149

    8. [8]

      H. Zhao, Z. Y. Yuan, Smart Mater. Devices 1 (2025) 202521, https://doi.org/10.70401/smd.2025.0013. doi: 10.70401/smd.2025.0013

    9. [9]

      X. W. Lv, J. Gong, S. Wang, X. Yan, C. Sun, X. Hu, Z. Lai, Y. Liu, H. Wang, Z. Y. Yuan, Adv. Energy Mater. (2025) 2501129, https://doi.org/10.1002/aenm.202501129. doi: 10.1002/aenm.202501129

    10. [10]

      L. Chen, J. Xia, Z. Lai, D. Wu, J. Zhou, S. Chen, X. Meng, Z. Wang, H. Wang, L. Zheng, L. Xu, X. W. Lv, C. W. Bielawski, J. Geng, ACS Nano 18 (2024) 31123, https://doi.org/10.1021/acsnano.4c08728. doi: 10.1021/acsnano.4c08728

    11. [11]

      T. Wang, X. Cao, L. Jiao, Angew. Chem. Int. Ed. 134 (2022) e202213328, https://doi.org/10.1002/anie.202213328. doi: 10.1002/anie.202213328

    12. [12]

      H. Sun, X. Xu, L. Fei, W. Zhou, Z. Shao, Adv. Energy Mater. 14 (2024) 2401242, https://doi.org/10.1002/aenm.202401242. doi: 10.1002/aenm.202401242

    13. [13]

      X. W. Lv, Z. Wang, Z. Lai, Y. Liu, T. Ma, J. Geng, Z. Y. Yuan, Small 20 (2024) 2306396, https://doi.org/10.1002/smll.202306396. doi: 10.1002/smll.202306396

    14. [14]

      X. Ai, X. Zou, H. Chen, Y. Su, X. Feng, Q. Li, Y. Liu, Y. Zhang, X. Zou, Angew. Chem. Int. Ed. 59 (2020) 3961, https://doi.org/10.1002/anie.201915663. doi: 10.1002/anie.201915663

    15. [15]

      S. Niu, J. Cai, G. Wang, Nano Res. 14 (2021) 1985, https://doi.org/10.1007/s12274-020-3249-z. doi: 10.1007/s12274-020-3249-z

    16. [16]

      L. Wang, Z. Mei, Q. An, X. Sheng, Q. Jing, W. Huang, X. Wang, X. Zou, H. Guo, Chem Catal. 3 (2023) 100758, https://doi.org/10.1016/j.checat.2023.100758. doi: 10.1016/j.checat.2023.100758

    17. [17]

      Y. Zhang, , D. Chen, S. Yu, Y. Feng, C. Zhang, J. Hu, Adv. Funct. Mater. (2025) e13626, https://doi.org/10.1002/adfm.202513626. doi: 10.1002/adfm.202513626

    18. [18]

      J. Tian, Y. Rao, S. Xu, X. Xu, Y. Sun, T. Shi, H. Zhou, S. Guo, Nano Lett. 25 (2025) 6918, https://doi.org/10.1021/acs.nanolett.5c00128. doi: 10.1021/acs.nanolett.5c00128

    19. [19]

      W. Li, J. Luo, J. Feng, Y. Li, B. Liu, Y. Zhang, J. Zhao, C. Wang, Rare Met. (2025) 1, https://doi.org/10.1007/s12598-025-03307-w. doi: 10.1007/s12598-025-03307-w

    20. [20]

      L. Zhao, Z. Zhu, J. Wang, J. Zuo, H. Chen, X. Qi, X. Niu, J. S. Chen, R. Wu, Z. Wei, Angew. Chem. Int. Ed. (2025) e202501805, https://doi.org/10.1002/anie.202501805. doi: 10.1002/anie.202501805

    21. [21]

      Y. Zhou, Q. Gu, K. Yin, L. Tao, Y. Li, H. Tan, Y. Yang, S. Guo, Proc. Natl. Acad Sci. 120 (2023) e2301439120, https://doi.org/10.1073/pnas.2301439120. doi: 10.1073/pnas.2301439120

    22. [22]

      G. Zhou, X. Liu, Y. Xu, S. Feng, Z. Lu, Z. Q. Liu, Angew. Chem. Int. Ed. 63 (2024) e202411794, https://doi.org/10.1002/anie.202411794. doi: 10.1002/anie.202411794

    23. [23]

      X. Zhao, X. Li, L. An, K. Iputera, J. Zhu, P. Gao, R.-S. Liu, Z. Peng, J. Yang, D. Wang, Energy Environ. Sci. 15 (2022) 1234, https://doi.org/10.1039/D1EE03482K. doi: 10.1039/D1EE03482K

    24. [24]

      J. Guo, H. Zhao, Z. Yang, L. Wang, A. Wang, J. Zhang, L. Ding, L. Wang, H. Liu, X. Yu, Adv. Funct. Mater. 34 (2024) 2315714, https://doi.org/10.1002/adfm.202315714. doi: 10.1002/adfm.202315714

    25. [25]

      J. Liu, J. Zhu, H. Xu, D. Cheng, ACS Catal. 14 (2024) 6952.https://doi.org/10.1021/acscatal.4c01377. doi: 10.1021/acscatal.4c01377

    26. [26]

      B. Peng, H. She, Z. Wei, Z. Sun, Z. Deng, Z. Sun, W. Chen, Nat. Commun. 16 (2025) 2217, https://doi.org/10.1038/s41467-025-57573-4. doi: 10.1038/s41467-025-57573-4

    27. [27]

      L. Qi, J. Guan, Sci. Bull. 70 (2025) 1856, https://doi.org/10.1016/j.scib.2025.04.009. doi: 10.1016/j.scib.2025.04.009

    28. [28]

      B. Shao, T. Liu, D. Li, L. Meng, J. Wang, W. Zhai, L. Li, Adv. Mater. 37 (2025) 2504135, https://doi.org/10.1002/adma.202504135. doi: 10.1002/adma.202504135

    29. [29]

      Q. Wang, Z. Zhang, C. Cai, M. Wang, Z. L. Zhao, M. Li, X. Huang, S. Han, H. Zhou, Z. Feng, J. Am. Chem. Soc. 143 (2021) 13605, https://doi.org/10.1021/jacs.1c04682 doi: 10.1021/jacs.1c04682

    30. [30]

      M. Xia, B. Chong, X. Gong, H. Xiao, H. Li, H. Ou, B. Zhang, G. Yang, ACS Catal. 13 (2023) 12350, https://doi.org/10.1021/acscatal.3c02198. doi: 10.1021/acscatal.3c02198

    31. [31]

      S. Zhao, X. Tang, J. Li, J. Zhang, D. Yuan, D. Ma, L. Ju, Nanomaterials 12 (2022) 2793, https://doi.org/10.3390/nano12162793. doi: 10.3390/nano12162793

    32. [32]

      R. Biswas, S. Dastider, I. Ahmed, S. Barua, K. Mondal, K. Haldar, J. Phys. Chem. Lett. 14 (2023) 3146, https://doi.org/10.1021/acs.jpclett.3c00011. doi: 10.1021/acs.jpclett.3c00011

    33. [33]

      D. Deng, S. Wu, H. Li, H. Li, L. Xu, Small, 19 (2023) 2205469, https://doi.org/10.1002/smll.202205469. doi: 10.1002/smll.202205469

    34. [34]

      X. Liu, Z. Zhang, X. Zhang, L. Wu, Electrochim. Acta 477 (2024) 143793, https://doi.org/10.1016/j.electacta.2024.143793. doi: 10.1016/j.electacta.2024.143793

    35. [35]

      L. Guan, H. Fu, T. Zhu, C. Chen, Z. Zhang, Y. Pi, N. Zhang, T. Liu, Chem. Mater. 36 (2024) 9741, https://doi.org/10.1021/acs.chemmater.4c01878. doi: 10.1021/acs.chemmater.4c01878

    36. [36]

      G. Wu, W. Zhang, R. Yu, Y. Yang, J. Jiang, M. Sun, A. Du, W. He, L. Dai, X. Mao, Angew. Chem. Int. Ed. 136 (2024) e202410251, https://doi.org/10.1002/anie.202410251. doi: 10.1002/anie.202410251

    37. [37]

      B. Tang, Y. Zhou, Q. Ji, Z. Zhuang, L. Zhang, C. Wang, H. Hu, H. Wang, B. Mei, F. Song, Nat. Synth. 3 (2024) 878, https://doi.org/10.1038/s44160-024-00545-1. doi: 10.1038/s44160-024-00545-1

    38. [38]

      X. Li, X. Gao, E. Guo, M. Wei, C. Si, Q. Lu, Y. Pang, Inorg. Chem. 62 (2023) 9713, https://doi.org/10.1021/acs.inorgchem.3c01318. doi: 10.1021/acs.inorgchem.3c01318

    39. [39]

      J. Liu, C. Tang, Z. Ke, R. Chen, H. Wang, W. Li, C. Jiang, D. He, G. Wang, X. Xiao, Adv. Energy Mater. 12 (2022) 2103301, https://doi.org/10.1002/aenm.202103301. doi: 10.1002/aenm.202103301

    40. [40]

      B. Fan, H. Zhang, B. Gu, F. Qiu, Q. Cao, W. Fang, J. Energy Chem. 100 (2025) 234, https://doi.org/10.1016/j.jechem.2024.08.041. doi: 10.1016/j.jechem.2024.08.041

    41. [41]

      X.-W. Lv, X.-L. Liu, Y.-J. Suo, Y.-P. Liu, Z.-Y. Yuan, ACS Nano 15 (2021) 12109, https://doi.org/10.1021/acsnano.1c03465. doi: 10.1021/acsnano.1c03465

    42. [42]

      F. Yu, G. Zhang, M. Shu, H. Wang, Angew. Chem. Int. Ed. 64 (2025) e202416467, https://doi.org/10.1002/anie.202416467. doi: 10.1002/anie.202416467

    43. [43]

      R. Cheng, X. He, M. Jiang, X. Shao, W. Tang, B. Ran, H. Li, C. Fu, Adv. Funct. Mater. (2025) 2425138, https://doi.org/10.1002/adfm.202425138. doi: 10.1002/adfm.202425138

    44. [44]

      H. Chen, Q. Wu, Y. Wang, Q. Zhao, X. Ai, Y. Shen, X. Zou, Chem. Commun. 58 (2022) 7730, https://doi.org/10.1039/D2CC02299K. doi: 10.1039/D2CC02299K

    45. [45]

      J. Wu, J. Liu, W. Xia, Y. Y. Ren, F. Wang, Acta Phys.-Chim. Sin. 37 (2021) 2008043, https://doi.org//10.3866/PKU.WHXB202008043. doi: 10.3866/PKU.WHXB202008043

    46. [46]

      H. Long, X. Zhang, Z. Zhang, J. Zhang, J. Yu, H. Yu, Nat. Commun. 16 (2025) 946, https://doi.org/10.1038/s41467-025-56306-x. doi: 10.1038/s41467-025-56306-x

    47. [47]

      Y. Luo, X. Zhou, J. Zhang, Y. Qi, Z. Li, F. Zhang, C. Li, J. Energy Chem. 63 (2021) 385, https://doi.org/10.1016/j.jechem.2021.07.028. doi: 10.1016/j.jechem.2021.07.028

    48. [48]

      C. Feng, M. Hu, S. Zuo, J. Luo, P. Castaño, Y. Ren, H. Zhang, Adv. Mater. 37 (2025) 2411813, https://doi.org/10.1002/adma.202411813. doi: 10.1002/adma.202411813

    49. [49]

      J. Wang, H. Zhang, Y. Nian, Y. Chen, H. Cheng, C. Yang, T. Yu, Adv. Funct. Mater. 34 (2024) 2406549, https://doi.org/10.1002/adfm.202406549. doi: 10.1002/adfm.202406549

    50. [50]

      Y. Zhao, J. Shen, J. Yuan, H. Mao, X. Cheng, Z. Xu, Z. Bian, Nano Energy, (2024) 109499, https://doi.org/10.1016/j.nanoen.2024.109499. doi: 10.1016/j.nanoen.2024.109499

    51. [51]

      P. Li, Y. Gao, A. G. Borthwick, P. Li, H. Zhang, F. Chen, L. Chen, F. Li, W. Liu, Angew. Chem. Int. Ed. (2025) e202503097, https://doi.org/10.1002/ange.202503097. doi: 10.1002/ange.202503097

    52. [52]

      W. Feng, B. Chang, Y. Ren, D. Kong, H. B. Tao, L. Zhi, M. A. Khan, R. Aleisa, M. Rueping, H. Zhang, Adv. Mater. 37 (2025) 2416012, https://doi.org/10.1002/adma.202416012.

    53. [53]

      X. Wang, W. Pi, S. Hu, H. Bao, N. Yao, W. Luo, Nano-Micro Lett. 17 (2025) 11, https://doi.org/10.1007/s40820-024-01528-9. doi: 10.1007/s40820-024-01528-9

    54. [54]

      P. Huang, M. Meng, G. Zhou, P. Wang, W. Wei, H. Li, R. Huang, F. Liu, L. Liu, Proc. Natl. Acad Sci. 120 (2023) e2219661120, https://doi.org/10.1073/pnas.2219661120. doi: 10.1073/pnas.2219661120

    55. [55]

      X.-W. Lv, L. Wang, G. Wang, R. Hao, J.-T. Ren, X. Liu, P. N. Duchesne, Y. Liu, W. Li, Z.-Y. Yuan, J. Mater. Chem. A 8 (2020) 8868, https://doi.org/10.1039/d0ta02832k. doi: 10.1039/d0ta02832k

    56. [56]

      Y. Shan, X. Sun, Y. Wang, Y. Zhu, T. Li, Phys. Status Solidi-R 17 (2023) 2200445, https://doi.org/10.1002/pssr.202200445. doi: 10.1002/pssr.202200445

    57. [57]

      C. Zhou, L. Li, Z. Dong, F. Lv, H. Guo, K. Wang, M. Li, Z. Qian, N. Ye, Z. Lin, Nat. Commun. 15 (2024) 9774, https://www.nature.com/articles/s41467-024-53905-y. https://www.nature.com/articles/s41467-024-53905-y

    58. [58]

      L. Gao, X. Li, Z. Yao, H. Bai, Y. Lu, C. Ma, S. Lu, Z. Peng, J. Yang, A. Pan, J. Am. Chem. Soc. 141 (2019) 18083, https://doi.org/10.1021/jacs.9b07238. doi: 10.1021/jacs.9b07238

    59. [59]

      J. Nie, Z. Li, W. Liu, Z. Sang, D. a. Yang, L. Wang, F. Hou, J. Liang, Adv. Mater. (2025) 2420236, https://doi.org/10.1002/adma.202420236. doi: 10.1002/adma.202420236

    60. [60]

      J. Du, G. Han, W. Zhang, L. Li, Y. Yan, Y. Shi, X. Zhang, L. Geng, Z. Wang, Y. Xiong, Nat. Commun. 14 (2023) 4766, https://www.nature.com/articles/s41467-023-40467-8. https://www.nature.com/articles/s41467-023-40467-8

    61. [61]

      Z. Yang, G. Hou, N. Gao, Y. Li, X. Li, Z. Chen, H. Jin, M. Zhao, D. Wang, K. Chen, Angew. Chem. Int. Ed. (2025) e202501836, https://doi.org/10.1002/ange.202501836. doi: 10.1002/ange.202501836

    62. [62]

      Y. Lei, Z. Wang, A. Bao, X. Tang, X. Huang, H. Yi, S. Zhao, T. Sun, J. Wang, F. Gao, Chem. Eng. J. 453 (2023) 139663, https://doi.org/10.1016/j.cej.2022.139663. doi: 10.1016/j.cej.2022.139663

    63. [63]

      G. Tian, Z. Li, D. Liao, C. Zhang, H.-j. Peng, X. Liu, K. Shen, H. Meng, N. Wang, H. Xiong, Nat. Sustain. (2025) 1, https://doi.org/10.1038/s41893-025-01551-7. doi: 10.1038/s41893-025-01551-7

    64. [64]

      S. Xu, X. W. Lv, Y. Zhao, T. Ren, Z. Y. Yuan, J. Energy Chem. 52 (2021) 139, https://doi.org/10.1016/j.jechem.2020.04.054. doi: 10.1016/j.jechem.2020.04.054

    65. [65]

      X. Cao, Y. Tian, J. Ma, W. Guo, W. Cai, J. Zhang, Adv. Mater. 36 (2024) 2309648, https://doi.org/10.1002/adma.202309648. doi: 10.1002/adma.202309648

    66. [66]

      Y. Cui, C. Ren, Q. Li, C. Ling, J. Wang, J. Am. Chem. Soc. 146 (2024) 15640, https://doi.org/10.1021/jacs.4c05630. doi: 10.1021/jacs.4c05630

    67. [67]

      Q. Wang, T. Luo, X. Cao, Y. Gong, Y. Liu, Y. Xiao, H. Li, F. Gröbmeyer, Y.-R. Lu, T.-S. Chan, Nat. Commun. 16 (2025) 2985, https://www.nature.com/articles/s41467-025-57464-8. https://www.nature.com/articles/s41467-025-57464-8

    68. [68]

      C. Fan, X. Wang, X. Wu, Y. Chen, Z. Wang, M. Li, D. Sun, Y. Tang, G. Fu, Adv. Energy Mater. 13 (2023) 2203244, https://doi.org/10.1002/aenm.202203244. doi: 10.1002/aenm.202203244

    69. [69]

      X. Wang, L. Shi, W. Ren, J. Li, Y. Liu, W. Fu, S. Wang, S. Yao, Y. Ji, K. Ji, J. Energy Chem. 99 (2024) 409, https://doi.org/10.1016/j.jechem.2024.07.053. doi: 10.1016/j.jechem.2024.07.053

    70. [70]

      J. Kim, H. Kim, G. Han, S. Hong, J. Park, J. Bang, S. Kim, A. Ahn, Exploration 2 (2022) 20210077, https://doi.org/10.1002/exp.20210077. doi: 10.1002/exp.20210077

    71. [71]

      J. Mi, H. Liu, S. Yang, F. Huang, Z. Qian, J. Yuan, J. Qing, C. Sun, C. Wang, J. Chen, J. Li, Environ. Sci. Technol. 59 (2025) 11321, https://doi.org/10.1021/acs.est.4c14210. doi: 10.1021/acs.est.4c14210

    72. [72]

      Y. Tan, J. Fu, T. Luo, K. Liu, M. Liu, J. Am Chem Soc. 147 (2025) 4937, https://doi.org/10.1021/jacs.4c14021. doi: 10.1021/jacs.4c14021

    73. [73]

      Z. Han, S. Zhao, J. Xiao, X. Zhong, J. Sheng, W. Lv, Q. Zhang, G. Zhou, H. M. Cheng, Adv. Mater. 33 (2021) 2105947, https://doi.org/10.1002/adma.202105947. doi: 10.1002/adma.202105947

    74. [74]

      G. Wu, T. Liu, Z. Lao, Y. Cheng, T. Wang, J. Mao, H. Zhang, E. Liu, C. Shi, G. Zhou, Angew. Chem. Int. Ed. 64 (2025) e202422208, https://doi.org/10.1002/anie.202422208. doi: 10.1002/anie.202422208

    75. [75]

      G. Liu, W. Wang, P. Zeng, C. Yuan, L. Wang, H. Li, H. Zhang, X. Sun, K. Dai, J. Mao, Nano Lett. 22 (2022) 6366, https://doi.org/10.1021/acs.nanolett.2c02183. doi: 10.1021/acs.nanolett.2c02183

    76. [76]

      N. Sun, Z. Zheng, Z. Lai, J. Wang, P. Du, T. Ying, H. Wang, J. Xu, R. Yu, Z. Hu, Adv. Mater. 36 (2024) 2404772, https://doi.org/10.1002/adma.202404772. doi: 10.1002/adma.202404772

    77. [77]

      B. Zhu, S. Huang, O. Seo, M. Cao, D. Matsumura, H. Gu, D. Wu, J. Am. Chem. Soc. 147 (2025) 11250, https://doi.org/10.1021/jacs.4c18109 doi: 10.1021/jacs.4c18109

    78. [78]

      L. Meng, C. W. Kao, Z. Wang, J. Ma, P. Huang, N. Zhao, Y. Tan, Nat. Commun. 15 (2024) 5999, https://doi.org/10.1038/s41467-024-50499-3 doi: 10.1038/s41467-024-50499-3

    79. [79]

      J. Yuan, P. Wang, N. Song, Y. Wang, J. Ma, S. Xiong, X. Li, J. Feng, B. Xi, Angew. Chem. Int. Ed. 64 (2025) e202420866, https://doi.org/10.1002/anie.202420866. doi: 10.1002/anie.202420866

    80. [80]

      X. Ma, Y. Zhou, S. Zhang, W. Lei, Y. Zhao, C. Shan, Small (2025) 2411394, https://doi.org/10.1002/smll.202411394. doi: 10.1002/smll.202411394

    81. [81]

      J. Tong, H. Wu, P. Tan, H. Liao, Y. F. Tang, X. Wang, J. Xie, J. Pan, Nano Energy (2025) 111133, https://doi.org/10.1016/j.nanoen.2025.111133. doi: 10.1016/j.nanoen.2025.111133

    82. [82]

      X. Lv, J. Ren, Y. Wang, Y. Liu, Z. Y. Yuan, ACS Sustain. Chem. Engineering 7 (2019) 8993, https://doi.org/10.1021/acssuschemeng.9b01263. doi: 10.1021/acssuschemeng.9b01263

    83. [83]

      X.-W. Lv, Y. Liu, R. Hao, W. Tian, Z.-Y. Yuan, ACS Appl. Mater. Interfaces 12 (2020) 17502, https://doi.org/10.1021/acsami.0c00647. doi: 10.1021/acsami.0c00647

    84. [84]

      S. You, J. Xiao, S. Liang, W. Xie, T. Zhang, M. Li, Z. Zhong, Q. Wang, H. He, Energy Environ. Sci. 17 (2024) 5795, https://doi.org/10.1039/d4ee01325e. doi: 10.1039/d4ee01325e

    85. [85]

      X. W. Lv, W. W. Tian, Z. Y. Yuan, Electrochem. Energy Rev. 6 (2023) 23, https://doi.org/10.1007/s41918-022-00159-1. doi: 10.1007/s41918-022-00159-1

    86. [86]

      X. W. Lv, W. S. Xu, W. W. Tian, H. Y. Wang, Z. Y. Yuan, Small 17 (2021) 2101856 https://doi.org/10.1002/smll.202101856. doi: 10.1002/smll.202101856

    87. [87]

      R. Wang, X. Y. Dong, J. Du, J. Y. Zhao, S. Q. Zang, Adv. Mater. 30 (2018) 1703711, https://doi.org/10.1002/adma.201703711. doi: 10.1002/adma.201703711

    88. [88]

      X.-W. Lv, Y. Liu, Y.-S. Wang, X.-L. Liu, Z.-Y. Yuan, Appl. Catal. B: Environ. 280 (2021) 119434, https://doi.org/10.1016/j.apcatb.2020.119434. doi: 10.1016/j.apcatb.2020.119434

    89. [89]

      J. Kim, J. Guo, N. Shan, J. Yoo, P. Farinazzo Bergamo Dias Martins, J. Noh, M. Jung, P. Zapol, B. S. Mun, R. Klie, J. Am. Chem. Soc. 147 (2025) 16340, https://doi.org/10.1021/jacs.5c02001. doi: 10.1021/jacs.5c02001

    90. [90]

      X. W. Lv, X. L. Liu, L. J. Gao, Y. P. Liu, Z. Y. Yuan, J. Mater. Chem. A 9 (2021) 4026, https://doi.org/10.1039/d0ta11244e. doi: 10.1039/d0ta11244e

    91. [91]

      H. Ye, J. Su, G. Yang, L. Zhou, Y. Xie, X. Zhan, J. Tian, X. Tong, Mater. Today Commun. 45 (2025) 112365, https://doi.org/10.1016/j.mtcomm.2025.112365. doi: 10.1016/j.mtcomm.2025.112365

    92. [92]

      X.-W. Lv, Y. Liu, W. Tian, L. Gao, Z.-Y. Yuan, J. Energy Chem. 50 (2020) 324, https://doi.org/10.1016/j.jechem.2020.02.055. doi: 10.1016/j.jechem.2020.02.055

    93. [93]

      X. Lv, W. Tian, Y. Liu, Z.-Y. Yuan, Mater. Chem. Front. 3 (2019) 2428, https://doi.org/10.1039/c9qm00449a. doi: 10.1039/c9qm00449a

    94. [94]

      T. Zhai, X. Gao, H. Wang, Y. Cheng, J. Gao, J. Pan, E. C. Tse, C. Shang, Z. Guo, Matter 8 (2025) 102141, https://doi.org/10.1016/j.matt.2025.102141. doi: 10.1016/j.matt.2025.102141

    95. [95]

      X. W. Lv, Z. Hu, J. T. Ren, Y. Liu, Z. Wang, Z. Y. Yuan, Inorg. Chem. Front. 6 (2019) 74, https://doi.org/10.1039/c8qi01026a. doi: 10.1039/c8qi01026a

    96. [96]

      J. W. Zhang, X. W. Lv, T. Z. Ren, Z. Wang, T. J. Bandosz, Z. Y. Yuan, Green Energy Environ. 7 (2022) 1024, https://doi.org/10.1016/j.gee.2020.12.009. doi: 10.1016/j.gee.2020.12.009

    97. [97]

      M. Yu, D. Li, G. Sui, D. Guo, D. Chu, Y. Li, D. F. Chai, J. Li, Adv. Funct. Mater. 35 (2025) 2416963, https://doi.org/10.1002/adfm.202416963. doi: 10.1002/adfm.202416963

    98. [98]

      B. Li, C. Guo, X. Wang, W. Dong, B. Xu, X. Xing, D. Zhou, X. Xue, Q. Luan, W. Tang, C. Hou, Mater. Today Nano. 21 (2023) 100281, https://doi.org/10.1016/j.mtnano.2022.100281. doi: 10.1016/j.mtnano.2022.100281

    99. [99]

      Q. Jing, Z. Mei, X. Sheng, X. Zou, Q. Xu, L. Wang, H. Guo, Adv. Funct. Mater. 34 (2024) 2307002, https://doi.org/10.1002/adfm.202307002. doi: 10.1002/adfm.202307002

    100. [100]

      C. Li, B. Ye, B. Ouyang, T. Zhang, T. Tang, Z. Qiu, S. Li, Y. Li, R. Chen, W. Wen. M. Song, B. Mei, X. Xia, Y. Zhang, Adv. Mater. (2025) 2501381, https://doi.org/10.1002/adma.202501381. doi: 10.1002/adma.202501381

    101. [101]

      J. Liu, J. Yin, Y. Lin, M. Pang, H. Pang, S. Zhang, L. Xu, J. Yang, Y. Tang, Nano Res. 18 (2025) 94907016, https://doi.org/10.26599/nr.2025.94907016. doi: 10.26599/nr.2025.94907016

    102. [102]

      Y. Qin, W. Zhang, F. Wang, J. Li, J. Ye, X. Sheng, C. Li, X. Liang, P. Liu, X. Wang, Angew. Chem. Int. Ed. 61 (2022) e202200899, https://doi.org/10.1002/ange.202200899. doi: 10.1002/ange.202200899

    103. [103]

      C. Yin, F. Zhou, J. Wu, X. Zhang, J. Wen, R. Zhu, M. Ma, S. Yoriya, P. He, Q. Fang, Adv. Funct. Mater. 34 (2024) 2410429, https://doi.org/10.1002/adfm.202410429. doi: 10.1002/adfm.202410429

    104. [104]

      D. D. Alemayehu, M. C. Tsai, M. H. Tsai, C. C. Yang, C. C. Chang, C. Y. Chang, E. A. Moges, K. Lakshmanan, Y. Nikodimos, W. N. Su, J. Am. Chem. Soc. 147 (2025) 16047, https://doi.org/10.1021/jacs.4c17747. doi: 10.1021/jacs.4c17747

    105. [105]

      D. Zu, Y. Ying, Q. Wei, P. Xiong, M. Ahmed, Z. Lin, M. Li, M. Li, Z. Xu, G. Chen, L. Bai, S. She, Y. Tsang, H. Huang, Angew. Chem. Int. Ed. 63 (2024) e202405756, https://doi.org/10.1002/anie.202405756. doi: 10.1002/anie.202405756

    106. [106]

      Q. Zhang, W. Zhang, J. Zhu, X. Zhou, G. R. Xu, D. Chen, Z. Wu, L. Wang, Adv. Energy Mater. 14 (2024) 2304546, https://doi.org/10.1002/aenm.202304546. doi: 10.1002/aenm.202304546

    107. [107]

      J. Zhang, H. B. Yang, D. Zhou, B. Liu, ACS Nano 122 (2022) 17028, https://doi.org/10.1021/acsnano.5c05595. doi: 10.1021/acsnano.5c05595

    108. [108]

      Z. Wang, C. Song, H. Shen, S. Ma, G. Li, Y. Li, Adv. Mater. 36 (2024) 2307786 https://doi.org/10.1002/adma.202307786. doi: 10.1002/adma.202307786

    109. [109]

      L. Qi, Y. Gao, Y. Gao, Z. Zheng, X. Luan, S. Zhao, Z. Chen, H. Liu, Y. Xue, Y. Li, J. Am. Chem. Soc. 146 (2024) 5669, https://doi.org/10.1021/jacs.3c14742. doi: 10.1021/jacs.3c14742

    110. [110]

      X. Wang, Y. Zhang, S. Wang, Y. Li, Y. Feng, Z. Dai, Y. Chen, X. Meng, J. Xia, G. Zhang, Angew. Chem. Int. Ed. 136 (2024) e202407665, https://doi.org/10.1002/anie.202407665. doi: 10.1002/anie.202407665

    111. [111]

      K. Wu, C. Lyu, J. Cheng, W. Ding, J. Wu, Q. Wang, W. M. Lau, J. Zheng, Carbon Energy 6 (2024) e485, https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cey2.485. doi: 10.1002/cey2.485

    112. [112]

      S. Liang, H. Hu, J. Liu, H. Shen, Q. Li, N. Qiu, H. Guo, X. Guo, S. Du, Y. Zhu, Appl. Catal. B: Environ. 337 (2023) 123008, https://doi.org/10.1016/j.apcatb.2023.123008. doi: 10.1016/j.apcatb.2023.123008

    113. [113]

      M. Liu, Y. Li, L. Yang, P. Zhao, J. Li, L. Tian, D. Cao, Z. Chen, Angew. Chem. Int. Ed. (2025) e202505268, https://doi.org/10.1002/anie.202505268. doi: 10.1002/anie.202505268

    114. [114]

      X. F. Wu, Z. Y. Li, H. Wang, J. C. Wang, G. Q. Xi, X. J. Zhao, C. X. Zhang, W. G. Liao, J. C. Ho, Adv. Sci. (2025) 2502244, https://doi.org/10.1002/advs.202502244. doi: 10.1002/advs.202502244

    115. [115]

      F. Ye, L. Gong, Y. Long, S. N. Talapaneni, L. Zhang, Y. Xiao, D. Liu, C. Hu, L. Dai, Adv. Energy Mater. 11 (2021) 2101390, https://doi.org/10.1002/aenm.202101390. doi: 10.1002/aenm.202101390

    116. [116]

      L. Gong, F. Xia, J. Zhu, X. Mu, D. Chen, H. Zhao, L. Chen, S. Mu, Angew. Chem. Int. Ed. 63 (2024) e202411125, https://doi.org/10.1002/anie.202411125. doi: 10.1002/anie.202411125

    117. [117]

      X. Yao, Y. Zhu, T. Xia, Z. Han, C. Du, L. Yang, J. Tian, X. Ma, J. Hou, C. Cao, Small 19 (2023) 2301075, https://doi.org/10.1002/smll.202301075. doi: 10.1002/smll.202301075

    118. [118]

      H. Tian, A. Song, P. Zhang, K. Sun, J. Wang, B. Sun, Q. Fan, G. Shao, C. Chen, H. Liu, Adv. Mater. 35 (2023) 2210714, https://doi.org/10.1002/adma.202210714. doi: 10.1002/adma.202210714

    119. [119]

      Y. Qin, G. Zhan, C. Tang, D. Yang, X. Wang, J. Yang, C. Mao, Z. Hao, S. Wang, Y. Qin, Nano Lett. 23 (2023) 9227, https://doi.org/10.1021/acs.nanolett.3c01905. doi: 10.1021/acs.nanolett.3c01905

    120. [120]

      H. Zang, Y. Zhao, C. Liu, H. Lu, N. Yu, B. Geng, (2025) 2504400, https://doi.org/10.1002/adfm.202504400.

    121. [121]

      Q. Li, L. Luo, X. Guo, R. Wang, J. Liu, W. Fan, Z. Feng, F. Zhang, J. Am. Chem. Soc. 147 (2024) 1884, https://doi.org/10.1021/jacs.4c14498. doi: 10.1021/jacs.4c14498

    122. [122]

      L. Geng, Q. Zhang, X. Wang, H. Han, Y.-Z. Zhang, C. Li, Z. Li, D.-S. Zhang, X. Zhang, A. Appl. Catal. B: Environ. 343 (2024) 123575, https://doi.org/10.1016/j.apcatb.2023.123575. doi: 10.1016/j.apcatb.2023.123575

    123. [123]

      S. Zhang, B. Sun, K. Liao, X. Wang, Z. Chen, J. Wang, W. Hu, X. Han, Adv. Funct. Mater. (2025) 2425640, https://doi.org/10.1002/adfm.202425640. doi: 10.1002/adfm.202425640

    124. [124]

      L. Li, S. Huang, R. Cao, K. Yuan, C. Lu, B. Huang, X. Tang, T. Hu, X. Zhuang, Y. Chen, Small 18 (2022) 2105387, https://doi.org/10.1002/smll.202105387. doi: 10.1002/smll.202105387

    125. [125]

      P. Wu, L.-L. Shen, W. Zhao, H. Yu, J. Wang, Y. Xu, X. Li, Y. Wang, G.-R. Zhang, D. Mei, Appl. Catal. B: Environ. and Energy (2025) 125408, https://doi.org/10.1016/j.apcatb.2025.125408. doi: 10.1016/j.apcatb.2025.125408

    126. [126]

      S. Ji, Y. Mou, H. Liu, X. Lu, Y. Zhang, C. Guo, K. Sun, D. Liu, J. H. Horton, C. Wang, Adv. Mater. 36 (2024) 2410121, https://doi.org/10.1002/adma.202410121. doi: 10.1002/adma.202410121

    127. [127]

      S. Lu, Z. Zhang, C. Cheng, B. Zhang, Y. Shi, Angew. Chem. Int. Ed. 137 (2025) e202413308, https://doi.org/10.1002/ange.202413308. doi: 10.1002/ange.202413308

    128. [128]

      T. Zhao, J. Wang, Y. Wei, Z. Zhuang, Y. Dou, J. Yang, W.-H. Li, D. Wang, Energy Environ. Sci. 18 (2025) 3462, https://doi.org/10.1039/d5ee00074b. doi: 10.1039/d5ee00074b

    129. [129]

      Y. Zhao, Z. Gao, S. Zhang, X. Guan, W. Xu, Y. Liang, H. Jiang, Z. Li, S. Wu, Z. Cui, Adv. Funct. Mater. (2025) 2504260, https://doi.org/10.1002/adfm.202504260. doi: 10.1002/adfm.202504260

    130. [130]

      Z. Li, X. Chen, G. Yao, L. Wei, Q. Chen, Q. Luo, F. Zheng, H. Wang, Adv. Funct. Mater. 34 (2024) 2400859, https://doi.org/10.1002/adfm.202400859. doi: 10.1002/adfm.202400859

    131. [131]

      B. Lu, Q. Liu, S. Chen, ACS Catal. 10 (2020) 7584, https://doi.org/10.1021/acscatal.0c01950. doi: 10.1021/acscatal.0c01950

    132. [132]

      G. M. Tomboc, T. Kim, S. Jung, H. J. Yoon, K. Lee, Small 18 (2022) 2105680, https://doi.org/10.1002/smll.202105680. doi: 10.1002/smll.202105680

    133. [133]

      C. Dong, C. Ma, C. Zhou, Y. Yu, J. Wang, K. Yu, C. Shen, J. Gu, K. Yan, A. Zheng, Adv. Mater. 36 (2024) 2407070, https://doi.org/10.1002/adma.202407070. doi: 10.1002/adma.202407070

    134. [134]

      G. Zhang, J. Pei, Y. Wang, G. Wang, Y. Wang, W. Liu, J. Xu, P. An, H. Huang, L. Zheng, Angew. Chem. Int. Ed. 63 (2024) e202407509, https://doi.org/10.1002/anie.202407509. doi: 10.1002/anie.202407509

    135. [135]

      Y. Dai, B. Liu, Z. Zhang, P. Guo, C. Liu, Y. Zhang, L. Zhao, Z. Wang, Adv. Mater. 35 (2023) 2210757, https://doi.org/10.1002/adma.202210757. doi: 10.1002/adma.202210757

    136. [136]

      C. Lan, Y. Chu, S. Wang, C. Liu, J. Ge, W. Xing, Acta Phys.-Chim. Sin 39 (2023) 2210036, https://doi.org/10.3866/pku.whxb202210036. doi: 10.3866/pku.whxb202210036

    137. [137]

      C. Qi, H. Yang, Z. Sun, H. Wang, N. Xu, G. Zhu, L. Wang, W. Jiang, X. Yu, X. Li, Angew. Chem. Int. Ed. 62 (2023) e202308344, https://doi.org/10.1002/anie.202308344. doi: 10.1002/anie.202308344

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  14
  • HTML全文浏览量:  2
文章相关
  • 发布日期:  2026-02-15
  • 收稿日期:  2025-05-26
  • 接受日期:  2025-08-06
  • 修回日期:  2025-08-05
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章