Citation:
Rohit Kumar, Anita Sudhaik, Aftab Asalam Pawaz Khan, Van Huy Neguyen, Archana Singh, Pardeep Singh, Sourbh Thakur, Pankaj Raizada. Designing tandem S-scheme photo-catalytic systems: Mechanistic insights, characterization techniques, and applications[J]. Acta Physico-Chimica Sinica,
;2025, 41(11): 100150.
doi:
10.1016/j.actphy.2025.100150
-
Tandem S-scheme heterojunctions have emerged as a highly promising innovation in photocatalysis, offering an effective solution for environmental remediation. Unlike traditional Z-scheme or type-Ⅱ photocatalysts, the S-scheme architecture selectively retains high-energy photocarriers that actively participate in redox reactions. This unique mechanism enhances charge separation, strengthens internal electric fields, and enhance light absorption. However, the single junction of S-scheme suffers from low quantum efficiency. Therefore, engineering a multicomponent system with S-scheme effectively improve the photocatalytic properties. Tandem S-scheme systems consist of multiple semiconductors/materials with staggered energy band positions to create a stepwise or directional charge transferal mechanism. This stepwise potential gradient is responsible for more enhanced charge separation, light absorption, redox ability, stability, and overall photocatalytic activity. This article provides an in-depth overview of the principles governing tandem S-scheme heterojunctions, discussing the design of tandem S-scheme heterojunctions through semiconductor pairing, co-catalyst addition, and mediator inclusion for maximum charge mobility and minimum recombination. The various synthesis pathways are explored along with the kinetics and thermodynamics of tandem S-scheme heterojunction. A range of advanced characterization tools, including density functional theory (DFT) simulations, in situ X-ray photoelectron spectroscopy (XPS), transient absorption spectroscopy (TAS), photoluminescence (PL), and electrochemical impedance spectroscopy (EIS) studies are discussed, which together offer valuable insight into electronic behaviours and interfacial dynamics. Applications of these heterojunctions are discussed across major domains such as carbon dioxide reduction, H2 evolution, and degradation of organic pollutants. While the potential is clear, challenges such as complex synthesis procedures, material stability, and scalability still need to be addressed. To overcome the limitations, the article suggests future research paths. Overall, tandem S-scheme heterojunctions stand out as an excellent approach for building efficient and sustainable photocatalytic technologies.
-
-
-
[1]
X. Chen, J. Zhao, G. Li, D. Zhang, H. Li, Energy mater. 2 (2022) 200001, http://dx. doi.org/10.20517/energymater.2021.24. doi: 10.20517/energymater.2021.24
-
[2]
H. Wang, X. Li, X. Zhao, C. Li, X. Song, P. Zhang, P. Huo, Chin. J. Catal. 43 (2022) 178, https://doi.org/10.1016/S1872-2067(21)63910-4. doi: 10.1016/S1872-2067(21)63910-4
-
[3]
J. Li, M. Du, Z. Wu, X. Zhang, W. Xue, H. Huang, C. Zhong, Angew. Chem., Int. Ed. 63 (2024) e202407975, https://doi.org/10.1002/anie.202407975. doi: 10.1002/anie.202407975
-
[4]
T.F. Qahtan, T.O. Owolabi, O.E. Olubi, A. Hazam, Coord. Chem. Rev. 514 (2024) 215839, https://doi.org/10.1016/j.ccr.2024.215839. doi: 10.1016/j.ccr.2024.215839
-
[5]
B. Das, B. Das, N.S. Das, S. Pal, B.K. Das, S. Sarkar, K.K. Chattopadhyay, Appl. Surf. Sci. 515 (2020) 145958, https://doi.org/10.1016/j.apsusc.2020.145958. doi: 10.1016/j.apsusc.2020.145958
-
[6]
M. Li, K. Liang, X. Wei, Y. Zhang, H. Chen, Y. Yang, J. Liu, Y. Tian, Z. Li, L. Duan, Int. J. Hydrogen Energy 81 (2024) 447, https://doi.org/10.1016/j.ijhydene.2024.07.080. doi: 10.1016/j.ijhydene.2024.07.080
-
[7]
J. Low, C. Jiang, B. Cheng, S. Wageh, A.A. Al‐Ghamdi, J. Yu, Small methods 1 (2017) 1700080, https://doi.org/10.1002/smtd.201700080. doi: 10.1002/smtd.201700080
-
[8]
H. He, Z. Wang, J. Zhang, S. Mamatkulov, O. Ruzimuradov, K. Dai, J. Low, Y. Li, Energy Environ. Sci. 18 (2025) 6191, https://doi.org/10.1039/D5EE01295C. doi: 10.1039/D5EE01295C
-
[9]
W. Lu, T. Ding, N. Lu, J. Zhang, K. Yun, P. Zhang, Z. Zhang, Appl. Surf. Sci. 592 (2022) 153348, https://doi.org/10.1016/j.apsusc.2022.153348. doi: 10.1016/j.apsusc.2022.153348
-
[10]
X. Wu, R. Zhong, X. Lv, Z. Hu, D. Xia, C. Li, B. Song, S. Liu, Appl. Catal. B Environ. 330 (2023) 122666, https://doi.org/10.1016/j.apcatb.2023.122666. doi: 10.1016/j.apcatb.2023.122666
-
[11]
H. Jiang, M. Xu, X. Zhao, H. Wang, Q. Liu, Z. Liu, Q. Liu, G. Yang, P. Huo, Inorg. Chem. 61 (2022) 11207, https://doi.org/10.1021/acs.inorgchem.2c01216. doi: 10.1021/acs.inorgchem.2c01216
-
[12]
H. Jiang, J. Xu, L. Sun, J. Li, L. Wang, W. Wang, Q. Liu, J. Yang, Inorg. Chem. 63 (2024) 14746, https://doi.org/10.1021/acs.inorgchem.4c02428. doi: 10.1021/acs.inorgchem.4c02428
-
[13]
D. Zu, H. Wei, Z. Lin, X. Bai, M.N.A.S. Ivan, Y.H. Tsang, H. Huang, Adv. Funct. Mater. 34 (2024) 2408213, https://doi.org/10.1002/adfm.202408213. doi: 10.1002/adfm.202408213
-
[14]
S. Li, C. You, K. Rong, C. Zhuang, X. Chen, B. Zhang, Adv. Powder Mater. 3 (2024) 100183, https://doi.org/10.1016/j.apmate.2024.100183. doi: 10.1016/j.apmate.2024.100183
-
[15]
C. Wang, C. You, K. Rong, C. Shen, F. Yang, S. Li, Acta Phys.-Chim. Sin. 40 (2024) 2307045, https://doi.org/10.3866/PKU.WHXB202307045. doi: 10.3866/PKU.WHXB202307045
-
[16]
R. Kumar, A. Sudhaik, A.A.P. Khan, P. Raizada, A.M. Asiri, S. Mohapatra, S. Thakur, V.K. Thakur, P. Singh, J. Ind. Eng. Chem. 106 (2022) 340, https://doi.org/10.1016/j.jiec.2021.11.008. doi: 10.1016/j.jiec.2021.11.008
-
[17]
M. Cai, Y. Liu, K. Dong, X. Chen, S. Li, Chin. J. Catal. 52 (2023) 239, https://doi.org/10.1016/S1872-2067(23)64496-1. doi: 10.1016/S1872-2067(23)64496-1
-
[18]
S. Li, K. Dong, M. Cai, X. Li, X. Chen, EScience 4 (2024) 100208, https://doi.org/10.1016/j.esci.2023.100208. doi: 10.1016/j.esci.2023.100208
-
[19]
J. Li, P. Tu, Q. Yang, Y. Cui, C. Gao, H. Zhou, J. Lu, H. Bian, Sci. Rep. 14 (2024) 10643, https://doi.org/10.1038/s41598-024-60250-z. doi: 10.1038/s41598-024-60250-z
-
[20]
X. Li, H. Sun, Y. Xie, Y. Liang, X. Gong, P. Qin, L. Jiang, J. Guo, C. Liu, Z. Wu, Coord. Chem. Rev. 467 (2022) 214596, https://doi.org/10.1016/j.ccr.2022.214596. doi: 10.1016/j.ccr.2022.214596
-
[21]
Y. Li, J. Wang, Mater. Adv. 5 (2024) 749, https://doi.org/10.1039/D3MA00915G. doi: 10.1039/D3MA00915G
-
[22]
V. -H. Nguyen, P. Singh, A. Sudhaik, P. Raizada, Q. Van Le, E. T. Helmy, Mater. Lett. 313 (2022) 131781, https://doi.org/10.1016/j.matlet.2022.131781. doi: 10.1016/j.matlet.2022.131781
-
[23]
H. Rongan, L. Haijuan, L. Huimin, X. Difa, Z. Liuyang, J. Mater. Sci. Technol. 52 (2020) 145, https://doi.org/10.1016/j.jmst.2020.03.027. doi: 10.1016/j.jmst.2020.03.027
-
[24]
C. Wang, Y. Zhao, C. Cheng, Q. Li, C. Guo, Y. Hu, Coord. Chem. Rev. 521 (2024) 216177, https://doi.org/10.1016/j.ccr.2024.216177. doi: 10.1016/j.ccr.2024.216177
-
[25]
X. Kong, K. Wang, Z. Jin, Sol. RRL 8 (2024) 2400222, https://doi.org/10.1002/solr.202400222. doi: 10.1002/solr.202400222
-
[26]
Z. Dong, Z. Zhang, T. Wang, D. Zeng, Z. Cheng, Y. Wang, X. Cao, Y. Wang, Y. Liu, X. Fan, Sep. Purif. Technol. 286 (2022) 120418, https://doi.org/10.1016/j.seppur.2021.120418. doi: 10.1016/j.seppur.2021.120418
-
[27]
W.A. Mohamed, A. Alhodaib, H.A. Mousa, H.T. Handal, H.R. Galal, H.H. Abd El-Gawad, B.A. Elsayed, A.A. Labib, M.S. Abdel-Mottaleb, Nanotechnol. Rev. 14 (2025) 20250159, https://doi.org/10.1515/ntrev-2025-0159. doi: 10.1515/ntrev-2025-0159
-
[28]
C. Chang, H. Lu, Y. Liu, G. Long, X. Guo, X. Ji, Z. Jin, J. Mater. Chem. A 12 (2024) 4204, https://doi.org/10.1039/D3TA06906K. doi: 10.1039/D3TA06906K
-
[29]
Z. Jin, T. Li, L. Zhang, X. Wang, G. Wang, X. Hao, J. Mater. Chem. A 10 (2022) 1976, https://doi.org/10.1039/D1TA09347A. doi: 10.1039/D1TA09347A
-
[30]
F. Mei, K. Dai, J. Zhang, W. Li, C. Liang, Appl. Surf. Sci. 488 (2019) 151, https://doi.org/10.1016/j.apsusc.2019.05.257. doi: 10.1016/j.apsusc.2019.05.257
-
[31]
J. Wang, Q. Zhang, F. Deng, X. Luo, D. D. Dionysiou, Chem. Eng. J. 379 (2020) 122264, https://doi.org/10.1016/j.cej.2019.122264. doi: 10.1016/j.cej.2019.122264
-
[32]
X. Zou, C. Yuan, Y. Cui, Y. Dong, D. Chen, H. Ge, J. Ke, Sep. Purif. Technol. 266 (2021) 118545, https://doi.org/10.1016/j.seppur.2021.118545. doi: 10.1016/j.seppur.2021.118545
-
[33]
Y. Yuan, R. -T. Guo, L. -F. Hong, Z. -D. Lin, X. -Y. Ji, W. -G. Pan, Chemosphere 287 (2022) 132241, https://doi.org/10.1016/j.chemosphere.2021.132241. doi: 10.1016/j.chemosphere.2021.132241
-
[34]
H. Wang, Q. Liu, M. Xu, C. Yan, X. Song, X. Liu, H. Wang, W. Zhou, P. Huo, Appl. Surf. Sci. 640 (2023) 158420, https://doi.org/10.1016/j.apsusc.2023.158420. doi: 10.1016/j.apsusc.2023.158420
-
[35]
F. Yi, Y. Liu, Y. Chen, J. Zhu, Q. He, C. Yang, D. Ma, J. Liu, Chin. Chem. Lett. 36 (2025) 110544, https://doi.org/10.1016/j.cclet.2024.110544. doi: 10.1016/j.cclet.2024.110544
-
[36]
J. Ye, Y. Wan, Y. Li, S. Xu, X. Li, Q. Chen, X. Li, Appl. Surf. Sci. 684 (2025) 161862, https://doi.org/10.1016/j.apsusc.2024.161862. doi: 10.1016/j.apsusc.2024.161862
-
[37]
C. You, X. Zhang, Y. Zhao, R. Yan, Y. Shen, Q. Xue, W. Li, T. Liu, J. Jiang, X. Chen, J. Mater. Sci. Technol. 242 (2026) 64-74, https://doi.org/10.1016/j.jmst.2025.05.002. doi: 10.1016/j.jmst.2025.05.002
-
[38]
Q. Xu, L. Zhang, B. Cheng, J. Fan, J. Yu, Chem, 6 (2020) 1543, https://doi.org/10.1016/j.chempr.2020.06.010. doi: 10.1016/j.chempr.2020.06.010
-
[39]
C. Nie, X. Wang, P. Lu, Y. Zhu, X. Li, H. Tang, J. Mater. Sci. Technol. 169 (2024) 182, https://doi.org/10.1016/j.jmst.2023.06.011. doi: 10.1016/j.jmst.2023.06.011
-
[40]
Y. Bian, H. He, G. Dawson, J. Zhang, K. Dai, Sci. China Mater. 67 (2024) 514, https://doi.org/10.1007/s40843-023-2725-y. doi: 10.1007/s40843-023-2725-y
-
[41]
M. Sayed, K. Qi, X. Wu, L. Zhang, H. García, J. Yu, Chem. Soc. Rev. 54 (2025) 4874, https://doi.org/10.1039/D4CS01091D. doi: 10.1039/D4CS01091D
-
[42]
C. You, C. Wang, M. Cai, Y. Liu, B. Zhu, S. Li, Acta Phys.-Chim. Sin. 40 (2024) 2407014, https://doi.org/10.3866/PKU.WHXB202407014. doi: 10.3866/PKU.WHXB202407014
-
[43]
J. Fu, Q. Xu, J. Low, C. Jiang, J. Yu, Appl. Catal. B Environ. 243 (2019) 556, https://doi.org/10.1016/j.apcatb.2018.11.011. doi: 10.1016/j.apcatb.2018.11.011
-
[44]
S. Li, C. Wang, K. Dong, P. Zhang, X. Chen, X. Li, Chin. J Catal. 51 (2023) 101, https://doi.org/10.1016/S1872-2067(23)64479-1. doi: 10.1016/S1872-2067(23)64479-1
-
[45]
J. Li, S. Yan, J. Wu, Q. Cheng, K. Wang, Acta Phys.-Chim. Sin. 41 (2025) 100104, https://doi.org/10.1016/j.actphy.2025.100104. doi: 10.1016/j.actphy.2025.100104
-
[46]
H. He, Z. Wang, J. Zhang, C. Shao, K. Dai, K. Fan, Adv. Funct. Mater. 34 (2024) 2315426, https://doi.org/10.1002/adfm.202315426. doi: 10.1002/adfm.202315426
-
[47]
M. Dai, Z. He, P. Zhang, X. Li, S. Wang, J. Mater. Sci. Technol. 122 (2022) 231, https://doi.org/10.1016/j.jmst.2022.02.014. doi: 10.1016/j.jmst.2022.02.014
-
[48]
B. Sun, W. Zhou, H. Li, L. Ren, P. Qiao, W. Li, H. Fu, Adv. Mater. 30 (2018) 1804282, https://doi.org/10.1002/adma.201804282. doi: 10.1002/adma.201804282
-
[49]
Z. Li, D. Yang, W. Zhou, Handbook of Green and Sustainable Nanotechnology. Springer, Cham (2023) 2181, https://doi.org/10.1007/978-3-031-16101-8_53. doi: 10.1007/978-3-031-16101-8_53
-
[50]
S. Li, R. Yan, M. Cai, W. Jiang, M. Zhang, X. Li, J. Mater. Sci. Technol. 164 (2023) 59, https://doi.org/10.1016/j.jmst.2023.05.009. doi: 10.1016/j.jmst.2023.05.009
-
[51]
S. Li, K. Rong, X. Wang, C. Shen, F. Yang, Q. Zhang, Acta Phys.-Chim. Sin. 40 (2024) 2403005, https://doi.org/10.3866/PKU.WHXB202403005. doi: 10.3866/PKU.WHXB202403005
-
[52]
C. Wang, K. Rong, Y. Liu, F. Yang, S. Li, Sci. China. Mater. 67 (2024) 562, https://doi.org/10.1007/s40843-023-2764-8. doi: 10.1007/s40843-023-2764-8
-
[53]
X. Ruan, C. Huang, H. Cheng, Z. Zhang, Y. Cui, Z. Li, T. Xie, K. Ba, H. Zhang, L. Zhang, Adv. Mater. 35 (2023) 2209141, https://doi.org/10.1002/adma.202209141. doi: 10.1002/adma.202209141
-
[54]
Y. Xiao, Z. Wang, M. Li, Q. Liu, X. Liu, Y. Wang, Small 20 (2024) 2306692, https://doi.org/10.1002/smll.202306692. doi: 10.1002/smll.202306692
-
[55]
H. Han, M. R. Khan, I. Ahmad, A. Al-Qattan, I. Ali, M. R. Karim, H. Bayahia, F. S. Khan, Z. Ahmad, S. Ullah, J. Water Process. Eng. 61 (2024) 105346, https://doi.org/10.1016/j.jwpe.2024.105346. doi: 10.1016/j.jwpe.2024.105346
-
[56]
D. A. Sabit, S. E. Ebrahim, Mater. Sci. Semicond. Proc. 163 (2023) 107559, https://doi.org/10.1016/j.mssp.2023.107559. doi: 10.1016/j.mssp.2023.107559
-
[57]
A. Wang, W. Wang, J. Ni, D. Liu, D. Liu, J. Ma, X. Jia, Appl. Catal. B: Environ. 328 (2023) 122492, https://doi.org/10.1016/j.apcatb.2023.122492. doi: 10.1016/j.apcatb.2023.122492
-
[58]
J. Wang, Z. Wang, K. Dai, J. Zhang, J. Mater. Sci. Technol. 165 (2023) 187, https://doi.org/10.1016/j.jmst.2023.03.067. doi: 10.1016/j.jmst.2023.03.067
-
[59]
Y. Liu, C. Chen, G. Dawson, J. Zhang, C. Shao, K. Dai, J. Mater. Sci. Technol. 233 (2025) 10, https://doi.org/10.1016/j.jmst.2024.12.094. doi: 10.1016/j.jmst.2024.12.094
-
[60]
Q. Wang, G. Wang, J. Wang, J. Li, K. Wang, S. Zhou, Y. Su, Adv. Sustain. Syst. 7 (2023) 2200027, https://doi.org/10.1002/adsu.202200027. doi: 10.1002/adsu.202200027
-
[61]
J. Ding, C. Li, H. Yin, Y. Zhou, S. Wang, K. Liu, M. a. Li, J. Wang, Environ. Pollut. 327 (2023) 121550, https://doi.org/10.1016/j.envpol.2023.121550. doi: 10.1016/j.envpol.2023.121550
-
[62]
Y. Wang, H. Wang, X. Li, L. Gao, Y. Li, J. Huo, W. Kang, C. Zou, L. Jia, Appl. Surf. Sci. 616 (2023) 156501, https://doi.org/10.1016/j.apsusc.2023.156501. doi: 10.1016/j.apsusc.2023.156501
-
[63]
Z. Chen, T. Ma, Z. Li, W. Zhu, L. Li, J. Mater. Sci. Technol. 179 (2024) 198, https://doi.org/10.1016/j.jmst.2023.07.029. doi: 10.1016/j.jmst.2023.07.029
-
[64]
Z. Mei, G. Wang, S. Yan, J. Wang, Acta Phys.-Chim. Sin, 37 (2021) 2009097, http://dx.doi.org/10.3866/PKU.WHXB202009097. doi: 10.3866/PKU.WHXB202009097
-
[65]
S. Yuan, X. Liang, Y. Zheng, Y. Chu, X. Ren, Z. Zeng, G. Nan, Y. Wu, Y. He, J. Colloid Interface Sci. 670 (2024) 373, https://doi.org/10.1016/j.jcis.2024.05.120. doi: 10.1016/j.jcis.2024.05.120
-
[66]
X. Li, B. Kang, F. Dong, Z. Zhang, X. Luo, L. Han, J. Huang, Z. Feng, Z. Chen, J. Xu, Nano Energy 81 (2021) 105671, https://doi.org/10.1016/j.nanoen.2020.105671. doi: 10.1016/j.nanoen.2020.105671
-
[67]
Y. Sun, R. Xiong, X. Ke, J. Liao, Y. Xiao, B. Cheng, S. Lei, Sep. Purif. Technol. 345 (2024) 127253, https://doi.org/10.1016/j.seppur.2024.127253. doi: 10.1016/j.seppur.2024.127253
-
[68]
D. Dastan, Appl. Phys. A 123 (2017) 1, https://doi.org/10.1007/s00339-017-1309-3. doi: 10.1007/s00339-017-1309-3
-
[69]
Y. Fu, Y. Xu, Y. Mao, M. Tan, Q. He, H. Mao, H. Du, D. Hao, Q. Wang, Sep. Purif. Technol. 317 (2023) 123922, https://doi.org/10.1016/j.seppur.2023.123922. doi: 10.1016/j.seppur.2023.123922
-
[70]
S. Wang, X. Du, C. Yao, Y. Cai, H. Ma, B. Jiang, J. Ma, Nano Res. 16 (2023) 2152, https://doi.org/10.1007/s12274-022-4960-8. doi: 10.1007/s12274-022-4960-8
-
[71]
S. A. Ali, S. Majumdar, P. K. Chowdhury, S. M. Alshehri, T. Ahmad, ACS Appl. Energy Mater. 7 (2024) 7325, https://doi.org/10.1021/acsaem.4c01477. doi: 10.1021/acsaem.4c01477
-
[72]
Y. Zhang, C. Liang, K. Zhang, Y. Zeng, Y. Zhou, X. Zhang, L. Yin, J. Crittenden, J. Niu, Sep. Purif. Technol. 348 (2024) 127686, https://doi.org/10.1016/j.seppur.2024.127686. doi: 10.1016/j.seppur.2024.127686
-
[73]
Z. Jin, T. Wang, E. Cui, X. Yang, Chem. Eng. J. 477 (2023) 147210, https://doi.org/10.1016/j.cej.2023.147210. doi: 10.1016/j.cej.2023.147210
-
[74]
H. Huang, H.-L. Wang, W.-F. Jiang, Chemosphere, 318 (2023) 137812, https://doi.org/10.1016/j.chemosphere.2023.137812. doi: 10.1016/j.chemosphere.2023.137812
-
[75]
C. -H. Lu, C. -H. Yeh, Ceram. Int. 26 (2000) 351, https://doi.org/10.1016/S0272-8842(99)00063-2. doi: 10.1016/S0272-8842(99)00063-2
-
[76]
H. Lv, X. Zhao, H. Niu, S. He, Z. Tang, F. Wu, J.P. Giesy, J. Hazard. Mater., 369 (2019) 494, https://doi.org/10.1016/j.jhazmat.2019.02.046. doi: 10.1016/j.jhazmat.2019.02.046
-
[77]
J. Qin, M. Zhao, Y. Zhang, J. Shen, X. Wang, Sep. Purif. Technol. 353 (2025) 128622, https://doi.org/10.1016/j.seppur.2024.128622. doi: 10.1016/j.seppur.2024.128622
-
[78]
K. Dou, C. Peng, R. Wang, H. Cao, C. Yao, J. Qiu, J. Liu, N. Tsidaeva, W. Wang, Chem. Eng. J. 455 (2023) 140813, https://doi.org/10.1016/j.cej.2022.140813. doi: 10.1016/j.cej.2022.140813
-
[79]
Y. Y. Gurkan, E. Kasapbasi, Z. Cinar, Chem. Eng. J. 214 (2013) 34, https://doi.org/10.1016/j.cej.2012.10.025. doi: 10.1016/j.cej.2012.10.025
-
[80]
Y. Wang, G. Tan, T. Liu, Y. Su, H. Ren, X. Zhang, A. Xia, L. Lv, Y. Liu, Appl. Catal. B: Environ. 234 (2018) 37, https://doi.org/10.1016/j.apcatb.2018.04.026. doi: 10.1016/j.apcatb.2018.04.026
-
[81]
Y. Zhang, J. Qiu, B. Zhu, M. Fedin, B. Cheng, J. Yu, L. Zhang, Chem. Eng. J. 444 (2022) 136584, https://doi.org/10.1016/j.cej.2022.136584. doi: 10.1016/j.cej.2022.136584
-
[82]
J. Liu, J. Wan, L. Liu, W. Yang, J. Low, X. Gao, F. Fu, Chem. Eng. J. 430 (2022) 133125, https://doi.org/10.1016/j.cej.2021.133125. doi: 10.1016/j.cej.2021.133125
-
[83]
C. -C. Tang, Y. -F. Fang, X. -Q. Cao, H. -L. Tian, Y. -P. Huang, Res. Chem. Intermed. 46 (2020) 509, https://doi.org/10.1007/s11164-019-03963-5. doi: 10.1007/s11164-019-03963-5
-
[84]
C. Du, S. He, Y. Xing, Q. Zhao, C. Yu, X. Su, J. Feng, J. Sun, S. Dong, Mater. Today Phys. 27 (2022) 100827, https://doi.org/10.1016/j.mtphys.2022.100827. doi: 10.1016/j.mtphys.2022.100827
-
[85]
Y. Wang, X. Zhang, Y. Liu, Y. Zhao, C. Xie, Y. Song, P. Yang, Int. J. Hydrogen Energy 44 (2019) 30151, https://doi.org/10.1016/j.ijhydene.2019.09.181. doi: 10.1016/j.ijhydene.2019.09.181
-
[86]
R. Tsuruta, Y. Mizuno, T. Hosokai, T. Koganezawa, H. Ishii, Y. Nakayama, J. Cryst. Growth 468 (2017) 770, https://doi.org/10.1016/j.jcrysgro.2016.10.031. doi: 10.1016/j.jcrysgro.2016.10.031
-
[87]
J. Choi, W. Jung, S. Gonzalez-Carrero, J. R. Durrant, H. Cha, T. Park, Energy Environ. Sci. 17 (2024) 7999, https://doi.org/10.1039/D4EE01808G. doi: 10.1039/D4EE01808G
-
[88]
X. Li, J. Zhang, Z. Wang, J. Fu, S. Li, K. Dai, M. Liu, Chem. Eur. J. 29 (2023) e202202669, https://doi.org/10.1002/chem.202202669. doi: 10.1002/chem.202202669
-
[89]
F. Zhang, Y. Li, B. Ding, G. Shao, N. Li, P. Zhang, Small 19 (2023) 2303867, https://doi.org/10.1002/smll.202303867. doi: 10.1002/smll.202303867
-
[90]
Y. Shao, X. Hao, W. Deng, Z. Jin, Mater. Today Chem. 38 (2024) 102075, https://doi.org/10.1016/j.mtchem.2024.102075. doi: 10.1016/j.mtchem.2024.102075
-
[91]
L. Wang, B. Cheng, L. Zhang, J. Yu, Small 17 (2021) 2103447, https://doi.org/10.1002/smll.202103447. doi: 10.1002/smll.202103447
-
[92]
T. Wang, Z. Jin, J. Mater. Sci. Technol. 155 (2023) 132, https://doi.org/10.1016/j.jmst.2023.03.002. doi: 10.1016/j.jmst.2023.03.002
-
[93]
F. A. Qaraah, S. A. Mahyoub, A. Hezam, A. Qaraah, F. Xin, G. Xiu, Appl. Catal. B Environ. 315 (2022) 121585, https://doi.org/10.1016/j.apcatb.2022.121585. doi: 10.1016/j.apcatb.2022.121585
-
[94]
M. Wei, X. Zhou, C. Cheng, J. Zhang, C. Jiang, B. Cheng, J. Mater. Sci. Technol. 232 (2025) 302, https://doi.org/10.1016/j.jmst.2025.01.036. doi: 10.1016/j.jmst.2025.01.036
-
[95]
M. Li, Y. Liu, S. Yang, Y. Zhang, L. Wei, B. Zhu, J. Mater. Sci. Technol. 224 (2025) 245, https://doi.org/10.1016/j.jmst.2024.12.001. doi: 10.1016/j.jmst.2024.12.001
-
[96]
R. Chen, L. Li, Y. Gong, H. Lou, Y. Pang, D. Yang, X. Qiu, J. Mater. Sci. Technol. 202 (2024) 67, https://doi.org/10.1016/j.jmst.2024.02.080. doi: 10.1016/j.jmst.2024.02.080
-
[97]
L. Cui, X. Ding, Y. Wang, H. Shi, L. Huang, Y. Zuo, S. Kang, Appl. Surf. Sci. 391 (2017) 202, https://doi.org/10.1016/j.apsusc.2016.07.055. doi: 10.1016/j.apsusc.2016.07.055
-
[98]
Y. Wang, R. Shi, J. Lin, Y. Zhu, Energy Environ. Sci. 4 (2011) 2922, https://doi.org/10.1039/C0EE00825G. doi: 10.1039/C0EE00825G
-
[99]
R. Banyal, P. Raizada, T. Ahamad, S. Kaya, M. M. Maslov, V. Chaudhary, C. M. Hussain, P. Singh, J. Phys. Chem. Solids 195 (2024) 112132, https://doi.org/10.1016/j.jpcs.2024.112132. doi: 10.1016/j.jpcs.2024.112132
-
[100]
C. Liu, S. Mao, H. Wang, Y. Wu, F. Wang, M. Xia, Q. Chen, Chem. Eng. J. 430 (2022) 132806, https://doi.org/10.1016/j.cej.2021.132806. doi: 10.1016/j.cej.2021.132806
-
[101]
K. Liu, J. Zhang, J. Ma, R. Sun, Green Chem. 26 (2024) 2893, https://doi.org/10.1039/D3GC03990K. doi: 10.1039/D3GC03990K
-
[102]
F. Zhao, I. Ahmad, H. Bayahia, S. AlFaify, K. M. Alanezi, M. Q. Alfaifi, M. D. Ali, Y. Y. Ghadi, I. Ali, T. L. Tamang, Int. J. Hydrog. Energy 80 (2024) 659, https://doi.org/10.1016/j.ijhydene.2024.07.156. doi: 10.1016/j.ijhydene.2024.07.156
-
[103]
L. Wang, B. Zhu, J. Zhang, J. B. Ghasemi, M. Mousavi, J. Yu, Matter 5 (2022) 4187, https://doi.org/10.1016/j.matt.2022.09.009. doi: 10.1016/j.matt.2022.09.009
-
[104]
X. Yue, L. Cheng, J. Fan, Q. Xiang, Appl. Catal. B: Environ. 304 (2022) 120979, https://doi.org/10.1016/j.apcatb.2021.120979. doi: 10.1016/j.apcatb.2021.120979
-
[105]
W. Zhou, H. Fu, Inorg. Chem. Front. 5 (2018) 1240, https://doi.org/10.1039/C8QI00122G. doi: 10.1039/C8QI00122G
-
[106]
D. Shi, J. Jiang, D. Wang, M. Huo, S. Dong, J. Environ. Chem. Eng. 12 (2024) 112982, https://doi.org/10.1016/j.jece.2024.112982. doi: 10.1016/j.jece.2024.112982
-
[107]
N. Fang, Y. Ding, C. Liu, Z. Chen, Appl. Surf. Sci. 452 (2018) 49, https://doi.org/10.1016/j.apsusc.2018.04.273. doi: 10.1016/j.apsusc.2018.04.273
-
[108]
H. Yu, L. Xu, P. Wang, X. Wang, J. Yu, Appl. Catal. B: Environ. 144 (2014) 75, https://doi.org/10.1016/j.apcatb.2013.06.023. doi: 10.1016/j.apcatb.2013.06.023
-
[109]
T. Liu, L. Bai, N. Tian, J. Liu, Y. Zhang, H. Huang, Int. J. Hydrog. Energy 48 (2023) 12257, https://doi.org/10.1016/j.ijhydene.2022.12.121. doi: 10.1016/j.ijhydene.2022.12.121
-
[110]
K. A. Stewart, B. -S. Yeh, J. F. Wager, J. Non-Cryst. Solids. 432 (2016) 196, https://doi.org/10.1016/j.jnoncrysol.2015.10.005. doi: 10.1016/j.jnoncrysol.2015.10.005
-
[111]
L. Xie, T. Du, J. Wang, Y. Ma, Y. Ni, Z. Liu, L. Zhang, C. Yang, J. Wang, Chem. Eng. J. 426 (2021) 130617, https://doi.org/10.1016/j.cej.2021.130617. doi: 10.1016/j.cej.2021.130617
-
[112]
F. He, B. Zhu, B. Cheng, J. Yu, W. Ho, W. Macyk, Appl. Catal. B: Environ. 272 (2020) 119006, https://doi.org/10.1016/j.apcatb.2020.119006. doi: 10.1016/j.apcatb.2020.119006
-
[113]
S. Zhang, Y. Si, B. Li, L. Yang, W. Dai, S. Luo, Small 17 (2021) 2004980, https://doi.org/10.1002/smll.202004980. doi: 10.1002/smll.202004980
-
[114]
Y. Chen, Y. Cheng, J. Zhao, W. Zhang, J. Gao, H. Miao, X. Hu, J. Colloid Interface Sci. 627 (2022) 1047, https://doi.org/10.1016/j.jcis.2022.07.117. doi: 10.1016/j.jcis.2022.07.117
-
[115]
M. Yang, Y. Wu, Y. Zhang, X. Li, Z. Jin, J. Environ. Chem. Eng. 11 (2023) 110795, https://doi.org/10.1016/j.jece.2023.110795. doi: 10.1016/j.jece.2023.110795
-
[116]
M. A. Nazir, T. Najam, M. Altaf, K. Ahmad, I. Hossain, M. A. Assiri, M. S. Javed, A. ur Rehman, S. S. A. Shah, J. Alloys Compd. 990 (2024) 174378, https://doi.org/10.1016/j.jallcom.2024.174378. doi: 10.1016/j.jallcom.2024.174378
-
[117]
B. Han, Y. H. Hu, Energy Sci. Eng. 4 (2016) 285, https://doi.org/10.1002/ese3.128. doi: 10.1002/ese3.128
-
[118]
C. Zuo, Q. Su, X. Yan, Processes 11 (2023) 867, https://doi.org/10.3390/pr11030867. doi: 10.3390/pr11030867
-
[119]
K. Dong, C. Shen, R. Yan, Y. Liu, C. Zhuang, S. Li, Acta Phys. Chim. Sin. 40 (2024) 2310013, https://doi.org/10.3866/PKU.WHXB202310013. doi: 10.3866/PKU.WHXB202310013
-
[120]
Y. Zhang, M. Gao, S. Chen, H. Wang, P. Huo, Acta Phys. Chim. Sin. 39 (2023) 2211051, https://doi.org/10.3866/PKU.WHXB202211051. doi: 10.3866/PKU.WHXB202211051
-
[121]
V. Dutta, A. Sudhaik, P. Raizada, A. Singh, T. Ahamad, S. Thakur, Q. Van Le, V. -H. Nguyen, P. Singh, J. Mater. Sci. Technol. 162 (2023) 11, https://doi.org/10.1016/j.jmst.2023.03.037. doi: 10.1016/j.jmst.2023.03.037
-
[122]
H. Peng, Z. Xing, W. Kong, C. Wu, B. Fang, Y. Cui, Z. Li, H. Liu, W. Zhou, Fuel 346 (2023) 128368, https://doi.org/10.1016/j.fuel.2023.128368. doi: 10.1016/j.fuel.2023.128368
-
[123]
A. Kumar, Y. Singla, M. Sharma, A. Bhardwaj, V. Krishnan, Chemosphere 308 (2022) 136212, https://doi.org/10.1016/j.chemosphere.2022.136212. doi: 10.1016/j.chemosphere.2022.136212
-
[124]
H. Lv, C. Zhou, Q. Shen, Y. Kong, B. Wan, Z. Suo, G. Wang, G. Wang, Y. Liu, J. Colloid Interface Sci. 677 (2025) 365, https://doi.org/10.1016/j.jcis.2024.08.072. doi: 10.1016/j.jcis.2024.08.072
-
[125]
Z. Xu, W. Shi, Y. Shi, H. Sun, L. Li, F. Guo, H. Wen, Appl. Surf. Sci. 595 (2022) 153482, https://doi.org/10.1016/j.apsusc.2022.153482. doi: 10.1016/j.apsusc.2022.153482
-
[126]
H. Dou, Y. Qin, F. Pan, D. Long, X. Rao, G. Q. Xu, Y. Zhang, Catal. Sci. Technol. 9 (2019) 4898, https://doi.org/10.1039/C9CY01086F. doi: 10.1039/C9CY01086F
-
[127]
Z. Li, H. Li, S. Wang, F. Yang, W. Zhou, Chem. Eng. J. 427 (2022) 131830, https://doi.org/10.1016/j.cej.2021.131830. doi: 10.1016/j.cej.2021.131830
-
[128]
R. Liang, Z. He, Y. Lu, G. Yan, L. Wu, Sep. Purif. Technol. 277 (2021) 119442, https://doi.org/10.1016/j.seppur.2021.119442. doi: 10.1016/j.seppur.2021.119442
-
[129]
Z. Wang, X. Yue, Q. Xiang, Coord. Chem. Rev. 504 (2024) 215674, https://doi.org/10.1016/j.ccr.2024.215674. doi: 10.1016/j.ccr.2024.215674
-
[130]
P. Li, Y. Cui, Z. Wang, G. Dawson, C. Shao, K. Dai, Acta Phys. Chim. Sin. 41 (2025) 100065, https://doi.org/10.1016/j.actphy.2025.100065. doi: 10.1016/j.actphy.2025.100065
-
[131]
J. Qin, Y. An, Y. Zhang, Acta Phys. Chim. Sin. 40 (2024) 2408002, https://doi.org/10.3866/PKU.WHXB202408002 doi: 10.3866/PKU.WHXB202408002
-
[132]
Y. An, W. Liu, Y. Zhang, J. Zhang, Z. Lu, Acta Phys. Chim. Sin. 40 (2024) 2407021, https://doi.org/10.3866/PKU.WHXB202407021. doi: 10.3866/PKU.WHXB202407021
-
[133]
J. Lei, Z. Wang, J. Huo, S. Sang, C. Zhang, E. Zhu, T. Kong, F. Karadas, J. Low, Y. Xiong, Angew. Chem. Int. Ed. 64 (2025) e202422667, https://doi.org/10.1002/anie.202422667. doi: 10.1002/anie.202422667
-
[134]
D. -D. Hu, R. -T. Guo, C. -F. Li, J. -S. Yan, W. -G. Pan, Sep. Purif. Technol. 353 (2025) 128473, https://doi.org/10.1016/j.seppur.2024.128473. doi: 10.1016/j.seppur.2024.128473
-
[135]
H. Zhang, C. Shao, Z. Wang, J. Zhang, K. Dai, J. Mater. Sci. Technol. 195 (2024) 146, https://doi.org/10.1016/j.jmst.2023.11.081. doi: 10.1016/j.jmst.2023.11.081
-
[136]
A. H. Raza, S. Farhan, Z. Yu, Y. Wu, Acta Phys. Chim. Sin. 40 (2024) 2406020, https://doi.org/10.3866/PKU.WHXB202406020. doi: 10.3866/PKU.WHXB202406020
-
[137]
Q. Zhang, Z. Wang, Y. Song, J. Fan, T. Sun, E. Liu, J. Mater. Sci. Technol. 169 (2024) 148, https://doi.org/10.1016/j.jmst.2023.05.066. doi: 10.1016/j.jmst.2023.05.066
-
[138]
M. Li, J. -Z. Wang, Z. -L. Jin, Rare Metals 43 (2024) 1999, https://doi.org/10.1007/s12598-023-02539-y. doi: 10.1007/s12598-023-02539-y
-
[139]
N. M. Gupta, Renew. Sust. Energy Rev. 71 (2017) 585, https://doi.org/10.1016/j.rser.2016.12.086. doi: 10.1016/j.rser.2016.12.086
-
[140]
F. He, A. Meng, B. Cheng, W. Ho, J. Yu, Chin. J. Catal. 41 (2020) 9, https://doi.org/10.1016/S1872-2067(19)63382-6. doi: 10.1016/S1872-2067(19)63382-6
-
[141]
J. Xiao, Y. Xie, H. Cao, Chemosphere 121 (2015) 1, https://doi.org/10.1016/j.chemosphere.2014.10.072. doi: 10.1016/j.chemosphere.2014.10.072
-
[142]
M. Zhang, T. Wang, C. Bian, N. Yang, H. Qi, Sep. Purif. Techol. 306 (2023) 122736, https://doi.org/10.1016/j.seppur.2022.122736. doi: 10.1016/j.seppur.2022.122736
-
[143]
J. Wu, Q. Xie, C. Zhang, H. Shi, Acta Phys. Chim. Sin. 41 (2025) 100050, https://doi.org/10.1016/j.actphy.2025.100050. doi: 10.1016/j.actphy.2025.100050
-
[144]
W. Kong, Z. Xing, H. Zhang, B. Fang, Y. Cui, Z. Li, P. Chen, W. Zhou, J. Mater. Chem. C 10 (2022) 18164, https://doi.org/10.1039/D2TC03943E. doi: 10.1039/D2TC03943E
-
[145]
Y. Kumar, K. Sharma, A. Sudhaik, P. Raizada, S. Thakur, V.-H. Nguyen, Q. Van Le, T. Ahamad, S. M. Alshehri, P. Singh, Appl. Nanosci. 13 (2023) 4129, https://doi.org/10.1007/s13204-022-02743-9. doi: 10.1007/s13204-022-02743-9
-
[1]
-
-
-
[1]
Hualin Jiang , Wenxi Ye , Huitao Zhen , Xubiao Luo , Vyacheslav Fominski , Long Ye , Pinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984
-
[2]
Hongye Bai , Lihao Yu , Jinfu Xu , Xuliang Pang , Yajie Bai , Jianguo Cui , Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096
-
[3]
Zhengyu Zhou , Huiqin Yao , Youlin Wu , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-0. doi: 10.3866/PKU.WHXB202312010
-
[4]
Tsegaye Tadesse Tsega , Jiantao Zai , Chin Wei Lai , Xin-Hao Li , Xuefeng Qian . Earth-abundant CuFeS2 nanocrystals@graphite felt electrode for high performance aqueous polysulfide/iodide redox flow batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100192-100192. doi: 10.1016/j.cjsc.2023.100192
-
[5]
Xiaofan ZHANG , Yu DUAN , Meijie SHI , Nan LU , Renhong LI , Xiaoqing YAN . Z-scheme Co3O4/BiOBr heterojunction for efficient photoreduction CO2 reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1878-1888. doi: 10.11862/CJIC.20250079
-
[6]
Tianli Hui , Tao Zheng , Xiaoluo Cheng , Tonghui Li , Rui Zhang , Xianghai Meng , Haiyan Liu , Zhichang Liu , Chunming Xu . A review of plasma treatment on nano-microstructure of electrochemical water splitting catalysts. Chinese Journal of Structural Chemistry, 2025, 44(3): 100520-100520. doi: 10.1016/j.cjsc.2025.100520
-
[7]
Chunyan Yang , Qiuyu Rong , Fengyin Shi , Menghan Cao , Guie Li , Yanjun Xin , Wen Zhang , Guangshan Zhang . Rationally designed S-scheme heterojunction of BiOCl/g-C3N4 for photodegradation of sulfamerazine: Mechanism insights, degradation pathways and DFT calculation. Chinese Chemical Letters, 2024, 35(12): 109767-. doi: 10.1016/j.cclet.2024.109767
-
[8]
Chunru Liu , Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136
-
[9]
Xinxin Zhang , Zhijian Liang , Xu Zhang , Qian Guo , Ying Xie , Lei Wang , Honggang Fu . Electronic modulation of VN on Co5.47N as tri-functional electrocatalyst for constructing zinc-air battery to drive water splitting. Chinese Chemical Letters, 2025, 36(5): 109935-. doi: 10.1016/j.cclet.2024.109935
-
[10]
Entian Cui , Yulian Lu , Zhaoxia Li , Zhilei Chen , Chengyan Ge , Jizhou Jiang . Interfacial B-O bonding modulated S-scheme B-doped N-deficient C3N4/O-doped-C3N5 for efficient photocatalytic overall water splitting. Chinese Chemical Letters, 2025, 36(1): 110288-. doi: 10.1016/j.cclet.2024.110288
-
[11]
Kai Han , Guohui Dong , Ishaaq Saeed , Tingting Dong , Chenyang Xiao . Boosting bulk charge transport of CuWO4 photoanodes via Cs doping for solar water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100207-100207. doi: 10.1016/j.cjsc.2023.100207
-
[12]
Ziruo Zhou , Wenyu Guo , Tingyu Yang , Dandan Zheng , Yuanxing Fang , Xiahui Lin , Yidong Hou , Guigang Zhang , Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245
-
[13]
Sanmei Wang , Dengxin Yan , Wenhua Zhang , Liangbing Wang . Graphene-supported isolated platinum atoms and platinum dimers for CO2 hydrogenation: Catalytic activity and selectivity variations. Chinese Chemical Letters, 2025, 36(4): 110611-. doi: 10.1016/j.cclet.2024.110611
-
[14]
Zekun Zhang , Shiji Li , Qian Zhang , Shanshan Li , Liu Yang , Wei Yan , Hao Xu . Further study of CO2 electrochemical reduction to gas products on Cu: Influence of the electrolyte. Chinese Chemical Letters, 2025, 36(9): 110742-. doi: 10.1016/j.cclet.2024.110742
-
[15]
Wenhao Chen , Jian Du , Hanbin Zhang , Hancheng Wang , Kaicheng Xu , Zhujun Gao , Jiaming Tong , Jin Wang , Junjun Xue , Ting Zhi , Longlu Wang . Surface treatment of GaN nanowires for enhanced photoelectrochemical water-splitting. Chinese Chemical Letters, 2024, 35(9): 109168-. doi: 10.1016/j.cclet.2023.109168
-
[16]
Liwei Hou , Xianyun Peng , Siliu Lyu , Zhongjian Li , Bin Yang , Qinghua Zhang , Qinggang He , Lecheng Lei , Yang Hou . Advancements in MXene-based nanohybrids for electrochemical water splitting. Chinese Chemical Letters, 2025, 36(6): 110392-. doi: 10.1016/j.cclet.2024.110392
-
[17]
Chaozheng He , Jia Wang , Ling Fu , Wei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037
-
[18]
Sanmei Wang , Yong Zhou , Hengxin Fang , Chunyang Nie , Chang Q Sun , Biao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476
-
[19]
Wenzheng Chen , Weiyun Chen , Bin Chen , Mingbao Feng . Deciphering the electron-shuttling role of iron(Ⅲ) porphyrin in modulating the reductive UV/S(Ⅳ) system into the oxidative strategy for micropollutant abatement. Chinese Chemical Letters, 2025, 36(10): 110743-. doi: 10.1016/j.cclet.2024.110743
-
[20]
Lina Wang , Hairu Wang , Qian Bu , Qiong Mei , Junbo Zhong , Bo Bai , Qizhao Wang . Al-O bridged NiFeOx/BiVO4 photoanode for exceptional photoelectrochemical water splitting. Chinese Chemical Letters, 2025, 36(4): 110139-. doi: 10.1016/j.cclet.2024.110139
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(18)
- HTML views(2)