SBA-15模板化共价三嗪框架增强光催化产氢

赵呈孝 李昭霖 吴东方 杨小飞

引用本文: 赵呈孝, 李昭霖, 吴东方, 杨小飞. SBA-15模板化共价三嗪框架增强光催化产氢[J]. 物理化学学报, 2026, 42(1): 100149. doi: 10.1016/j.actphy.2025.100149 shu
Citation:  Chengxiao Zhao, Zhaolin Li, Dongfang Wu, Xiaofei Yang. SBA-15 templated covalent triazine frameworks for boosted photocatalytic hydrogen production[J]. Acta Physico-Chimica Sinica, 2026, 42(1): 100149. doi: 10.1016/j.actphy.2025.100149 shu

SBA-15模板化共价三嗪框架增强光催化产氢

    通讯作者: Email: dfwu@seu.edu.cn (吴东方); Email: xiaofei.yang@njfu.edu.cn (杨小飞)
摘要: 共价三嗪框架(CTFs)是一类极具吸引力的可见光响应无金属共价有机框架(COFs),因其具有大比表面积、高氮含量、永久孔隙率以及高耐热性和化学稳定性等特性,被认为在光催化水分解制氢方面具有潜在的应用前景。然而,大多数CTFs在化学合成方面面临一定困难,且在光催化析氢反应(HER)过程中普遍表现出低电导率和严重的光生载流子复合现象。因此,材料的析氢性能高度依赖于CTFs的π-共轭结构及其合成方法,且实现具有明确结构的COFs纳米材料的可控合成仍具有高度挑战性。在本研究中,我们报道了以介孔二氧化硅分子筛SBA-15为模板,通过有机酸催化合成多孔CTF纳米结构的方法。SBA-15模板法制备的多孔网状CTF-S2在光催化HER中表现显著增强的催化活性,相较于微米级块体CTF-1 (4.1 μmol h−1)提升了14倍。这种显著的HER性能提升主要归因于扩展的可见光吸收、加速的载流子转移以及优化的能带结构。

English

    1. [1]

      T. Zhang, G. Zhang, L. Chen, Acc. Chem. Res. 55 (2022) 795, https://doi.org/10.1021/acs.accounts.1c00693. doi: 10.1021/acs.accounts.1c00693

    2. [2]

      C. Qian, L. Feng, W.L. Teo, J. Liu, W. Zhou, D. Wang, Y. Zhao, Nat. Rev. Chem. 6 (2022) 881, https://doi.org/10.1038/s41570-022-00437-y. doi: 10.1038/s41570-022-00437-y

    3. [3]

      L. Wang, Y. Zhang, Small 21 (2025) 2408395, https://doi.org/10.1002/smll.202408395. doi: 10.1002/smll.202408395

    4. [4]

      A. Rodríguez-Camargo, K. Endo, B.V. Lotsch, Angew. Chem. Int. Ed. 63 (2024) e202413096, https://doi.org/10.1002/anie.202413096. doi: 10.1002/anie.202413096

    5. [5]

      L. Yuan, Y. Peng, Z.-J. Guan, Y. Fang, Acta Phys. Chim. Sin. 41 (2025) 100086, https://doi.org/10.1016/j.actphy.2025.100086. doi: 10.1016/j.actphy.2025.100086

    6. [6]

      Z. Lu, H. Lv, Q. Liu, Z. Wang, Acta Phys. Chim. Sin. 40 (2024) 2405005, https://doi.org/10.3866/PKU.WHXB202405005. doi: 10.3866/PKU.WHXB202405005

    7. [7]

      C. Zhuang, W. Li, Y. Chang, S. Li, Y. Zhang, Y. Li, J. Gao, G. Chen, Z. Kang, J. Mater. Chem. A 12 (2024) 5711, https://doi.org/10.1039/D3TA07951A. doi: 10.1039/D3TA07951A

    8. [8]

      J. Zhang, G. Yu, C. Yang, S. Li, Curr. Opin. Chem. Eng. 45 (2024) 101040, https://doi.org/10.1016/j.coche.2024.101040. doi: 10.1016/j.coche.2024.101040

    9. [9]

      C. Krishnaraj, H.S. Jena, K. Leus, P. Van der Voort, Green Chem. 22 (2020) 1038, https://doi.org/10.1039/C9GC03482J. doi: 10.1039/C9GC03482J

    10. [10]

      A.J. Liang, W.B. Li, A.B. Li, H. Peng, G.F. Ma, L. Zhu, Z.Q. Lei, Y.X. Xu, Nano Res. 17 (2024) 7830, https://doi.org/10.1007/s12274-024-6779-y. doi: 10.1007/s12274-024-6779-y

    11. [11]

      R. Sun, B. Tan, Chem. Eur. J. 29 (2023) e202203077, https://doi.org/10.1002/chem.202203077. doi: 10.1002/chem.202203077

    12. [12]

      S.Y. Yu, J. Mahmood, H.J. Noh, J.M. Seo, S.M. Jung, S.H. Shin, Y.K. Im, I.Y. Jeon, J.B. Baek, Angew. Chem. Int. Ed. 57 (2018) 8438, https://doi.org/10.1002/anie.201801128. doi: 10.1002/anie.201801128

    13. [13]

      T. Sun, Y. Liang, W. Luo, L. Zhang, X. Cao, Y. Xu, Angew. Chem. Int. Ed. 61 (2022) e202203327, https://doi.org/10.1002/anie.202203327. doi: 10.1002/anie.202203327

    14. [14]

      Z. Yang, H. Chen, S. Wang, W. Guo, T. Wang, X. Suo, D.-E. Jiang, X. Zhu, I. Popovs, S. Dai, J. Am. Chem. Soc. 142 (2020) 6856, https://doi.org/10.1021/jacs.0c00365. doi: 10.1021/jacs.0c00365

    15. [15]

      C. Zhao, Z. Li, X. Wu, H. Su, F.-Q. Bai, X. Ran, L. Yang, W. Fang, X. Yang, Small 20 (2024) 2400541, https://doi.org/10.1002/smll.202400541. doi: 10.1002/smll.202400541

    16. [16]

      Z. Li, T. Li, J. Miao, C. Zhao, Y. Jing, F. Han, K. Zhang, X. Yang, Sci. China Mater. 66 (2023) 2290, https://doi.org/10.1007/s40843-022-2394-6. doi: 10.1007/s40843-022-2394-6

    17. [17]

      T. Sun, Y. Liang, Y. Xu, Angew. Chem. Int. Ed. 61 (2022) e202113926, https://doi.org/10.1002/anie.202113926. doi: 10.1002/anie.202113926

    18. [18]

      C.X. Wang, P. Lyu, Z. Chen, Y.X. Xu, J. Am. Chem. Soc. 145 (2023) 12745, https://doi.org/10.1021/jacs.3c02874. doi: 10.1021/jacs.3c02874

    19. [19]

      Z.-A. Lan, M. Wu, Z. Fang, Y. Zhang, X. Chen, G. Zhang, X. Wang, Angew. Chem. Int. Ed. 61 (2022) e202201482, https://doi.org/10.1002/anie.202201482. doi: 10.1002/anie.202201482

    20. [20]

      S.Q. Zhang, G. Cheng, L.P. Guo, N. Wang, B.E. Tan, S.B. Jin, Angew. Chem. Int. Ed. 59 (2020) 6007, https://doi.org/10.1002/anie.201914424. doi: 10.1002/anie.201914424

    21. [21]

      K. Huang, D. Chen, X. Zhang, R. Shen, P. Zhang, D. Xu, X. Li, Acta Phys. Chim. Sin. 40 (2024) 2407020, https://doi.org/10.3866/PKU.WHXB202407020. doi: 10.3866/PKU.WHXB202407020

    22. [22]

      C.X. Wang, H.L. Zhang, W.J. Luo, T. Sun, Y.X. Xu, Angew. Chem. Int. Ed. 60 (2021) 25381, https://doi.org/10.1002/anie.202109851. doi: 10.1002/anie.202109851

    23. [23]

      S. Li, M.-F. Wu, T. Guo, L.-L. Zheng, D. Wang, Y. Mu, Q.-J. Xing, J.-P. Zou, Appl. Catal. B Environ. 272 (2020) 118989, https://doi.org/10.1016/j.apcatb.2020.118989. doi: 10.1016/j.apcatb.2020.118989

    24. [24]

      K. Shen, L. Zhang, X. Chen, L. Liu, D. Zhang, Y. Han, J. Chen, J. Long, R. Luque, Y. Li, B. Chen, Science 359 (2018) 206, https://doi.org/10.1126/science.aao3403. doi: 10.1126/science.aao3403

    25. [25]

      H. Luo, Y.V. Kaneti, Y. Ai, Y. Wu, F. Wei, J. Fu, J. Cheng, C. Jing, B. Yuliarto, M. Eguchi, J. Na, Y. Yamauchi, S. Liu, Adv. Mater. 33 (2021) 2007318, https://doi.org/10.1002/adma.202007318. doi: 10.1002/adma.202007318

    26. [26]

      R.-R. Liang, S.-Y. Jiang, R.-H. A, X. Zhao, Chem. Soc. Rev. 49 (2020) 3920, https://doi.org/10.1039/D0CS00049C. doi: 10.1039/D0CS00049C

    27. [27]

      F. Heck, L. Grunenberg, N. Schnabel, T. Sottmann, L. Yao, B.V. Lotsch, ChemRxiv Version 1 (2024), https://doi.org/10.26434/chemrxiv-2024-wd9ft.

    28. [28]

      I.E. Khalil, P. Das, H. Küçükkeçeci, V. Dippold, J. Rabeah, W. Tahir, J. Roeser, J. Schmidt, A. Thomas, Chem Mater 36 (2024) 8330, https://doi.org/10.1021/acs.chemmater.4c01298. doi: 10.1021/acs.chemmater.4c01298

    29. [29]

      N. He, Y. Zou, C. Chen, M. Tan, Y. Zhang, X. Li, Z. Jia, J. Zhang, H. Long, H. Peng, K. Yu, B. Jiang, Z. Han, N. Liu, Y. Li, L. Ma, Nat. Commun. 15 (2024) 3896, https://doi.org/10.1038/s41467-024-48160-0. doi: 10.1038/s41467-024-48160-0

    30. [30]

      X. Yang, L. Tian, X. Zhao, H. Tang, Q. Liu, G. Li, Appl. Catal. B Environ. 244 (2019) 240, https://doi.org/10.1016/j.apcatb.2018.11.056. doi: 10.1016/j.apcatb.2018.11.056

    31. [31]

      T. Zhang, Y. Hou, V. Dzhagan, Z. Liao, G. Chai, M. Löffler, D. Olianas, A. Milani, S. Xu, M. Tommasini, D.R.T. Zahn, Z. Zheng, E. Zschech, R. Jordan, X. Feng, Nat. Commun. 9 (2018) 1140, https://doi.org/10.1038/s41467-018-03444-0. doi: 10.1038/s41467-018-03444-0

    32. [32]

      Y. Lu, Z. Li, J. Liang, X. Xu, G. Zhang, H. Min, Desalination 592 (2024) 118196, https://doi.org/10.1016/j.desal.2024.118196. doi: 10.1016/j.desal.2024.118196

    33. [33]

      Z. Shen, X. Wang, D. Fan, X. Xu, Y. Lu, J. Mater. Sci. 58 (2023) 13154, https://doi.org/10.1007/s10853-023-08849-x. doi: 10.1007/s10853-023-08849-x

    34. [34]

      J. Liu, W. Zan, K. Li, Y. Yang, F. Bu, Y. Xu, J. Am. Chem. Soc. 139 (2017) 11666, https://doi.org/10.1021/jacs.7b05025. doi: 10.1021/jacs.7b05025

    35. [35]

      K. Wu, Q. Ye, L. Wang, F. Meng, H. Dai, Appl. Clay Sci. 229 (2022) 106660, https://doi.org/10.1016/j.clay.2022.106660. doi: 10.1016/j.clay.2022.106660

    36. [36]

      S. Cao, B. Zhong, C. Bie, B. Cheng, F. Xu, Acta Phys. Chim. Sin. 40 (2024) 2307016, https://doi.org/10.3866/PKU.WHXB202307016. doi: 10.3866/PKU.WHXB202307016

    37. [37]

      L. Zhang, J. Zhang, J. Yu. H. García, Nat. Rev. Chem. 9 (2025) 328, https://doi.org/10.1038/s41570-025-00698-3. doi: 10.1038/s41570-025-00698-3

    38. [38]

      J. Zhu, S. Wageh, A.A. Al-Ghamdi, Chin. J. Catal. 49 (2023) 5, https://doi.org/10.1016/S1872-2067(23)64438-9. doi: 10.1016/S1872-2067(23)64438-9

    39. [39]

      C. Wang, C. You, K. Rong, C. Shen, F. Yang, S. Li, Acta Phys. Chim. Sin. 40 (2024) 2307045, https://doi.org/10.3866/PKU.WHXB202307045. doi: 10.3866/PKU.WHXB202307045

    40. [40]

      S. Li, C. You, K. Rong, C. Zhuang, X. Chen, B. Zhang, Adv. Powder Mater. 3 (2024) 100183, https://doi.org/10.1016/j.apmate.2024.100183. doi: 10.1016/j.apmate.2024.100183

    41. [41]

      M. Cai, Y. Liu, K. Dong, X. Chen, S. Li, Chin. J. Catal. 52 (2023) 239, https://doi.org/10.1016/S1872-2067(23)64496-1. doi: 10.1016/S1872-2067(23)64496-1

    42. [42]

      D. Kong, X. Han, J. Xie, Q. Ruan, C.D. Windle, S. Gadipelli, K. Shen, Z. Bai, Z. Guo, J. Tang, ACS Catal. 9 (2019) 7697, https://doi.org/10.1021/acscatal.9b02195. doi: 10.1021/acscatal.9b02195

    43. [43]

      J.-H. Tsai, T.-Y. Lee, H.-L. Chiang, Nanomaterials 13 (2023) 1015, https://doi.org/10.3390/nano13061015. doi: 10.3390/nano13061015

    44. [44]

      Z. Li, T. Deng, S. Ma, Z. Zhang, G. Wu, J. Wang, Q. Li, H. Xia, S.-W. Yang, X. Liu, J. Am. Chem. Soc. 145 (2023) 8364, https://doi.org/10.1021/jacs.2c11893. doi: 10.1021/jacs.2c11893

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  34
  • HTML全文浏览量:  5
文章相关
  • 发布日期:  2026-01-15
  • 收稿日期:  2025-06-24
  • 接受日期:  2025-08-04
  • 修回日期:  2025-08-02
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章