Citation: Jinhui Jiang, Jiaqi Sun, Yongyi Chen, Lei Zhang, Pengyu Dong. W18O49/Al-doped SrTiO3 S-scheme heterojunction aided by the LSPR effect for full-spectrum solar light-driven photocatalytic hydrogen evolution[J]. Acta Physico-Chimica Sinica, ;2025, 41(11): 100145. doi: 10.1016/j.actphy.2025.100145 shu

W18O49/Al-doped SrTiO3 S-scheme heterojunction aided by the LSPR effect for full-spectrum solar light-driven photocatalytic hydrogen evolution

  • Corresponding author: Pengyu Dong, dongpy11@gmail.com
  • These two authors contributed equally to this work (J.J. and J.S.).
  • Received Date: 20 June 2025
    Revised Date: 30 July 2025
    Accepted Date: 31 July 2025

    Fund Project: the National Natural Science Foundation of China 21403184the Natural Science Foundation of the Jiangsu Higher Education Institutions of China 22KJA430008

  • Developing highly efficient photocatalysts with a full-spectrum response for hydrogen production is of great significance. To achieve full-spectrum solar-light-driven photocatalysis, W18O49 works well for capturing visible and near-infrared (NIR) light due to the localized surface plasmon resonances (LSPR) effect. Nevertheless, W18O49 has very little photocatalytic hydrogen generation activity, which needs to be modified. In this work, a simple in situ solvothermal synthesis method was conducted to prepare Al-doped SrTiO3 (ASTO)/W18O49 S-scheme heterojunction. Benefiting from more powerful carrier separation, faster electron transport, and strong redox capacity, the 10% ASTO/W18O49 S-scheme heterojunction exhibits the highest full-spectrum solar-light-driven photocatalytic hydrogen rate, which is 17.5 and 27.6 times that of pure ASTO and W18O49, respectively. The LSPR effect derived from W18O49 with abundant oxygen vacancies extends the range of light absorption to the NIR region, which significantly improves its utilization efficiency of full-spectrum sunlight. Moreover, due to the LSPR effect of W18O49, it could produce plasmonic high-energy "hot electrons" and allow them to transfer to the conduction band (CB) of ASTO in the ASTO/W18O49 heterojunction, which could promote the separation and migration of photoinduced carriers and greatly increase the number of electrons containing photogenerated electrons and "hot electrons" on the CB of ASTO that can participate in photocatalytic hydrogen production reaction, exhibiting excellent photocatalytic hydrogen evolution performance compared to single-component W18O49 and ASTO.
  • 加载中
    1. [1]

      Q. Wang, K. Domen, Chem. Rev. 120 (2020) 919, https://doi.org/10.1021/acs.chemrev.9b00201.  doi: 10.1021/acs.chemrev.9b00201

    2. [2]

      Q. Wang, T. Hisatomi, Q. Jia, H. Tokudome, M. Zhong, C. Wang, Z. Pan, T. Takata, M. Nakabayashi, N. Shibata, et al. Nat. Mater. 15 (2016) 611, https://doi.org/10.1038/nmat4589.  doi: 10.1038/nmat4589

    3. [3]

      L. Mu, Y. Zhao, A. Li, S. Wang, Z. Wang, J. Yang, Y. Wang, T. Liu, R. Chen, J. Zhu, et al., Energy Environ. Sci. 9 (2016) 2463, https://doi.org/10.1039/C6EE00526H.  doi: 10.1039/C6EE00526H

    4. [4]

      Y. Zhang, X. F. Wu, Z. H. Wang, Y. Peng, Y. W. Liu, S. Yang, C. H. Sun, X. X. Xu, X. Zhang, J. Kang, et al., J. Am. Chem. Soc. 146 (2024) 6618, https://doi.org/10.1021/jacs.3c12062.  doi: 10.1021/jacs.3c12062

    5. [5]

      C. Wang, Q. Jia, X. Zhang, X. Chen, Y. Wang, G. Yu, D. Duan, Small 21 (2025) 2407963, https://doi.org/10.1002/smll.202407963.  doi: 10.1002/smll.202407963

    6. [6]

      Y. L. Qin, F. Fang, Z. Z. Xie, H. W. Lin, K. Zhang, X. Yu, K. Chang, ACS Catal. 11 (2021) 11429, https://doi.org/10.1021/acscatal.1c02874.  doi: 10.1021/acscatal.1c02874

    7. [7]

      Y. Goto, T. Hisatomi, Q. Wang, T. Higashi, K. Ishikiriyama, T. Maeda, Y. Sakata, S. Okunaka, H. Tokudome, M. Katayama, Joule 2 (2018) 509, https://doi.org/10.1016/j.joule.2017.12.009.  doi: 10.1016/j.joule.2017.12.009

    8. [8]

      T. Takata, J. Z. Jiang, Y. Sakata, M. Nakabayashi, N. Shibata, V. Nandal, K. Seki, T. Hisatomi, K. Domen, Nature 581 (2020) 411, https://doi.org/10.1038/s41586-020-2278-9.  doi: 10.1038/s41586-020-2278-9

    9. [9]

      R. H. Li, T. Takata, B. B. Zhang, C. Feng, Q. B. Wu, C. H. Cui, Z. M. Zhang, K. Domen, Y. B. Li, Angew. Chem. Int. Ed. 62 (2023) e202313537, https://doi.org/10.1002/anie.202313537.  doi: 10.1002/anie.202313537

    10. [10]

      Z. Wei, J. Yan, W. Guo, W. Shangguan, Chin. J. Catal. 48 (2023) 279, https://doi.org/10.1016/S1872-2067(23)64414-6.  doi: 10.1016/S1872-2067(23)64414-6

    11. [11]

      G. Dong, X. Huang, Y. Bi, Angew. Chem. Int. Ed. 61 (2022) e202204271, https://doi.org/10.1002/anie.202204271.  doi: 10.1002/anie.202204271

    12. [12]

      N. Zhang, A. Jalil, D. Wu, S. Chen, Y. Liu, C. Gao, W. Ye, Z. Qi, H. Ju, C. Wang, et al. J. Am. Chem. Soc. 140 (2018) 9434, https://doi.org/10.1021/jacs.8b02076.  doi: 10.1021/jacs.8b02076

    13. [13]

      P. Bhavani, D. P. Kumar, M. Hussain, K.-J. Jeon, Y.-K. Park, Catal. Rev. 65 (2023) 1521, https://doi.org/10.1080/01614940.2022.2038472.  doi: 10.1080/01614940.2022.2038472

    14. [14]

      Z. Zhang, J. Huang, Y. Fang, M. Zhang, K. Liu, B. Dong, Adv. Mater. 29 (2017) 1606688, https://doi.org/10.1002/adma.201606688.  doi: 10.1002/adma.201606688

    15. [15]

      J. Yan, T. Wang, G. Wu, W. Dai, N. Guan, L. Li, J. Gong, Adv. Mater. 27 (2015) 1580, https://doi.org/10.1002/adma.201404792.  doi: 10.1002/adma.201404792

    16. [16]

      Y. Liu, Z. Zhang, Y. Fang, B. Liu, J. Huang, F. Miao, Y. Bao, B. Dong, Appl. Catal. B: Environ. 252 (2019) 164, https://doi.org/10.1016/j.apcatb.2019.04.035.  doi: 10.1016/j.apcatb.2019.04.035

    17. [17]

      K. Meng, J. Zhang, B. Cheng, X. Ren, Z. Xia, F. Xu, L. Zhang, J. Yu, Adv. Mater. 36 (2024) 2406460, https://doi.org/10.1002/adma.202406460.  doi: 10.1002/adma.202406460

    18. [18]

      M. Sayed, J. Yu, G. Liu, M. Jaroniec, Chem. Rev. 122 (2022) 10484, https://doi.org/10.1021/acs.chemrev.1c00473.  doi: 10.1021/acs.chemrev.1c00473

    19. [19]

      H. He, Z. Wang, K. Dai, S. Li, J. Zhang, Chin. J. Catal. 48 (2023) 267, https://doi.org/10.1016/S1872-2067(23)64420-1.  doi: 10.1016/S1872-2067(23)64420-1

    20. [20]

      Q. Liu, X. He, J. Peng, X. Yu, H. Tang, J. Zhang, Chin. J. Catal. 42 (2021) 1478, https://doi.org/10.1016/S1872-2067(20)63753-6.  doi: 10.1016/S1872-2067(20)63753-6

    21. [21]

      B. Zhu, J. Sun, Y. Zhao, L. Zhang, J. Yu, Adv. Mater. 36 (2024) 2310600, https://doi.org/10.1002/adma.202310600.  doi: 10.1002/adma.202310600

    22. [22]

      L. Zhang, J. Zhang, J. Yu, H. García, Nat. Rev. Chem. 9 (2025) 328, https://doi.org/10.1038/s41570-025-00698-3.  doi: 10.1038/s41570-025-00698-3

    23. [23]

      S. Li, Y. Wang, J. Wang, C. H. Kirk, H. Wang, J. Sun, Y. Liu, B. Liu, T. Zhang, S. Jiang, et al., Chem. Eng. J. 466 (2023) 143184, https://doi.org/10.1016/j.cej.2023.143184.  doi: 10.1016/j.cej.2023.143184

    24. [24]

      J. Chen, P. Bai, S. Yuan, Y. He, Z. Niu, Y. Zhao, Y. Li, Chin. J. Catal. 67 (2024) 124, https://doi.org/10.1016/S1872-2067(24)60149-X.  doi: 10.1016/S1872-2067(24)60149-X

    25. [25]

      J. Zhang, W. Yu, Y. Zhang, J. Zhu, Int. J. Hydrogen Energy 85 (2024) 165, https://doi.org/10.1016/j.ijhydene.2024.08.266.  doi: 10.1016/j.ijhydene.2024.08.266

    26. [26]

      Y. Huang, K. Dai, J. Zhang, G. Dawson, Chin. J. Catal. 43 (2022) 2539, https://doi.org/10.1016/S1872-2067(21)64024-X.  doi: 10.1016/S1872-2067(21)64024-X

    27. [27]

      Q. Liu, X. He, J. Tao, H. Tang, Z.-Q. Liu, ChemNanoMat 7 (2021) 44, https://doi.org/10.1002/cnma.202000536.  doi: 10.1002/cnma.202000536

    28. [28]

      H.-Y. Liu, C.-G. Niu, H. Guo, D.-W. Huang, C. Liang, Y.-Y. Yang, N. Tang, X.-G. Zhang, J. Colloid Interf. Sci. 610 (2022) 953, https://doi.org/10.1016/j.jcis.2021.11.141.  doi: 10.1016/j.jcis.2021.11.141

    29. [29]

      W. Xue, H. Sun, X. Hu, X. Bai, J. Fan, E. Liu, Chin. J. Catal. 43 (2022) 234, https://doi.org/10.1016/S1872-2067(20)63783-4.  doi: 10.1016/S1872-2067(20)63783-4

    30. [30]

      Y. Yang, M. Qiu, Q. Qi, F. Chen, J. Chen, Y. Liu, L. Yang, ACS Appl. Nano Mater. 3 (2020) 10296, https://doi.org/10.1021/acsanm.0c02210.  doi: 10.1021/acsanm.0c02210

    31. [31]

      D. Saadetnejad, R. Yıldırım, Int. J. Hydrogen Energy 43 (2018) 1116, https://doi.org/10.1016/j.ijhydene.2017.10.154.  doi: 10.1016/j.ijhydene.2017.10.154

    32. [32]

      K. Gao, K. Li, J. Pan, C. Wang, L. Zhang, W. Wang, X. Xi, P. Dong, Appl. Surf. Sci. 644 (2024) 158794, https://doi.org/10.1016/j.apsusc.2023.158794.  doi: 10.1016/j.apsusc.2023.158794

    33. [33]

      Y. Xia, Z. He, J. Su, Y. Liu, B. Tang, Nanoscale Res. Lett. 13 (2018) 148, https://doi.org/10.1186/s11671-018-2558-6.  doi: 10.1186/s11671-018-2558-6

    34. [34]

      M. Duan, C. Hu, H. Li, Y. Chen, R. Chen, W. Gong, Z. Lu, N. Zhang, R. Long, L. Song, et al., JACS Au 2 (2022) 1160, https://doi.org/10.1021/jacsau.2c00146.  doi: 10.1021/jacsau.2c00146

    35. [35]

      Y. Lu, X. Jia, Z. Ma, Y. Li, S. Yue, X. Liu, J. Zhang, Adv. Funct. Mater. 32 (2022) 2203638, https://doi.org/10.1002/adfm.202203638.  doi: 10.1002/adfm.202203638

    36. [36]

      X. Xiao, Y. Gao, L. Zhang, J. Zhang, Q. Zhang, Q. Li, H. Bao, J. Zhou, S. Miao, N. Chen, et al., Adv. Mater. 32 (2020) 2003082, https://doi.org/10.1002/adma.202003082.  doi: 10.1002/adma.202003082

    37. [37]

      P. Dong, K. Gao, L. Zhang, H. Huan, M.-H. Xie, X.-L. Yang, J. Zhang, Appl. Catal. B: Environ. Energy 357 (2024) 124297, https://doi.org/10.1016/j.apcatb.2024.124297.  doi: 10.1016/j.apcatb.2024.124297

    38. [38]

      J. Liu, Y. Liu, N. Liu, Y. Han, X. Zhang, H. Huang, Y. Lifshitz, S.-T. Lee, J. Zhong, Z. Kang, Science 347 (2015) 970, https://doi.org/10.1126/science.aaa5760.  doi: 10.1126/science.aaa5760

    39. [39]

      P. Dong, Y. Wang, A. Zhang, T. Cheng, X. Xi, J. Zhang, ACS Catal. 11 (2021) 13266, https://doi.org/10.1021/acscatal.1c03441.  doi: 10.1021/acscatal.1c03441

    40. [40]

      Y. Hou, X. Du, S. Scheiner, D. P. McMeekin, Z. Wang, N. Li, M. S. Killian, H. Chen, M. Richter, I. Levchuk, et al., Science. 358 (2017) 1192, https://doi.org/10.1126/science.aao5561.  doi: 10.1126/science.aao5561

    41. [41]

      S. C. Wang, P. Chen, Y. Bai, J. H. Yun, G. Liu, L. Z. Wang, Adv. Mater. 30 (2018) 1800486, https://doi.org/10.1002/adma.201800486.  doi: 10.1002/adma.201800486

    42. [42]

      J. Qiu, K. Meng, Y. Zhang, B. Cheng, J. Zhang, L. Wang, J. Yu, Adv. Mater. 36 (2024) 2400288, https://doi.org/10.1002/adma.202400288.  doi: 10.1002/adma.202400288

    43. [43]

      H. Guo, J. Jiang, J. Liang, C. Wen, X. Xi, P. Dong, Chem. Eng. J. 504 (2025) 158649, https://doi.org/10.1016/j.cej.2024.158649.  doi: 10.1016/j.cej.2024.158649

    44. [44]

      Y. Zhou, P. Dong, J. Liu, B. Zhang, B. Zhang, X. Xi, J. Zhang, Adv. Funct. Mater. (2025) 2500733, https://doi.org/10.1002/adfm.202500733.  doi: 10.1002/adfm.202500733

    45. [45]

      S.-D. Wang, L.-Y. Huang, L.-J. Xue, Q. Kang, L.-L. Wen, K.-L. Lv, Appl. Catal. B: Environ. Energy 358 (2024) 124366, https://doi.org/10.1016/j.apcatb.2024.124366.  doi: 10.1016/j.apcatb.2024.124366

    46. [46]

      J. Bai, R. Shen, Z. Jiang, P. Zhang, Y. Li, X. Li, Chin. J. Catal. 43 (2022) 359, https://doi.org/10.1016/S1872-2067(21)63883-4.  doi: 10.1016/S1872-2067(21)63883-4

    47. [47]

      Y. Gu, Y. Li, H. Feng, Y. Han, Z. Li, Nano Res. 17 (2024) 4961, https://doi.org/10.1007/s12274-024-6501-0.  doi: 10.1007/s12274-024-6501-0

    48. [48]

      M. Gu, J. Zhang, I. V. Kurganskii, A. S. Poryvaev, M. V. Fedin, B. Cheng, J. Yu, L. Zhang, Adv. Mater. 37 (2025) 2414803, https://doi.org/10.1002/adma.202414803.  doi: 10.1002/adma.202414803

    49. [49]

      J. Cai, C. Cheng, B. Liu, J. Zhang, C. Jiang, B. Cheng, Acta Phys. Chim. Sin. 41 (2025) 100084, https://doi.org/10.1016/j.actphy.2025.100084.  doi: 10.1016/j.actphy.2025.100084

  • 加载中
    1. [1]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    2. [2]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    3. [3]

      Kexin DongChuqi ShenRuyu YanYanping LiuChunqiang ZhuangShijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-0. doi: 10.3866/PKU.WHXB202310013

    4. [4]

      Jiaqi YangXuqiang HaoJiejie JingYuqiang HaoZhiliang Jin . 3D/2D ReSe2/ZnCdS S-scheme photocatalyst with efficient interfacial charge separation for optimized hydrogen production. Acta Physico-Chimica Sinica, 2025, 41(10): 100131-0. doi: 10.1016/j.actphy.2025.100131

    5. [5]

      Weikang WangYadong WuJianjun ZhangKai MengJinhe LiLele WangQinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093

    6. [6]

      Shuang CaoBo ZhongChuanbiao BieBei ChengFeiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016

    7. [7]

      Yang XiaKangyan ZhangHeng YangLijuan ShiQun Yi . Improving Photocatalytic H2O2 Production over iCOF/Bi2O3 S-Scheme Heterojunction in Pure Water via Dual Channel Pathways. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-0. doi: 10.3866/PKU.WHXB202407012

    8. [8]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    9. [9]

      Ziyang LongQuanzheng LiChengliang ZhangHaifeng Shi . BiVO4/WO3-x S-scheme heterojunctions with amplified internal electric field for boosting photothermal-catalytic activity. Acta Physico-Chimica Sinica, 2025, 41(10): 100122-0. doi: 10.1016/j.actphy.2025.100122

    10. [10]

      Bowen LiuJianjun ZhangHan LiBei ChengChuanbiao Bie . MOF-derived ZnO/PANI S-scheme heterojunction for efficient photocatalytic phenol mineralization coupled with H2O2 generation. Acta Physico-Chimica Sinica, 2025, 41(10): 100121-0. doi: 10.1016/j.actphy.2025.100121

    11. [11]

      Kaihui HuangDejun ChenXin ZhangRongchen ShenPeng ZhangDifa XuXin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-0. doi: 10.3866/PKU.WHXB202407020

    12. [12]

      Jinwang WuQijing XieChengliang ZhangHaifeng Shi . Rationally Designed ZnFe1.2Co0.8O4/BiVO4 S-Scheme Heterojunction with Spin-Polarization for the Elimination of Antibiotic. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-0. doi: 10.1016/j.actphy.2025.100050

    13. [13]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    14. [14]

      You WuChang ChengKezhen QiBei ChengJianjun ZhangJiaguo YuLiuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027

    15. [15]

      Qishen WangChangzhao ChenMengqing LiLingmin WuKai Dai . Lignin derived carbon quantum dots and oxygen vacancies coregulated S-scheme LCQDs/Bi2WO6 heterojunction for photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(11): 100147-0. doi: 10.1016/j.actphy.2025.100147

    16. [16]

      Peng LiYuanying CuiZhongliao WangGraham DawsonChunfeng ShaoKai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-0. doi: 10.1016/j.actphy.2025.100065

    17. [17]

      Changjun YouChunchun WangMingjie CaiYanping LiuBaikang ZhuShijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014

    18. [18]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    19. [19]

      Yi YangXin ZhouMiaoli GuBei ChengZhen WuJianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064

    20. [20]

      Xinyu MiaoHao YangJie HeJing WangZhiliang Jin . Adjusting the electronic structure of Keggin-type polyoxometalates to construct S-scheme heterojunction for photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-0. doi: 10.1016/j.actphy.2025.100051

Metrics
  • PDF Downloads(0)
  • Abstract views(16)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return