Citation: Fan Fan, Hao Xiu, Yuting Wang, Yongpeng Cui, Yajun Wang. Construction of NH2-MIL-125/Na-doped g-C3N4 composite S-scheme heterojunction and its performance in photocatalytic hydrogen peroxide production[J]. Acta Physico-Chimica Sinica, ;2026, 42(2): 100143. doi: 10.1016/j.actphy.2025.100143 shu

Construction of NH2-MIL-125/Na-doped g-C3N4 composite S-scheme heterojunction and its performance in photocatalytic hydrogen peroxide production

  • Corresponding author: Yajun Wang, wangyajun@cup.edu.cn
  • Received Date: 17 June 2025
    Revised Date: 27 July 2025
    Accepted Date: 29 July 2025

  • Heterogeneous structure building has proven to be an effective strategy for achieving efficient charge separation and improving photocatalytic performance. In this study, based on the synergistic optimization strategy of elemental doping and heterostructure construction, an S-scheme heterojunction photocatalyst (x% NMT/Na-CN) composed of titanium-based metal-organic framework (NH2-MIL-125, abbreviated as NMT) and sodium-doped carbon nitride (Na-CN) was constructed by a simple impregnation method. The energy band structure of the catalysts was modulated by intra-layer doping of Na, which introduced nitrogen defects and improved the separation efficiency of photogenerated charges. In addition, the composite of Na-CN and NMT formed an S-scheme heterojunction, which further improved the photogenerated charge separation efficiency while retaining the strong redox ability of the composite catalyst. Owing to the synergistic effect of Na doping and NMT composite, the photocatalytic H2O2 production rate of 15% NMT/Na-CN in isopropanol solution was as high as 2474.6 μmol g−1 h−1, which was 38 times higher than that of unmodified bulk carbon nitride. This work offers a novel approach to realize the efficient production of H2O2 from carbon nitride-based photocatalysts based on the doping-heterojunction synergistic optimization strategy.
  • 加载中
    1. [1]

      Y. Kondo, Y. Kuwahara, K. Mori, H. Yamashita, Chem 8 (2022) 2924, https://doi.org/10.1016/j.chempr.2022.10.007.  doi: 10.1016/j.chempr.2022.10.007

    2. [2]

      W. N. Cai, Y. Tanaka, X. Zhu, T. Ohno, Nano Res. 17 (2024) 7027, https://doi.org/10.1007/s12274-024-6736-9.  doi: 10.1007/s12274-024-6736-9

    3. [3]

      X. S. Zhao, Y. Y. You, S. B. Huang, Y. X. Wu, Y. Y. Ma, G. Zhang, Z. H. Zhang, Appl. Catal. B Environ. 278 (2020) 119251, https://doi.org/10.1016/j.apcatb.2020.119251.  doi: 10.1016/j.apcatb.2020.119251

    4. [4]

      H. R. Liang, Y. J. Tian, B. F. Zhang, L. Wang, G. Z. Liu, Green Chem. Eng. 2 (2021) 207, https://doi.org/10.1016/j.gce.2020.09.012.  doi: 10.1016/j.gce.2020.09.012

    5. [5]

      B. S. Jiang, D. Y. Chen, N. J. Li, Q. F. Xu, H. Li, J. M. Lu, Chem. Eng. J. 487 (2024) 150609, https://doi.org/10.1016/j.cej.2024.150609.  doi: 10.1016/j.cej.2024.150609

    6. [6]

      X. Zhou, S. Y. Yang, X. J. Wang, Z. Wu, Y. T. Huo, J. J. Zhang, J. Mater. Sci. Technol 234 (2025) 60, https://doi.org/10.1016/j.jmst.2025.02.027.  doi: 10.1016/j.jmst.2025.02.027

    7. [7]

      G. Q. Chen, Z. X. Zheng, W. Zhong, G. H. Wang, X. H. Wu, Acta Phys. -Chim. Sin. 40 (2024) 2406021, https://doi.org/10.3866/PKU.WHXB202406021.  doi: 10.3866/PKU.WHXB202406021

    8. [8]

      S. H. Lu, L. L. Shen, X. Z. Li, B. Z. Yu, J. F. Ding, P. P. Gao, H. J. Zhang, J. Cleaner Prod. 378 (2022) 134589, https://doi.org/10.1016/j.jclepro.2022.134589.  doi: 10.1016/j.jclepro.2022.134589

    9. [9]

      W. J. Pu, Y. Q. Zhou, L. F. Yang, H. F. Gong, Y. H. Li, Q. Y. Yang, D. Q. Zhang, Nano Res. 17 (2024) 7840, https://doi.org/10.1007/s12274-024-6818-8.  doi: 10.1007/s12274-024-6818-8

    10. [10]

      F. Fan, H. Xiu, H. T. Ma, Y. T. Wang, Y. P. Cui, W. Q. Yao, Y. J. Wang, J. Mater. Sci. Technol 242 (2026) 128, https://doi.org/10.1016/j.jmst.2025.02.091.  doi: 10.1016/j.jmst.2025.02.091

    11. [11]

      W. Liu, P. F. Wang, J. Chen, X. Gao, H. Che, B. Liu, Y. H. Ao, Adv. Funct. Mater. 32 (2022) 2205119, https://doi.org/10.1002/adfm.202205119.  doi: 10.1002/adfm.202205119

    12. [12]

      Y. Yang, X. Zhou, M. L. Gu, B. Cheng, Z. Wu, J. J. Zhang, Acta Phys. Chim. Sin. 41 (2025) 100064, https://doi.org/10.1016/j.actphy.2025.100064.  doi: 10.1016/j.actphy.2025.100064

    13. [13]

      M. Sayed, K. Z. Qi, X. H. Wu, L. Y. Zhang, H. García, J. G. Yu, Chem. Soc. Rev. 54 (2025) 4874, https://doi.org/10.1039/d4cs01091d.  doi: 10.1039/d4cs01091d

    14. [14]

      X. H. Wu, L. H. Tan, G. Q. Chen, J. L Kang, G. H. Wang, Sci. China Mater. 67 (2024) 444, https://doi.org/10.1007/s40843-023-2755-2.  doi: 10.1007/s40843-023-2755-2

    15. [15]

      R. Kavitha, C. Manjunatha, J. G. Yu, S. G. Kumar, EnergyChem 7 (2025) 100159, https://doi.org/10.1016/j.enchem.2025.100159.  doi: 10.1016/j.enchem.2025.100159

    16. [16]

      L. Y. Zhang, J. J. Zhang, J. G. Yu, H. García, Nat. Rev. Chem. 9 (2025) 328, https://doi.org/10.1038/s41570-025-00698-3.  doi: 10.1038/s41570-025-00698-3

    17. [17]

      X. Z. Lu, Z. W. Chen, Z. F. Hu, F. Y. Liu, Z. H. Zuo, Z. X. Gao, H. G. Zhang, Y. C. Zhu, R. Z. Liu, Y. G. Yin, et al., Adv. Energy Mater. 14 (2024) 2401873, https://doi.org/10.1002/aenm.202401873.  doi: 10.1002/aenm.202401873

    18. [18]

      L. Guo, Y. You, H. W. Huang, N. Tian, T. Y. Ma, Y. H. Zhang, J. Colloid Interface Sci. 568 (2020) 139, https://doi.org/10.1016/j.jcis.2020.02.025.  doi: 10.1016/j.jcis.2020.02.025

    19. [19]

      W. J. Wang, D. Chen, F. Y. Li, X. Xiao, Q. Xu, Chem 10 (2024) 86, https://doi.org/10.1016/j.chempr.2023.09.009.  doi: 10.1016/j.chempr.2023.09.009

    20. [20]

      C. Z. Zhu, Q. H. Tian, S. P. Wan, H. T. Xu, J. G. Hu, L. Q. Jing, Chem. Eng. J. 497 (2024) 154689, https://doi.org/10.1016/j.cej.2024.154689.  doi: 10.1016/j.cej.2024.154689

    21. [21]

      S. Y. Chen, G. T. Hai, H. Y. Gao, X. Chen, A. Li, X. W. Zhang, W. J. Dong, Chem. Eng. J. 406 (2021) 126886, https://doi.org/10.1016/j.cej.2020.126886.  doi: 10.1016/j.cej.2020.126886

    22. [22]

      J. H. Shi, K. K. Pu, T. Zhao, J. T. Shi, N. Zheng, L. J. Nie, K. K. Xue, Y. H. Gao, J. Environ. Sci. 152 (2025) 637, https://doi.org/10.1016/j.jes.2024.05.034.  doi: 10.1016/j.jes.2024.05.034

    23. [23]

      F. Y. Xing, C. Z. Wang, S. Q. Liu, S. H. Jin, H. B. Jin, J. B. Li, ACS Appl. Mater. Interfaces 15 (2023) 11731, https://doi.org/10.1021/acsami.2c21046.  doi: 10.1021/acsami.2c21046

    24. [24]

      Y. T. Wang, M. X. Wang, X. Y. Zhang, X. R. Pan, Y. P. Cui, D. Q. Liu, Y. J. Wang, W. Q. Yao, J. Catal. 440 (2024) 115807, https://doi.org/10.1016/j.jcat.2024.115807.  doi: 10.1016/j.jcat.2024.115807

    25. [25]

      A. M. Sadanandan, J. H. Yang, V. Devtade, G. Singh, N. Panangattu Dharmarajan, M. Fawaz, J. Mee Lee, E. Tavakkoli, C. H. Jeon, P. Kumar, et al., Prog. Mater Sci. 142 (2024) 101242, https://doi.org/10.1016/j.pmatsci.2024.101242.  doi: 10.1016/j.pmatsci.2024.101242

    26. [26]

      H. Yao, R. F, Zhang, Y. Wen, Y. Liu, G. Yu, Z. H. Xie, J. Mater Sci. Technol. 182 (2024) 67, https://doi.org/10.1016/j.jmst.2023.09.038.  doi: 10.1016/j.jmst.2023.09.038

    27. [27]

      D. M. Zhao, C. L. Dong, B. Wang, C. Chen, Y. C. Huang, Z. D. Diao, S. Z. Li, L. J. Guo, S. H. Shen, Adv. Mater. 31 (2019) 1903545, https://doi.org/10.1002/adma.201903545.  doi: 10.1002/adma.201903545

    28. [28]

      Y. J. Wang, M. M. Liu, F. Fan, G. Li, J. X. Duan, Y. M. Li, G. Y. Jiang, W. Q. Yao, Appl. Catal. B Environ. 318 (2022) 121829, https://doi.org/10.1016/j.apcatb.2022.121829.  doi: 10.1016/j.apcatb.2022.121829

    29. [29]

      J. Wang, C. C. Chen, Z. H. Zhao, C. Cheng, Z. H. Tang, Z. Du, Y. F. Wang, L. Pan, J. Alloys Compd. 922 (2022) 166288, https://doi.org/10.1016/j.jallcom.2022.166288.  doi: 10.1016/j.jallcom.2022.166288

    30. [30]

      Z. Y. Feng, H. F. Fu, Z. H. Wang, F. Wang, Y. W. Wei, C. Zhao, C. C. Wang, Sep. Purif. Technol. 351 (2024) 128102, https://doi.org/10.1016/j.seppur.2024.128102.  doi: 10.1016/j.seppur.2024.128102

    31. [31]

      F. T. He, Y. M. Lu, Y. Z. Wu, S. L. Wang, Y. Zhang, P. Dong, Y. Q. Wang, C. C. Zhao, S. J. Wang, J. Q. Zhang, et al., Adv. Mater. 36 (2024) 2307490, https://doi.org/10.1002/adma.202307490.  doi: 10.1002/adma.202307490

    32. [32]

      X. Ma, H. F. Cheng, Sep. Purif. Technol. 330 (2024) 125260, https://doi.org/10.1016/j.seppur.2023.125260.  doi: 10.1016/j.seppur.2023.125260

    33. [33]

      D. Y. Wang, S. L. Pu, Y. M. Chen, K. Lei, Y. J. Duan, L. J. Mao, X. H. Zeng, X. Luo, Y. T. Zhang, Y. Q. Dong, et al., Sci. China Chem. 68 (2025) 192, https://doi.org/10.1007/s11426-024-2200-1.  doi: 10.1007/s11426-024-2200-1

    34. [34]

      C. W. Ma, Q. X. Xiao, Y. F. Wang, Y. D. Zhou, Z. H. Yang, H. H. Che, J. Colloid Interface Sci. 678 (2025) 180, https://doi.org/10.1016/j.jcis.2024.09.118.  doi: 10.1016/j.jcis.2024.09.118

    35. [35]

      Y. Shang, M. Zheng, H. J. Liu, X. L. Jin, C. S. Yan, L. Song, Z. M. Qi, F. Y. Jing, P. Song, X. Zhou, et al., ACS Catal. 13 (2023) 14530, https://doi.org/10.1021/acscatal.3c03628.  doi: 10.1021/acscatal.3c03628

    36. [36]

      S. H. Wang, Y. Z. Xia, G. Y. Yan, M. X. Chen, X. X. Wang, L. Wu, R. W. Liang, Appl. Catal. B Environ. 317 (2022) 121798, https://doi.org/10.1016/j.apcatb.2022.121798.  doi: 10.1016/j.apcatb.2022.121798

    37. [37]

      Y. Xu, W. D. Hou, K. Huang, H. Z. Guo, Z. M. Wang, C. Lian, J. Y. Zhang, D. L. Wu, Z. D. Lei, Z. Liu, et al., Adv. Sci. 11 (2024) 2403607, https://doi.org/10.1002/advs.202403607.  doi: 10.1002/advs.202403607

    38. [38]

      T. Y. Gao, D. G. Zhao, S. S. Yuan, M. Zheng, X. J. Pu, L. Tang, Z. D. Lei, Carbon Energy 6 (2024) e596, https://doi.org/10.1002/cey2.596.  doi: 10.1002/cey2.596

    39. [39]

      M. Jourshabani, M. R. Asrami, B. K. Lee, Appl. Catal. B Environ. 302 (2022) 120839, https://doi.org/10.1016/j.apcatb.2021.120839.  doi: 10.1016/j.apcatb.2021.120839

    40. [40]

      H. W. Liang, X. Zhuang, S. Brüller, X. Feng, K. Müllen, Nat. Commun. 5 (2014) 4973, https://doi.org/10.1038/ncomms5973.  doi: 10.1038/ncomms5973

    41. [41]

      F. Huang, M. Humayun, G. Li, T. T. Fan, W. L. Wang, Y. L. Cao, A. Nikiforov, C. D. Wang, J. Wang, Rare Met. 43 (2024) 3161, https://doi.org/10.1007/s12598-024-02688-8.  doi: 10.1007/s12598-024-02688-8

    42. [42]

      K. Z. Lai, Y. X. Sun, N. Li, Y. Q. Gao, H. Li, L. Ge, T. Y. Ma, Adv. Funct. Mater. 34 (2024) 2409031, https://doi.org/10.1002/adfm.202409031.  doi: 10.1002/adfm.202409031

    43. [43]

      Y. X. Li, H. Xu, S. X. Ouyang, D. Lu, X. Wang, D. F. Wang, J. H. Ye, J. Mater. Chem. A 4 (2016) 2943, https://doi.org/10.1039/C5TA05128B.  doi: 10.1039/C5TA05128B

    44. [44]

      M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, M. C. Payne, J. Phys. Condens. Mat. 14 (2002) 2717, https://doi.org/10.1088/0953-8984/14/11/301  doi: 10.1088/0953-8984/14/11/301

    45. [45]

      S. D. Wang, L. Y. Huang, L. J. Xue, Q. Kang, L. L. Wen, K. L. Lv, Appl. Catal. B Environ. 358 (2024) 124366, https://doi.org/10.1016/j.apcatb.2024.124366.  doi: 10.1016/j.apcatb.2024.124366

    46. [46]

      X. L. Wang, H. H. Zhang, Y. M. Huang, L. L. Gao, Y. Zhang, J. Y. Meng, Y. F. Liao, B. N. Zong, W. L. Dai, H. X. Li, Adv. Funct. Mater. (2025) 2421847, https://doi.org/10.1002/adfm.202421847.  doi: 10.1002/adfm.202421847

    47. [47]

      J. T. Yan, J. J. Zhang, J. Mater. Sci. Technol 193 (2024) 18, https://doi.org/10.1016/j.jmst.2023.12.054.  doi: 10.1016/j.jmst.2023.12.054

    48. [48]

      C. Cheng, J. J. Zhang, B. C. Zhu, G. J. Liang, L. Y. Zhang, J. G. Yu, Angew. Chem. Int. Ed. 62 (2023) e202218688, https://doi.org/10.1002/anie.202218688.  doi: 10.1002/anie.202218688

    49. [49]

      Y. Wu, C. Cheng, K. Z. Qi, B. Cheng, J. J. Zhang, J. G. Yu, L. Y. Zhang, Acta Phys. Chim. Sin. 40 (2024) 2406027, https://doi.org/10.3866/PKU.WHXB202406027.  doi: 10.3866/PKU.WHXB202406027

    50. [50]

      H. Zhang, L. H. Jia, P. Wu, R. J. Xu, J. He, W. Jiang, Appl. Surf. Sci. 527 (2020) 146584, https://doi.org/10.1016/j.apsusc.2020.146584.  doi: 10.1016/j.apsusc.2020.146584

    51. [51]

      E. Hu, Q. Chen, Q. Gao, X. F. Fan, X. J. Luo, Y. Wei, G. Wu, H. B. Deng, S. C. Xu, P. Wang, et al., Adv. Funct. Mater. 34 (2024) 2312215, https://doi.org/10.1002/adfm.202312215.  doi: 10.1002/adfm.202312215

    52. [52]

      H. Z. Guo, L. Zhou, K. Huang, Y. Q. Li, W. D. Hou, H. G. Liao, C. Lian, S. W. Yang, D. L. Wu, Z. D. Lei, et al., Adv. Funct. Mater. 34 (2024) 2402650, https://doi.org/10.1002/adfm.202402650.  doi: 10.1002/adfm.202402650

    53. [53]

      W. Y. Yu, R. Xing, N. Tian, Y. H. Wang, N. Zhang, Y. H. Zhang, Y. X. Deng, H. W. Huang, J. Mater. Chem. A 13 (2025) 3791, https://doi.org/10.1039/D4TA06956K.  doi: 10.1039/D4TA06956K

    54. [54]

      S. S. Shen, X. B. Li, Y. T. Zhou, L. Han, Y. Xie, F. Deng, J. T. Huang, Z. Chen, Z. J. Feng, J. L. Xu, et al., J. Mater. Sci. Technol. 155 (2023) 148, https://doi.org/10.1016/j.jmst.2023.03.006.  doi: 10.1016/j.jmst.2023.03.006

    55. [55]

      L. Z. Cao, C. Wang, H. Wang, X. M. Xu, X. Tao, H. Q. Tan, G. S. Zhu, Angew. Chem. Int. Ed. 63 (2024) e202402095, https://doi.org/10.1002/anie.202402095.  doi: 10.1002/anie.202402095

  • 加载中
    1. [1]

      Chunchun WangChangjun YouKe RongChuqi ShenFang YangShijie Li . An S-Scheme MIL-101(Fe)-on-BiOCl Heterostructure with Oxygen Vacancies for Boosting Photocatalytic Removal of Cr(Ⅵ). Acta Physico-Chimica Sinica, 2024, 40(7): 2307045-0. doi: 10.3866/PKU.WHXB202307045

    2. [2]

      Weikang WangYadong WuJianjun ZhangKai MengJinhe LiLele WangQinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093

    3. [3]

      Kaihui HuangDejun ChenXin ZhangRongchen ShenPeng ZhangDifa XuXin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-0. doi: 10.3866/PKU.WHXB202407020

    4. [4]

      Rui LIUXinjun ZHOUTao WANG . Photocatalytic degradation performance of tetracycline by MOF-74-Mn/g-C3N4 Z-type heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1796-1804. doi: 10.11862/CJIC.20250033

    5. [5]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

    6. [6]

      Liu LinZemin SunHuatian ChenLian ZhaoMingyue SunYitao YangZhensheng LiaoXinyu WuXinxin LiCheng Tang . Recent Advances in Electrocatalytic Two-Electron Water Oxidation for Green H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(4): 2305019-0. doi: 10.3866/PKU.WHXB202305019

    7. [7]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    8. [8]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    9. [9]

      Yanping QiuJiatong ZhangLinping LiYangqin GaoNing LiLei Ge . MOF-derived g-C3N4/ZnIn2S4 S-scheme heterojunction: interface-engineering enhanced photocatalytic NO conversion. Acta Physico-Chimica Sinica, 2026, 42(4): 100175-0. doi: 10.1016/j.actphy.2025.100175

    10. [10]

      Bowen LiuJianjun ZhangHan LiBei ChengChuanbiao Bie . MOF-derived ZnO/PANI S-scheme heterojunction for efficient photocatalytic phenol mineralization coupled with H2O2 generation. Acta Physico-Chimica Sinica, 2025, 41(10): 100121-0. doi: 10.1016/j.actphy.2025.100121

    11. [11]

      Jiali LeiJuan WangWenhui ZhangGuohong WangZihui LiangJinmao Li . TiO2/CdIn2S4 S-scheme heterojunction photocatalyst promotes photocatalytic hydrogen evolution coupled vanillyl alcohol oxidation. Acta Physico-Chimica Sinica, 2025, 41(12): 100174-0. doi: 10.1016/j.actphy.2025.100174

    12. [12]

      Ze LuoYukun ZhuYadan LuoGuangmin RenYonghong WangHua Tang . Photocatalytic selective oxidation of 5-hydroxymethylfurfural coupled with H2 evolution over In2O3/ZnIn2S4 S-scheme heterojunction. Acta Physico-Chimica Sinica, 2026, 42(3): 100166-0. doi: 10.1016/j.actphy.2025.100166

    13. [13]

      Zhen LiSujuan ZhangZhongliao WangJinfeng ZhangGaoli ChenShifu Chen . Rational design of S-scheme CdS/MnO2 heterojunctions for high-value photothermal synergistic catalytic oxidation of toluene. Acta Physico-Chimica Sinica, 2026, 42(4): 100179-0. doi: 10.1016/j.actphy.2025.100179

    14. [14]

      Fanpeng MengFei ZhaoJingkai LinJinsheng ZhaoHuayang ZhangShaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095

    15. [15]

      Yao XieShuangjun LiChao ChenSiyu FanYing TaoQitao Zhang . Ionic polarization engineering of polymeric carbon nitride toward efficient H2O2 photosynthesis. Acta Physico-Chimica Sinica, 2026, 42(5): 100183-0. doi: 10.1016/j.actphy.2025.100183

    16. [16]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    17. [17]

      Jinhui JiangJiaqi SunYongyi ChenLei ZhangPengyu Dong . W18O49/Al-doped SrTiO3 S-scheme heterojunction aided by the LSPR effect for full-spectrum solar light-driven photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(11): 100145-0. doi: 10.1016/j.actphy.2025.100145

    18. [18]

      Wei ZhongDan ZhengYuanxin OuAiyun MengYaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005

    19. [19]

      Yanyan ZhaoZhen WuYong ZhangBicheng ZhuJianjun Zhang . Enhancing photocatalytic H2O2 production via dual optimization of charge separation and O2 adsorption in Au-decorated S-vacancy-rich CdIn2S4. Acta Physico-Chimica Sinica, 2025, 41(11): 100142-0. doi: 10.1016/j.actphy.2025.100142

    20. [20]

      Yi YangXin ZhouMiaoli GuBei ChengZhen WuJianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064

Metrics
  • PDF Downloads(7)
  • Abstract views(949)
  • HTML views(109)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return