NH2-MIL-125/Na掺杂g-C3N4复合S型异质结的构建及其光催化产过氧化氢性能

樊凡 修浩 王宇婷 崔永朋 王雅君

引用本文: 樊凡, 修浩, 王宇婷, 崔永朋, 王雅君. NH2-MIL-125/Na掺杂g-C3N4复合S型异质结的构建及其光催化产过氧化氢性能[J]. 物理化学学报, 2026, 42(2): 100143. doi: 10.1016/j.actphy.2025.100143 shu
Citation:  Fan Fan, Hao Xiu, Yuting Wang, Yongpeng Cui, Yajun Wang. Construction of NH2-MIL-125/Na-doped g-C3N4 composite S-scheme heterojunction and its performance in photocatalytic hydrogen peroxide production[J]. Acta Physico-Chimica Sinica, 2026, 42(2): 100143. doi: 10.1016/j.actphy.2025.100143 shu

NH2-MIL-125/Na掺杂g-C3N4复合S型异质结的构建及其光催化产过氧化氢性能

    通讯作者: Email: wangyajun@cup.edu.cn (王雅君); Tel.: +86-10-89739125
摘要: 异质结构建已被证明是实现高效电荷分离和提高光催化性能的有效策略。在本研究中,基于元素掺杂和异质结构建的协同优化策略,通过简单的浸渍法构建了钛基金属有机框架(NH2-MIL-125,简称NMT)与钠掺杂氮化碳(Na-CN)复合的S型异质结光催化剂(x% NMT/Na-CN)。通过Na的层内掺杂调节了催化剂的能带结构,引入氮缺陷提高了光生电荷的分离效率。此外,Na-CN与NMT的复合形成了S型异质结,进一步提高了光生电荷的分离效率,同时保留了复合催化剂的强氧化还原能力。得益于Na掺杂和NMT复合的协同效应,15% NMT/Na-CN在异丙醇溶液中的光催化H2O2产率高达2474.6 μmol g−1 h−1,未改性块状氮化碳的38倍。这项工作为基于掺杂-异质结协同优化策略实现氮化碳基光催化剂高效生产H2O2提供了一种新方法。

English

    1. [1]

      Y. Kondo, Y. Kuwahara, K. Mori, H. Yamashita, Chem 8 (2022) 2924, https://doi.org/10.1016/j.chempr.2022.10.007. doi: 10.1016/j.chempr.2022.10.007

    2. [2]

      W. N. Cai, Y. Tanaka, X. Zhu, T. Ohno, Nano Res. 17 (2024) 7027, https://doi.org/10.1007/s12274-024-6736-9. doi: 10.1007/s12274-024-6736-9

    3. [3]

      X. S. Zhao, Y. Y. You, S. B. Huang, Y. X. Wu, Y. Y. Ma, G. Zhang, Z. H. Zhang, Appl. Catal. B Environ. 278 (2020) 119251, https://doi.org/10.1016/j.apcatb.2020.119251. doi: 10.1016/j.apcatb.2020.119251

    4. [4]

      H. R. Liang, Y. J. Tian, B. F. Zhang, L. Wang, G. Z. Liu, Green Chem. Eng. 2 (2021) 207, https://doi.org/10.1016/j.gce.2020.09.012. doi: 10.1016/j.gce.2020.09.012

    5. [5]

      B. S. Jiang, D. Y. Chen, N. J. Li, Q. F. Xu, H. Li, J. M. Lu, Chem. Eng. J. 487 (2024) 150609, https://doi.org/10.1016/j.cej.2024.150609. doi: 10.1016/j.cej.2024.150609

    6. [6]

      X. Zhou, S. Y. Yang, X. J. Wang, Z. Wu, Y. T. Huo, J. J. Zhang, J. Mater. Sci. Technol 234 (2025) 60, https://doi.org/10.1016/j.jmst.2025.02.027. doi: 10.1016/j.jmst.2025.02.027

    7. [7]

      G. Q. Chen, Z. X. Zheng, W. Zhong, G. H. Wang, X. H. Wu, Acta Phys. -Chim. Sin. 40 (2024) 2406021, https://doi.org/10.3866/PKU.WHXB202406021. doi: 10.3866/PKU.WHXB202406021

    8. [8]

      S. H. Lu, L. L. Shen, X. Z. Li, B. Z. Yu, J. F. Ding, P. P. Gao, H. J. Zhang, J. Cleaner Prod. 378 (2022) 134589, https://doi.org/10.1016/j.jclepro.2022.134589. doi: 10.1016/j.jclepro.2022.134589

    9. [9]

      W. J. Pu, Y. Q. Zhou, L. F. Yang, H. F. Gong, Y. H. Li, Q. Y. Yang, D. Q. Zhang, Nano Res. 17 (2024) 7840, https://doi.org/10.1007/s12274-024-6818-8. doi: 10.1007/s12274-024-6818-8

    10. [10]

      F. Fan, H. Xiu, H. T. Ma, Y. T. Wang, Y. P. Cui, W. Q. Yao, Y. J. Wang, J. Mater. Sci. Technol 242 (2026) 128, https://doi.org/10.1016/j.jmst.2025.02.091. doi: 10.1016/j.jmst.2025.02.091

    11. [11]

      W. Liu, P. F. Wang, J. Chen, X. Gao, H. Che, B. Liu, Y. H. Ao, Adv. Funct. Mater. 32 (2022) 2205119, https://doi.org/10.1002/adfm.202205119. doi: 10.1002/adfm.202205119

    12. [12]

      Y. Yang, X. Zhou, M. L. Gu, B. Cheng, Z. Wu, J. J. Zhang, Acta Phys. Chim. Sin. 41 (2025) 100064, https://doi.org/10.1016/j.actphy.2025.100064. doi: 10.1016/j.actphy.2025.100064

    13. [13]

      M. Sayed, K. Z. Qi, X. H. Wu, L. Y. Zhang, H. García, J. G. Yu, Chem. Soc. Rev. 54 (2025) 4874, https://doi.org/10.1039/d4cs01091d. doi: 10.1039/d4cs01091d

    14. [14]

      X. H. Wu, L. H. Tan, G. Q. Chen, J. L Kang, G. H. Wang, Sci. China Mater. 67 (2024) 444, https://doi.org/10.1007/s40843-023-2755-2. doi: 10.1007/s40843-023-2755-2

    15. [15]

      R. Kavitha, C. Manjunatha, J. G. Yu, S. G. Kumar, EnergyChem 7 (2025) 100159, https://doi.org/10.1016/j.enchem.2025.100159. doi: 10.1016/j.enchem.2025.100159

    16. [16]

      L. Y. Zhang, J. J. Zhang, J. G. Yu, H. García, Nat. Rev. Chem. 9 (2025) 328, https://doi.org/10.1038/s41570-025-00698-3. doi: 10.1038/s41570-025-00698-3

    17. [17]

      X. Z. Lu, Z. W. Chen, Z. F. Hu, F. Y. Liu, Z. H. Zuo, Z. X. Gao, H. G. Zhang, Y. C. Zhu, R. Z. Liu, Y. G. Yin, et al., Adv. Energy Mater. 14 (2024) 2401873, https://doi.org/10.1002/aenm.202401873. doi: 10.1002/aenm.202401873

    18. [18]

      L. Guo, Y. You, H. W. Huang, N. Tian, T. Y. Ma, Y. H. Zhang, J. Colloid Interface Sci. 568 (2020) 139, https://doi.org/10.1016/j.jcis.2020.02.025. doi: 10.1016/j.jcis.2020.02.025

    19. [19]

      W. J. Wang, D. Chen, F. Y. Li, X. Xiao, Q. Xu, Chem 10 (2024) 86, https://doi.org/10.1016/j.chempr.2023.09.009. doi: 10.1016/j.chempr.2023.09.009

    20. [20]

      C. Z. Zhu, Q. H. Tian, S. P. Wan, H. T. Xu, J. G. Hu, L. Q. Jing, Chem. Eng. J. 497 (2024) 154689, https://doi.org/10.1016/j.cej.2024.154689. doi: 10.1016/j.cej.2024.154689

    21. [21]

      S. Y. Chen, G. T. Hai, H. Y. Gao, X. Chen, A. Li, X. W. Zhang, W. J. Dong, Chem. Eng. J. 406 (2021) 126886, https://doi.org/10.1016/j.cej.2020.126886. doi: 10.1016/j.cej.2020.126886

    22. [22]

      J. H. Shi, K. K. Pu, T. Zhao, J. T. Shi, N. Zheng, L. J. Nie, K. K. Xue, Y. H. Gao, J. Environ. Sci. 152 (2025) 637, https://doi.org/10.1016/j.jes.2024.05.034. doi: 10.1016/j.jes.2024.05.034

    23. [23]

      F. Y. Xing, C. Z. Wang, S. Q. Liu, S. H. Jin, H. B. Jin, J. B. Li, ACS Appl. Mater. Interfaces 15 (2023) 11731, https://doi.org/10.1021/acsami.2c21046. doi: 10.1021/acsami.2c21046

    24. [24]

      Y. T. Wang, M. X. Wang, X. Y. Zhang, X. R. Pan, Y. P. Cui, D. Q. Liu, Y. J. Wang, W. Q. Yao, J. Catal. 440 (2024) 115807, https://doi.org/10.1016/j.jcat.2024.115807. doi: 10.1016/j.jcat.2024.115807

    25. [25]

      A. M. Sadanandan, J. H. Yang, V. Devtade, G. Singh, N. Panangattu Dharmarajan, M. Fawaz, J. Mee Lee, E. Tavakkoli, C. H. Jeon, P. Kumar, et al., Prog. Mater Sci. 142 (2024) 101242, https://doi.org/10.1016/j.pmatsci.2024.101242. doi: 10.1016/j.pmatsci.2024.101242

    26. [26]

      H. Yao, R. F, Zhang, Y. Wen, Y. Liu, G. Yu, Z. H. Xie, J. Mater Sci. Technol. 182 (2024) 67, https://doi.org/10.1016/j.jmst.2023.09.038. doi: 10.1016/j.jmst.2023.09.038

    27. [27]

      D. M. Zhao, C. L. Dong, B. Wang, C. Chen, Y. C. Huang, Z. D. Diao, S. Z. Li, L. J. Guo, S. H. Shen, Adv. Mater. 31 (2019) 1903545, https://doi.org/10.1002/adma.201903545. doi: 10.1002/adma.201903545

    28. [28]

      Y. J. Wang, M. M. Liu, F. Fan, G. Li, J. X. Duan, Y. M. Li, G. Y. Jiang, W. Q. Yao, Appl. Catal. B Environ. 318 (2022) 121829, https://doi.org/10.1016/j.apcatb.2022.121829. doi: 10.1016/j.apcatb.2022.121829

    29. [29]

      J. Wang, C. C. Chen, Z. H. Zhao, C. Cheng, Z. H. Tang, Z. Du, Y. F. Wang, L. Pan, J. Alloys Compd. 922 (2022) 166288, https://doi.org/10.1016/j.jallcom.2022.166288. doi: 10.1016/j.jallcom.2022.166288

    30. [30]

      Z. Y. Feng, H. F. Fu, Z. H. Wang, F. Wang, Y. W. Wei, C. Zhao, C. C. Wang, Sep. Purif. Technol. 351 (2024) 128102, https://doi.org/10.1016/j.seppur.2024.128102. doi: 10.1016/j.seppur.2024.128102

    31. [31]

      F. T. He, Y. M. Lu, Y. Z. Wu, S. L. Wang, Y. Zhang, P. Dong, Y. Q. Wang, C. C. Zhao, S. J. Wang, J. Q. Zhang, et al., Adv. Mater. 36 (2024) 2307490, https://doi.org/10.1002/adma.202307490. doi: 10.1002/adma.202307490

    32. [32]

      X. Ma, H. F. Cheng, Sep. Purif. Technol. 330 (2024) 125260, https://doi.org/10.1016/j.seppur.2023.125260. doi: 10.1016/j.seppur.2023.125260

    33. [33]

      D. Y. Wang, S. L. Pu, Y. M. Chen, K. Lei, Y. J. Duan, L. J. Mao, X. H. Zeng, X. Luo, Y. T. Zhang, Y. Q. Dong, et al., Sci. China Chem. 68 (2025) 192, https://doi.org/10.1007/s11426-024-2200-1. doi: 10.1007/s11426-024-2200-1

    34. [34]

      C. W. Ma, Q. X. Xiao, Y. F. Wang, Y. D. Zhou, Z. H. Yang, H. H. Che, J. Colloid Interface Sci. 678 (2025) 180, https://doi.org/10.1016/j.jcis.2024.09.118. doi: 10.1016/j.jcis.2024.09.118

    35. [35]

      Y. Shang, M. Zheng, H. J. Liu, X. L. Jin, C. S. Yan, L. Song, Z. M. Qi, F. Y. Jing, P. Song, X. Zhou, et al., ACS Catal. 13 (2023) 14530, https://doi.org/10.1021/acscatal.3c03628. doi: 10.1021/acscatal.3c03628

    36. [36]

      S. H. Wang, Y. Z. Xia, G. Y. Yan, M. X. Chen, X. X. Wang, L. Wu, R. W. Liang, Appl. Catal. B Environ. 317 (2022) 121798, https://doi.org/10.1016/j.apcatb.2022.121798. doi: 10.1016/j.apcatb.2022.121798

    37. [37]

      Y. Xu, W. D. Hou, K. Huang, H. Z. Guo, Z. M. Wang, C. Lian, J. Y. Zhang, D. L. Wu, Z. D. Lei, Z. Liu, et al., Adv. Sci. 11 (2024) 2403607, https://doi.org/10.1002/advs.202403607. doi: 10.1002/advs.202403607

    38. [38]

      T. Y. Gao, D. G. Zhao, S. S. Yuan, M. Zheng, X. J. Pu, L. Tang, Z. D. Lei, Carbon Energy 6 (2024) e596, https://doi.org/10.1002/cey2.596. doi: 10.1002/cey2.596

    39. [39]

      M. Jourshabani, M. R. Asrami, B. K. Lee, Appl. Catal. B Environ. 302 (2022) 120839, https://doi.org/10.1016/j.apcatb.2021.120839. doi: 10.1016/j.apcatb.2021.120839

    40. [40]

      H. W. Liang, X. Zhuang, S. Brüller, X. Feng, K. Müllen, Nat. Commun. 5 (2014) 4973, https://doi.org/10.1038/ncomms5973. doi: 10.1038/ncomms5973

    41. [41]

      F. Huang, M. Humayun, G. Li, T. T. Fan, W. L. Wang, Y. L. Cao, A. Nikiforov, C. D. Wang, J. Wang, Rare Met. 43 (2024) 3161, https://doi.org/10.1007/s12598-024-02688-8. doi: 10.1007/s12598-024-02688-8

    42. [42]

      K. Z. Lai, Y. X. Sun, N. Li, Y. Q. Gao, H. Li, L. Ge, T. Y. Ma, Adv. Funct. Mater. 34 (2024) 2409031, https://doi.org/10.1002/adfm.202409031. doi: 10.1002/adfm.202409031

    43. [43]

      Y. X. Li, H. Xu, S. X. Ouyang, D. Lu, X. Wang, D. F. Wang, J. H. Ye, J. Mater. Chem. A 4 (2016) 2943, https://doi.org/10.1039/C5TA05128B. doi: 10.1039/C5TA05128B

    44. [44]

      M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, M. C. Payne, J. Phys. Condens. Mat. 14 (2002) 2717, https://doi.org/10.1088/0953-8984/14/11/301 doi: 10.1088/0953-8984/14/11/301

    45. [45]

      S. D. Wang, L. Y. Huang, L. J. Xue, Q. Kang, L. L. Wen, K. L. Lv, Appl. Catal. B Environ. 358 (2024) 124366, https://doi.org/10.1016/j.apcatb.2024.124366. doi: 10.1016/j.apcatb.2024.124366

    46. [46]

      X. L. Wang, H. H. Zhang, Y. M. Huang, L. L. Gao, Y. Zhang, J. Y. Meng, Y. F. Liao, B. N. Zong, W. L. Dai, H. X. Li, Adv. Funct. Mater. (2025) 2421847, https://doi.org/10.1002/adfm.202421847. doi: 10.1002/adfm.202421847

    47. [47]

      J. T. Yan, J. J. Zhang, J. Mater. Sci. Technol 193 (2024) 18, https://doi.org/10.1016/j.jmst.2023.12.054. doi: 10.1016/j.jmst.2023.12.054

    48. [48]

      C. Cheng, J. J. Zhang, B. C. Zhu, G. J. Liang, L. Y. Zhang, J. G. Yu, Angew. Chem. Int. Ed. 62 (2023) e202218688, https://doi.org/10.1002/anie.202218688. doi: 10.1002/anie.202218688

    49. [49]

      Y. Wu, C. Cheng, K. Z. Qi, B. Cheng, J. J. Zhang, J. G. Yu, L. Y. Zhang, Acta Phys. Chim. Sin. 40 (2024) 2406027, https://doi.org/10.3866/PKU.WHXB202406027. doi: 10.3866/PKU.WHXB202406027

    50. [50]

      H. Zhang, L. H. Jia, P. Wu, R. J. Xu, J. He, W. Jiang, Appl. Surf. Sci. 527 (2020) 146584, https://doi.org/10.1016/j.apsusc.2020.146584. doi: 10.1016/j.apsusc.2020.146584

    51. [51]

      E. Hu, Q. Chen, Q. Gao, X. F. Fan, X. J. Luo, Y. Wei, G. Wu, H. B. Deng, S. C. Xu, P. Wang, et al., Adv. Funct. Mater. 34 (2024) 2312215, https://doi.org/10.1002/adfm.202312215. doi: 10.1002/adfm.202312215

    52. [52]

      H. Z. Guo, L. Zhou, K. Huang, Y. Q. Li, W. D. Hou, H. G. Liao, C. Lian, S. W. Yang, D. L. Wu, Z. D. Lei, et al., Adv. Funct. Mater. 34 (2024) 2402650, https://doi.org/10.1002/adfm.202402650. doi: 10.1002/adfm.202402650

    53. [53]

      W. Y. Yu, R. Xing, N. Tian, Y. H. Wang, N. Zhang, Y. H. Zhang, Y. X. Deng, H. W. Huang, J. Mater. Chem. A 13 (2025) 3791, https://doi.org/10.1039/D4TA06956K. doi: 10.1039/D4TA06956K

    54. [54]

      S. S. Shen, X. B. Li, Y. T. Zhou, L. Han, Y. Xie, F. Deng, J. T. Huang, Z. Chen, Z. J. Feng, J. L. Xu, et al., J. Mater. Sci. Technol. 155 (2023) 148, https://doi.org/10.1016/j.jmst.2023.03.006. doi: 10.1016/j.jmst.2023.03.006

    55. [55]

      L. Z. Cao, C. Wang, H. Wang, X. M. Xu, X. Tao, H. Q. Tan, G. S. Zhu, Angew. Chem. Int. Ed. 63 (2024) e202402095, https://doi.org/10.1002/anie.202402095. doi: 10.1002/anie.202402095

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  13
  • HTML全文浏览量:  2
文章相关
  • 发布日期:  2026-02-15
  • 收稿日期:  2025-06-17
  • 接受日期:  2025-07-29
  • 修回日期:  2025-07-27
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章