Citation: Yanyan Zhao, Zhen Wu, Yong Zhang, Bicheng Zhu, Jianjun Zhang. Enhancing photocatalytic H2O2 production via dual optimization of charge separation and O2 adsorption in Au-decorated S-vacancy-rich CdIn2S4[J]. Acta Physico-Chimica Sinica, ;2025, 41(11): 100142. doi: 10.1016/j.actphy.2025.100142 shu

Enhancing photocatalytic H2O2 production via dual optimization of charge separation and O2 adsorption in Au-decorated S-vacancy-rich CdIn2S4

  • Corresponding author: Yanyan Zhao, zhaoyanyan41@163.com Jianjun Zhang, zhangjianjun@cug.edu.cn
  • Received Date: 30 June 2025
    Revised Date: 28 July 2025
    Accepted Date: 29 July 2025

    Fund Project: National Natural Science Foundation of China 22409128National Natural Science Foundation of China 22378103

  • Photocatalytic oxygen reduction reaction (ORR) offers a mild and cost-effective approach for hydrogen peroxide (H2O2) production. However, its practical application is significantly hindered by rapid charge carrier recombination and insufficient O2 adsorption capacity in photocatalysts. To address these limitations, we developed a strategy involving the creation of S-vacancy-rich CdIn2S4 (Sv–CIS) to facilitate charge separation and subsequent deposition of Au nanoparticles on its surface (Au–Sv–CIS) to strengthen O2 adsorption. The results suggest that the optimized Au–Sv–CIS achieves a significantly increased H2O2 production yield of 2542 μmol·h−1·g−1 in 10%-ethanol/water solution, which is about 12.8 and 1.7 times higher than that of pure CIS and Sv–CIS. Comprehensive characterizations including photoluminescence spectra, time-resolved photoluminescence spectra, transient photocurrent response, electrochemical impedance spectra, and femtosecond transient absorption spectroscopy confirm the improved charge dynamics of Au–Sv–CIS. In addition, temperature-programmed desorption of O2 combined with density functional theory calculations conclusively demonstrates the superior O2 adsorption capacity of Au–Sv–CIS. This work provides a design strategy for efficient solar-to-chemical energy conversion through cooperative photocatalyst engineering.
  • 加载中
    1. [1]

      B. He, C. Luo, Z. Wang, L. Zhang, J. Yu, Appl. Catal. B 323 (2023) 122200, https://doi.org/10.1016/j.apcatb.2022.122200.  doi: 10.1016/j.apcatb.2022.122200

    2. [2]

      J. Qiu, K. Meng, Y. Zhang, B. Cheng, J. Zhang, L. Wang, J. Yu, Adv. Mater. 36 (2024) 2400288, https://doi.org/10.1002/adma.202400288.  doi: 10.1002/adma.202400288

    3. [3]

      H. Toan, D. Nguyen, P. Phan, N. Anh, P. Ly, M. Pham, S. Hur, T. Ung, D. Bich, M. Nguyen, et al., ACS Appl. Mater. Interfaces 16 (2024) 29421, https://doi.org/10.1021/acsami.4c04387.  doi: 10.1021/acsami.4c04387

    4. [4]

      Y. Zhao, Y. Zhang, H. Tan, C. Ai, J. Zhang, J. Materiomics 11 (2025) 100970, https://doi.org/10.1016/j.jmat.2024.100970.  doi: 10.1016/j.jmat.2024.100970

    5. [5]

      Y. Ma, S. Wang, Y. Zhang, B. Cheng, L. Zhang, J. Materiomics 11 (2025) 100978, https://doi.org/10.1016/j.jmat.2024.100978.  doi: 10.1016/j.jmat.2024.100978

    6. [6]

      X. Zhou, C. Ai, X. Wang, Z. Wu, J. Zhang, J. Materiomics 11 (2025) 100974, https://doi.org/10.1016/j.jmat.2024.100974.  doi: 10.1016/j.jmat.2024.100974

    7. [7]

      A. G. Fink, R. S. Delima, A. R. Rousseau, C. Hunt, N. E. LeSage, A. Huang, M. Stolar, C. P. Berlinguette, Nat. Commun. 15 (2024) 766, https://doi.org/10.1038/s41467-024-44741-1.  doi: 10.1038/s41467-024-44741-1

    8. [8]

      E. Tacchi, G. Rossi, M. Natali, L. Ðorđević, A. Sartorel, Adv. Sustainable Syst. 9 (2025) 2400538, https://doi.org/10.1002/adsu.202400538.  doi: 10.1002/adsu.202400538

    9. [9]

      Y. Liu, M. Li, T. Liu, Z. Wu, L. Zhang, J. Mater. Sci. Technol. 233 (2025) 201, https://doi.org/10.1016/j.jmst.2025.03.005.  doi: 10.1016/j.jmst.2025.03.005

    10. [10]

      S. Mao, R. He, S. Song, Chin. J. Catal. 64 (2024) 1, https://doi.org/10.1016/S1872-2067(24)60102-6.  doi: 10.1016/S1872-2067(24)60102-6

    11. [11]

      X. Zhou, S. Yang, X. Wang, Z. Wu, Y. Huo, J. Zhang, J. Mater. Sci. Technol. 234 (2025) 60, https://doi.org/10.1016/j.jmst.2025.02.027.  doi: 10.1016/j.jmst.2025.02.027

    12. [12]

      X. Wang, K. Qi, K. Xu, Chin. J. Catal. 70 (2025) 1, https://doi.org/10.1016/S1872-2067(24)60246-9.  doi: 10.1016/S1872-2067(24)60246-9

    13. [13]

      Y. Zhang, J. Qiu, B. Zhu, G. Sun, B. Cheng, L. Wang, Chin. J. Catal. 57 (2024) 143, https://doi.org/10.1016/S1872-2067(23)64580-2.  doi: 10.1016/S1872-2067(23)64580-2

    14. [14]

      Y. Zhao, S. Zhang, Z. Wu, B. Zhu, G. Sun, J. Zhang, Chin. J. Catal. 60 (2024) 219, https://doi.org/10.1016/S1872-2067(23)64645-5.  doi: 10.1016/S1872-2067(23)64645-5

    15. [15]

      K. Meng, J. Zhang, B. Cheng, X. Ren, Z. Xia, F. Xu, L. Zhang, J. Yu, Adv. Mater. 36 (2024) 2406460, https://doi.org/10.1002/adma.202406460.  doi: 10.1002/adma.202406460

    16. [16]

      R. He, D. Xu, X. Li, J. Mater. Sci. Technol. 138 (2023) 256, https://doi.org/10.1016/j.jmst.2022.09.002.  doi: 10.1016/j.jmst.2022.09.002

    17. [17]

      W. Zhong, D. Zheng, Y. Ou, A. Meng, Y. Su, Acta Phys. -Chim. Sin. 40 (2024) 2406005, https://doi.org/10.3866/PKU.WHXB202406005.  doi: 10.3866/PKU.WHXB202406005

    18. [18]

      Y. Zhou, L. Xu, J. Wu, W. Zhu, T. He, H. Yang, H. Huang, T. Cheng, Y. Liu, Z. Kang, Energy Environ. Sci. 16 (2023) 3526, https://doi.org/10.1039/D3EE01788E  doi: 10.1039/D3EE01788E

    19. [19]

      Y. Wu, C. Cheng, K. Qi, B. Cheng, J. Zhang, J. Yu, L. Zhang, Acta Phys. -Chim. Sin. 40 (2024) 2406027, https://doi.org/10.3866/PKU.WHXB202406027.  doi: 10.3866/PKU.WHXB202406027

    20. [20]

      K. Meng, J. Zhang, B. Zhu, C. Jiang, H. García, J. Yu, Adv. Mater. (2025) 2505088, https://doi.org/10.1002/adma.202505088.  doi: 10.1002/adma.202505088

    21. [21]

      Z. Jiang, J. Zhang, B. Cheng, Y. Zhang, J. Yu, L. Zhang, Small 21 (2025) 2409079, https://doi.org/10.1002/smll.202409079.  doi: 10.1002/smll.202409079

    22. [22]

      K. Zhang, M. Dan, J. Yang, F. Wu, L. Wang, H. Tang, Z. Liu, Adv. Funct. Mater. 33 (2023) 2302964, https://doi.org/10.1002/adfm.202302964.  doi: 10.1002/adfm.202302964

    23. [23]

      Y. Wu, Y. Yang, M. Gu, C. Bie, H. Tan, B. Cheng, J. Xu, Chin. J. Catal. 53 (2023) 123, https://doi.org/10.1016/S1872-2067(23)64514-0.  doi: 10.1016/S1872-2067(23)64514-0

    24. [24]

      S. Sambyal, A. Sudhaik, S. Sonu, P. Raizada, V. Chaudhary, V. Nguyen, A. Khan, C. Hussain, P. Singh, Coordin. Chem. Rev. 535 (2025) 216653, https://doi.org/10.1016/j.ccr.2025.216653.  doi: 10.1016/j.ccr.2025.216653

    25. [25]

      Y. Yang, X. Zhou, M. Gu, B. Cheng, Z. Wu, J. Zhang, Acta Phys. -Chim. Sin. 41 (2025) 100064, https://doi.org/10.1016/j.actphy.2025.100064.  doi: 10.1016/j.actphy.2025.100064

    26. [26]

      Y. Zhang, Y. Wang, Y. Liu, S. Zhang, Y. Zhao, J. Zhang, J. Materiomics 11 (2025) 100985, https://doi.org/10.1016/j.jmat.2024.100985.  doi: 10.1016/j.jmat.2024.100985

    27. [27]

      Y. Wu, X. Deng, R. Cui, M. Song, X. Guo, X. Gong, J. He, P. Chen, J. Colloid Interface Sci. 656 (2024) 528, https://doi.org/10.1016/j.jcis.2023.11.118.  doi: 10.1016/j.jcis.2023.11.118

    28. [28]

      Y. Li, Z. Pei, D. Luan, X. Lou, J. Am. Chem. Soc. 146 (2024) 3343, https://doi.org/10.1021/jacs.3c12465.  doi: 10.1021/jacs.3c12465

    29. [29]

      K. Cao, H. Yang, S. Bai, Y. Xu, C. Yang, Y. Wu, M. Xie, T. Cheng, Q. Shao, X. Huang, ACS Catal. 11 (2021) 1106, https://doi.org/10.1021/acscatal.0c04348.  doi: 10.1021/acscatal.0c04348

    30. [30]

      Z. Guo, C. Zhao, L. Meng, H. Fu, C. Wang, Z. Chen, Y. Zheng, Y. Li, J. Wang, C. Wang, Appl. Catal. B 377 (2025) 125507, https://doi.org/10.1016/j.apcatb.2025.125507.  doi: 10.1016/j.apcatb.2025.125507

    31. [31]

      F. Li, X. Tang, Z. Hu, X. Li, F. Li, Y. Xie, Y. Jiang, C. Yu, Chin. J. Catal. 55 (2023) 253, https://doi.org/10.1016/S1872-2067(23)64555-3.  doi: 10.1016/S1872-2067(23)64555-3

    32. [32]

      S. Liu, H. Ren, F. Tian, L. Geng, W. Cui, J. Chen, Y. Lin, M. Wu, Z. Li, Small 20 (2024) 2405683, https://doi.org/10.1002/smll.202405683.  doi: 10.1002/smll.202405683

    33. [33]

      W. Fu, N. Li, M. Shi, G. Zhao, S. Zhang, Y. Wu, K. Zhao, F. Yin, J. Ma, Sep. Purif. Technol. 360 (2025) 131192, https://doi.org/10.1016/j.seppur.2024.131192.  doi: 10.1016/j.seppur.2024.131192

    34. [34]

      X. Ruan, S. Zhao, M. Xu, D. Jiao, J. Leng, G. Fang, D. Meng, Z. Jiang, S. Jin, X. Cui, S. Ravi, Adv. Energy Mater. 14 (2024) 2401744, https://doi.org/10.1002/aenm.202401744.  doi: 10.1002/aenm.202401744

    35. [35]

      H. Hou, X. Zeng, X. Zhang, Angew. Chem. Int. Ed. 59 (2020) 17356, https://doi.org/10.1002/anie.201911609.  doi: 10.1002/anie.201911609

    36. [36]

      X. Yin, H. Shi, Y. Wang, X. Wang, P. Wang, H. Yu, Acta Phys. -Chim. Sin. 40 (2024) 2312007, https://doi.org/10.3866/PKU.WHXB202312007.  doi: 10.3866/PKU.WHXB202312007

    37. [37]

      H. Chen, L. Nie, K. Xu, Y. Yang, C. Fang, Acta Phys. -Chim. Sin. 40 (2024) 2406019, https://doi.org/10.3866/PKU.WHXB202406019.  doi: 10.3866/PKU.WHXB202406019

    38. [38]

      G. Chen, Z. Zheng, W. Zhong, G. Wang, X. Wu, Acta Phys. -Chim. Sin. 40 (2024) 2406021, https://doi.org/10.3866/PKU.WHXB202406021.  doi: 10.3866/PKU.WHXB202406021

    39. [39]

      K. Kao, S. Huang, Y. Hsia, J. Huang, C. Mou, ACS Appl. Nano Mater. 7 (2023) 218, https://doi.org/10.1021/acsanm.3c04340.  doi: 10.1021/acsanm.3c04340

    40. [40]

      D. Tsukamoto, A. Shiro, Y. Shiraishi, Y. Sugano, S. Ichikawa, S. Tanaka, T. Hirai, ACS Catal. 2 (2012) 599, https://doi.org/10.1021/cs2006873.  doi: 10.1021/cs2006873

    41. [41]

      Q. Xue, Z. Wang, S. Han, Y. Liu, X. Dou, Y. Li, H. Zhu, X. Yuan, J. Mater. Chem. A 10 (2022) 8371, https://doi.org/10.1039/D2TA00720G.  doi: 10.1039/D2TA00720G

    42. [42]

      G. Han, J. Baek, Chem Catal. 3 (2023) 100617, https://doi.org/10.1016/j.checat.2023.100617.  doi: 10.1016/j.checat.2023.100617

    43. [43]

      X. Zhang, D. Gao, B. Zhu, B. Cheng, J. Yu, H. Yu, Nat. Commun. 15 (2024) 3212, https://doi.org/10.1038/s41467-024-47624-7.  doi: 10.1038/s41467-024-47624-7

    44. [44]

      L. Li, Z. Li, J. Li, J. Wang, H. Xu, H. Yu, Q. Lin, H. Huang, Y. Liu, Z. Kang, Small 21 (2025) 2410843, https://doi.org/10.1002/smll.202410843.  doi: 10.1002/smll.202410843

    45. [45]

      W. Zhong, A. Meng, Y. Su, H. Yu, P. Han, J. Yu, Angew. Chem. Int. Ed. 64 (2025) e202425038, https://doi.org/10.1002/anie.202425038.  doi: 10.1002/anie.202425038

    46. [46]

      H. Zhang, Y. Gao, S. Meng, Z. Wang, P. Wang, Z. Wang, C. Qiu, S. Chen, B. Weng, Y. Zheng, Adv. Sci. 11 (2024) 2400099, https://doi.org/10.1002/advs.202400099.  doi: 10.1002/advs.202400099

    47. [47]

      Y. Tan, Z. Chai, B. Wang, S. Tian, X. Deng, Z. Bai, L. Chen, S. Shen, J. Guo, M. Cai, et al., ACS Catal. 11 (2021) 2492, https://doi.org/10.1021/acscatal.0c05703.  doi: 10.1021/acscatal.0c05703

    48. [48]

      Y. Zeng, S. Liu, G. Zhu, X. Yang, Q. Wang, H. Yu, J. Clean. Prod. 429 (2023) 139617, https://doi.org/10.1016/j.jclepro.2023.139617.  doi: 10.1016/j.jclepro.2023.139617

    49. [49]

      C. Liu, W. Xiao, G. Yu, Q. Wang, J. Hu, C. Xu, X. Du, J. Xu, Q. Zhang, Z. Zou, J. Colloid Interf. Sci. 640 (2023) 851, https://doi.org/10.1016/j.jcis.2023.02.137.  doi: 10.1016/j.jcis.2023.02.137

    50. [50]

      Y. Zhao, C. Yang, S. Zhang, G. Sun, B. Zhu, L. Wang, J. Zhang, Chin. J. Catal. 63 (2024) 258, https://doi.org/10.1016/S1872-2067(24)60069-0.  doi: 10.1016/S1872-2067(24)60069-0

    51. [51]

      J. Yan, J. Zhang, J. Mater. Sci. Technol. 193 (2024) 18, https://doi.org/10.1016/j.jmst.2023.12.054.  doi: 10.1016/j.jmst.2023.12.054

    52. [52]

      Q. Zhang, H. Miao, J. Wang, T. Sun, E. Liu, Chin. J. Catal. 63 (2024) 176, https://doi.org/10.1016/S1872-2067(24)60077-X.  doi: 10.1016/S1872-2067(24)60077-X

    53. [53]

      J. Ye, B. Cheng, J. Yu, W. Ho, S. Wageh, A. A. Al-Ghamdi, Chem. Eng. J. 430 (2022) 132715, https://doi.org/10.1016/j.cej.2021.132715.  doi: 10.1016/j.cej.2021.132715

    54. [54]

      A. Ates, Int. J. Hydrogen Energ. 46 (2021) 1842, https://doi.org/10.1016/j.ijhydene.2020.10.072.  doi: 10.1016/j.ijhydene.2020.10.072

    55. [55]

      J. Ye, B. Zhu, B. Cheng, C. Jiang, S. Wageh, A. Al‐Ghamdi, J. Yu, Adv. Funct. Mater. 32 (2021) 2110423, https://doi.org/10.1002/adfm.202110423.  doi: 10.1002/adfm.202110423

    56. [56]

      W. Chi, Y. Dong, B. Liu, C. Pan, J. Zhang, H. Zhao, Y. Zhu, Z. Liu, Nat. Commun. 15 (2024) 5316, https://doi.org/10.1038/s41467-024-49663-6.  doi: 10.1038/s41467-024-49663-6

    57. [57]

      W. Li, B. Han, Y. Liu, J. Xu, H. He, G. Wang, J. Li, Y. Zhai, X. Zhu, Y. Zhu, Angew. Chem. Int. Ed. 64 (2025) e202421356, https://doi.org/10.1002/anie.202421356.  doi: 10.1002/anie.202421356

    58. [58]

      H. Chen, S. Gao, G. Huang, Q. Chen, Y. Gao, J. Bi, Appl. Catal. B 343 (2024) 123545, https://doi.org/10.1016/j.apcatb.2023.123545.  doi: 10.1016/j.apcatb.2023.123545

    59. [59]

      X. Zhang, J. Xu, H. Long, J. Yu, H. Yu, ACS Catal. 14 (2024) 18669, https://doi.org/10.1021/acscatal.4c05674.  doi: 10.1021/acscatal.4c05674

    60. [60]

      F. Xu, Y. He, J. Zhang, G. Liang, C. Liu, J. Yu, Angew. Chem. Int. Ed. 64 (2025) e202414672, https://doi.org/10.1002/anie.202414672.  doi: 10.1002/anie.202414672

    61. [61]

      L. Zhang, J. Zhang, J. Yu, H. García, Nat. Rev. Chem. 9 (2025) 328, https://doi.org/10.1038/s41570-025-00698-3.  doi: 10.1038/s41570-025-00698-3

    62. [62]

      C. Cheng, J. Yu, D. Xu, L. Wang, G. Liang, L. Zhang, M. Jaroniec, Nat. Commun. 15 (2024) 1313, https://doi.org/10.1038/s41467-024-45604-5.  doi: 10.1038/s41467-024-45604-5

    63. [63]

      J. Zhu, S. Wageh, A. Al‐Ghamdi, Chin. J. Catal. 49 (2023) 5, https://doi.org/10.1016/S1872-2067(23)64438-9.  doi: 10.1016/S1872-2067(23)64438-9

    64. [64]

      M. Sayed, H. Li, C. Bie, Acta Phys. -Chim. Sin. 41 (2025) 100117, https://doi.org/10.1016/j.actphy.2025.100117.  doi: 10.1016/j.actphy.2025.100117

    65. [65]

      B. Liu, J. Zhang, H. Li, B. Cheng, C. Bie, Acta Phys. -Chim. Sin. 41 (2025) 100121, https://doi.org/10.1016/j.actphy.2025.100121.  doi: 10.1016/j.actphy.2025.100121

    66. [66]

      Y. Zhao, Y. Zhang, L. Wang, C. Ai, J. Zhang, J. Mater. Sci. Technol. 229 (2025) 213, https://doi.org/10.1016/j.jmst.2024.12.040.  doi: 10.1016/j.jmst.2024.12.040

  • 加载中
    1. [1]

      Xinyu XuJiale LuBo SuJiayi ChenXiong ChenSibo Wang . Steering charge dynamics and surface reactivity for photocatalytic selective methane oxidation to ethane over Au/Ti-CeO2. Acta Physico-Chimica Sinica, 2025, 41(11): 100153-0. doi: 10.1016/j.actphy.2025.100153

    2. [2]

      Fei XieChengcheng YuanHaiyan TanAlireza Z. MoshfeghBicheng ZhuJiaguo Yud-Band Center Regulated O2 Adsorption on Transition Metal Single Atoms Loaded COF: A DFT Study. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-0. doi: 10.3866/PKU.WHXB202407013

    3. [3]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . 具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    4. [4]

      Mahmoud SayedHan LiChuanbiao Bie . Challenges and prospects of photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(9): 100117-0. doi: 10.1016/j.actphy.2025.100117

    5. [5]

      Liu LinZemin SunHuatian ChenLian ZhaoMingyue SunYitao YangZhensheng LiaoXinyu WuXinxin LiCheng Tang . Recent Advances in Electrocatalytic Two-Electron Water Oxidation for Green H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(4): 2305019-0. doi: 10.3866/PKU.WHXB202305019

    6. [6]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    7. [7]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    8. [8]

      Jingzhao ChengShiyu GaoBei ChengKai YangWang WangShaowen Cao . Construction of 4-Amino-1H-imidazole-5-carbonitrile Modified Carbon Nitride-Based Donor-Acceptor Photocatalyst for Efficient Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-0. doi: 10.3866/PKU.WHXB202406026

    9. [9]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    10. [10]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    11. [11]

      Yi YangXin ZhouMiaoli GuBei ChengZhen WuJianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064

    12. [12]

      Pengcheng YanPeng WangJing HuangZhao MoLi XuYun ChenYu ZhangZhichong QiHui XuHenan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 2309047-0. doi: 10.3866/PKU.WHXB202309047

    13. [13]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    14. [14]

      Jiaqi YangXuqiang HaoJiejie JingYuqiang HaoZhiliang Jin . 3D/2D ReSe2/ZnCdS S-scheme photocatalyst with efficient interfacial charge separation for optimized hydrogen production. Acta Physico-Chimica Sinica, 2025, 41(10): 100131-0. doi: 10.1016/j.actphy.2025.100131

    15. [15]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    16. [16]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    17. [17]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    18. [18]

      Qishen WangChangzhao ChenMengqing LiLingmin WuKai Dai . Lignin derived carbon quantum dots and oxygen vacancies coregulated S-scheme LCQDs/Bi2WO6 heterojunction for photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(11): 100147-0. doi: 10.1016/j.actphy.2025.100147

    19. [19]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    20. [20]

      Kangjuan ChengChunxiao LiuYoupeng WangQiu JiangTingting ZhengXu LiChuan Xia . Design of noble metal catalysts and reactors for the electrosynthesis of hydrogen peroxide. Acta Physico-Chimica Sinica, 2025, 41(10): 100112-0. doi: 10.1016/j.actphy.2025.100112

Metrics
  • PDF Downloads(0)
  • Abstract views(16)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return