Citation: Huoshuai Huang, Zhidong Wei, Jiawei Yan, Jiasheng Chi, Qianxiang Su, Mingxia Chen, Zhi Jiang, Yangzhou Sun, Wenfeng Shangguan. Unveiling the mechanism of direct-to-indirect bandgap transition in the photocatalytic hydrogen evolution of ZnxCd1−xS solid solution[J]. Acta Physico-Chimica Sinica, ;2026, 42(1): 100141. doi: 10.1016/j.actphy.2025.100141 shu

Unveiling the mechanism of direct-to-indirect bandgap transition in the photocatalytic hydrogen evolution of ZnxCd1−xS solid solution

  • Solid solution strategy could improve the photocatalytic performance thermodynamically, yet the study focusing on the carrier dynamics of the solid solution catalysts was equally important. Herein, a series of ZnxCd1−xS solid solutions were successfully synthesized based on band structure regulation, and the carrier dynamics were investigated by femtosecond transient absorption spectroscopy (TAS) and DFT, which unveiled a variation of the mixed direct-to-indirect bandgap transition mechanism in ZnxCd1−xS solid solution. The indirect bandgap exhibited a lower photocarrier recombination rate and, more importantly, could also serve as a trapping center for photocarrier, thus promoting the efficiency of charge separation. Consequently, ZnxCd1−xS solid solutions achieved an approximately eleven-fold enhancement in the hydrogen evolution rate (1426.66 μmol h−1) relative to that of bare CdS (129.83 μmol h−1) under visible light (> 420 nm). This work proposed that the enhanced photocatalytic performance could originate from both thermodynamic and kinetic aspects simultaneously, and that the alteration of the photocarrier transition mechanism is one of the main factors affecting the kinetics.
  • 加载中
    1. [1]

      A. Fujishima, K. Honda, Nature 238 (1972) 37, https://doi.org/10.1038/238037a0.  doi: 10.1038/238037a0

    2. [2]

      V. Nguyen, B.S. Nguyen, Z. Jin, M. Shokouhimehr, H.W. Jang, C.C. Hu, P. Singh, P. Raizada, W.X. Peng, S.S. Lam, C.L. Xia, C.C. Nguyen, S.Y. Kim, Q.V. Le, Chem. Eng. J. 402 (2020) 126184, https://doi.org/10.1016/j.cej.2020.126184.  doi: 10.1016/j.cej.2020.126184

    3. [3]

      M. Rafique, R. Mubashar, M. Irshad, S.S.A. Gillani, M.B. Tahir, N.R. Khalid, A. Yasmin, M.A. Shehzad, J. Inorg. Organomet. P. 30 (2020) 3837, https://doi.org/10.1007/s10904-020-01611-9.  doi: 10.1007/s10904-020-01611-9

    4. [4]

      Z.D. Wei, J.Y. Liu, W.J. Fang, Z. Qin, Z. Jiang, W.F. Shangguan, Catal. Sci. Technol. 8 (2018) 3774, https://doi.org/10.1039/C8CY00959G.  doi: 10.1039/C8CY00959G

    5. [5]

      R. Shi, H.F. Ye, F. Liang, Z. Wang, K. Li, Y.X. Weng, Z.S. Lin, W.F. Fu, C.M. Che, Y. Chen, Adv. Mater. 30 (2018) 1705941, https://doi.org/10.1002/adma.201705941.  doi: 10.1002/adma.201705941

    6. [6]

      Z.D. Wei, Y.C. Zhang, H.S. Huang, J.Y. Liu, Y.R. Zhang, X. L, Li, W.F. Shangguan, Z. Huang, Inorg. Chem. 64 (2025) 12277, https://doi.org/10.1021/acs.inorgchem.5c01686.  doi: 10.1021/acs.inorgchem.5c01686

    7. [7]

      X.F. Ning, G.X. Lu, Nanoscale 12 (2020) 1213, https://doi.org/10.1039/c9nr09183a.  doi: 10.1039/c9nr09183a

    8. [8]

      Z.D. Wei, J.W. Yan, Y.C. Zhang, J.S. Chi, H.S. Huang, J.Y. Liu, J.L. Mi, L.L. Ma, W.J. Fang, W.F. Shangguan, Z. Huang, Appl. Catal. B-Environ. Energy 378 (2025) 125569, https://doi.org/10.1016/j.apcatb.2025.125569.  doi: 10.1016/j.apcatb.2025.125569

    9. [9]

      B.D. Liu, J. Li, W.J. Yang, X.L. Zhang, X. Jiang, Y. Bando, Small 13 (2017) 1701998, https://doi.org/10.1002/smll.201701998.  doi: 10.1002/smll.201701998

    10. [10]

      H. Liu, J. Yuan, Z. Jiang, W.F. Shangguan, H. Einaga, Y. Teraoka, J. Mater. Chem. 21 (2011) 16535, https://doi.org/10.1039/C1JM11809A.  doi: 10.1039/C1JM11809A

    11. [11]

      F. Dionigi, P.C.K. Vesborg, T. Pedersen, O. Hansen, S. Dahl, A.K. Xiong, K. Maeda, K. Domen, I. Chorkendorff, J. Catal. 292 (2012) 26, https://doi.org/10.1016/j.jcat.2012.03.021.  doi: 10.1016/j.jcat.2012.03.021

    12. [12]

      K.W. Liu, B.Y. Zhang, J.F. Zhang, W.R. Lin, J.M. Wang, Y. Xu, Y. Xiang, T. Hisatomi, K. Domen, G.J. Ma, ACS Catal. 12 (2022) 14637, https://doi.org/10.1021/acscatal.2c04361.  doi: 10.1021/acscatal.2c04361

    13. [13]

      T. Ohno, L. Bai, T. Hisatomi, K. Maeda, K. Domen, J. Am. Chem. Soc. 134 (2012) 8254, https://doi.org/10.1021/ja302479f.  doi: 10.1021/ja302479f

    14. [14]

      W.J. Fang, J.Y. Liu, D. Yang, Z.D. Wei, Z. Jiang, W.F. Shangguan, ACS Sustain. Chem. Eng. 5 (2017) 6578, https://doi.org/10.1021/acssuschemeng.7b00808.  doi: 10.1021/acssuschemeng.7b00808

    15. [15]

      Z.D. Wei, Y. Zhu, W.Q. Guo, J.Y. Liu, W.J. Fang, Z. Jiang, W.F. Shangguan, Appl. Catal. B-Environ. 266 (2020) 118664, https://doi.org/10.1016/j.apcatb.2020.118664.  doi: 10.1016/j.apcatb.2020.118664

    16. [16]

      W.Q. Guo, P.F. Yu, H.L. Luo, J.S. Chi, J. Zhi, X.S. Liu, W. Wen, W.F. Shangguan, J. Catal. 406 (2022) 193, https://doi.org/10.1016/j.jcat.2022.01.011.  doi: 10.1016/j.jcat.2022.01.011

    17. [17]

      M.C. Liu, Y.B. Chen, J.Z. Su, J.W. Shi, X.X. Wang, L.J. Guo, Nat. Energy 1 (2016) 16151, https://doi.org/10.1038/NENERGY.2016.151.  doi: 10.1038/NENERGY.2016.151

    18. [18]

      C.W. Wang, T. Guo, G.J. Hu, J.X. Liu, Y. Zhu, Q.J. Guo, J. Mater. Res. Technol. 32 (2024) 2433, https://doi.org/10.1016/j.jmrt.2024.08.111.  doi: 10.1016/j.jmrt.2024.08.111

    19. [19]

      Y. Zhao, W.H. Xue, W.F. Sun, H.Y. Chen, X. Li, X.T. Zu, S. Li, X. Xiang, Int. J. Hydrogen Energ. 48 (2023) 31161, https://doi.org/10.1016/j.ijhydene.2023.04.215.  doi: 10.1016/j.ijhydene.2023.04.215

    20. [20]

      M. Dan, A. Prakash, Q. Cai, J.L. Xiang, Y.H. Ye, Y. Li, S. Yu, Y.H. Lin, Y. Zhou, Sol. RRL 3 (2019) 1800237, https://doi.org/10.1002/solr.201800237.  doi: 10.1002/solr.201800237

    21. [21]

      T. Sun, C.X. Li, Y.P. Bao, J. Fan, E.Z. Liu, Acta. Phys.-Chim. Sin. 39 (2023) 2212009, https://doi.org/10.3866/PKU.WHXB202212009.  doi: 10.3866/PKU.WHXB202212009

    22. [22]

      H. Li, S.R. Tao, S.J. Wan, G.G. Qiu, Q. Long, J.G. Yu, S.W. Cao, Chin. J. Catal. 46 (2023) 167, https://doi.org/10.1016/S1872-2067(22)64201-3.  doi: 10.1016/S1872-2067(22)64201-3

    23. [23]

      T.Y. Huang, Z. Yang, S.Y. Yang, Z.H. Dai, Y.J. Liu, J.H. Liao, G.Y. Zhong, Z.J. Xie, Y.P. Fang, S.S. Zhang, J. Mater. Sci. Technol. 171 (2024) 1, https://doi.org/10.1016/j.jmst.2023.07.010.  doi: 10.1016/j.jmst.2023.07.010

    24. [24]

      J.Y. He, W.S. Zhang, Z.G. Liu, Z.M. Wang, K.Q. Lu, K. Yang, J. Liaocheng Univ. Nat. Sci. Ed. 38 (2025) 421, https://doi.org/10.19728/j.issn1672-6634.2024100015.  doi: 10.19728/j.issn1672-6634.2024100015

    25. [25]

      C. Wu, K.L. Lv, X. Li, Q. Li, Chin. J. Catal. 54 (2023) 137, https://doi.org/10.1016/S1872-2067(23)64542-5.  doi: 10.1016/S1872-2067(23)64542-5

    26. [26]

      M. Li, J.Z. Wang, Z.L. Jin, Rare Metals 43 (2024) 1999, https://doi.org/10.1007/s12598-023-02539-y.  doi: 10.1007/s12598-023-02539-y

    27. [27]

      D. Ontiveros, S. Vela, F. Viñes, C. Sousa, Energy Environ. Mater. 7 (2024) e12774, https://doi.org/10.1002/eem2.12774.  doi: 10.1002/eem2.12774

    28. [28]

      P. Su, J.H. Yu, P.X. Deng, D.L. Qu, T. T Liang, H.H. Zhao, N. Yang, D.F. Zhang, B. Ge, X.P. Pu, J. Liaocheng Univ. Nat. Sci. Ed. 37 (2024) 123, https://doi.org/10.19728/j.issn1672-6634.2024010012.  doi: 10.19728/j.issn1672-6634.2024010012

    29. [29]

      X.Y. Cai, J.H. Du, G.M. Zhong, Y.M. Zhang, L. Mao, Z.Z. Lou, Acta. Phys.-Chim. Sin. 39 (2023) 2302017, https://doi.org/10.3866/Pku.Whxb202302017.  doi: 10.3866/Pku.Whxb202302017

    30. [30]

      W. Deng, X.Q. Hao, J.Q. Yang, Z.L. Jin, Appl. Catal. B-Environ. Energy 360 (2025) 124551, https://doi.org/10.1016/j.apcatb.2024.124551.  doi: 10.1016/j.apcatb.2024.124551

    31. [31]

      Z.H. Xue, D.Y. Luan, H.B. Zhang, X.W. Lou, Joule 6 (2022) 92, https://doi.org/10.1016/j.joule.2021.12.011.  doi: 10.1016/j.joule.2021.12.011

    32. [32]

      J.S. Chi, Z.D. Wei, W.Q. Guo, W.J. Fang, J.W. Yan, H.S. Huang, Y. Zhang, H.L. Luo, J.C. Wang, J.Y. Liu, Z. Jiang, W.F. Shangguan, ACS Catal. 15 (2025) 11293, https://doi.org/10.1021/acscatal.5c02714.  doi: 10.1021/acscatal.5c02714

    33. [33]

      J.N. Ma, T.J. Miao, J.W. Tang, Chem. Soc. Rev. 51 (2022) 5777, https://doi.org/10.1039/D1CS01164B.  doi: 10.1039/D1CS01164B

    34. [34]

      L.M., Z.X.X., L.B., H.B.B., Z.Z.K., ACS Nano 18 (2024) 30247, https://doi.org/10.1021/acsnano.4c10702.  doi: 10.1021/acsnano.4c10702

    35. [35]

      B. Li, M. Lv, Y.J. Zhang, X.Q. Gong, Z.Z. Lou, Z.Y. Wang, Y.Y. Liu, P. Wang, H.F. Cheng, Y. Dai, B.B. Huang, Z.K. Zheng, ACS Nano 18 (2024) 25522, https://doi.org/10.1021/acsnano.4c05351.  doi: 10.1021/acsnano.4c05351

    36. [36]

      T. Takata, J.Z. Jiang, Y. Sakata, M. Nakabayashi, N. Shibata, V. Nandal, K. Seki, T. Hisatomi, K. Domen, Nature 581 (2020) 411, https://doi.org/10.1038/s41586-020-2278-9.  doi: 10.1038/s41586-020-2278-9

    37. [37]

      M.Y. Wang, P. Wang, X.F. Wang, F. Chen, H.G. Yu, J. Mater. Sci. Technol. 174 (2024) 168, https://doi.org/10.1016/j.jmst.2023.06.065.  doi: 10.1016/j.jmst.2023.06.065

    38. [38]

      J.J. Fang, C.Y. Zhu, L.C. Fang, Y.K. Chen, H.L. Hu, Y. Wu, Q.Q. Chen, J.J. Mao, Sci. China. Mater. 67 (2024) 2949, https://doi.org/10.1007/s40843-024-2995-0.  doi: 10.1007/s40843-024-2995-0

    39. [39]

      J.W. Hu, K. Xia, A. Yang, Z.H. Zhang, W. Xiao, C. Liu, Q.F. Zhang, Acta. Phys.-Chim. Sin. 40 (2024) 2305043, https://doi.org/10.3866/PKU.WHXB202305043.  doi: 10.3866/PKU.WHXB202305043

    40. [40]

      C.H. Fu, D. Li, J.W. Zhang, W. Guo, H. Yang, B. Zhao, Z.M. Chen, X. Fu, Z.Q. Liang, L. Jiang, Chem. Res. Chin. Univ. 39 (2023) 891, https://doi.org/10.1007/s40242-023-3182-2.  doi: 10.1007/s40242-023-3182-2

    41. [41]

      E. Blundo, M. Felici, T. Yildirim, G. Pettinari, D. Tedeschi, A. Miriametro, B. Liu, W. Ma, Y. Lu, A. Polimeni, Phys. Rev. Res. 2 (2020) 012024, https://doi.org/10.1103/PhysRevResearch.2.012024.  doi: 10.1103/PhysRevResearch.2.012024

    42. [42]

      K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Phys. Rev. Lett. 105 (2010) 136805, https://doi.org/10.1103/PhysRevLett.105.136805.  doi: 10.1103/PhysRevLett.105.136805

    43. [43]

      H. Shin, D.S. Hong, H. Cho, H. Jang, G.Y. Kim, K.M. Song, M.J. Choi, D. Kim, Y.S. Jung, Nat. Commun. 15 (2024) 8125, https://doi.org/10.1038/s41467-024-52535-8.  doi: 10.1038/s41467-024-52535-8

    44. [44]

      S. Halder, R. Maity, Ceram. Int. 49 (2023) 8634, https://doi.org/10.1016/j.ceramint.2022.12.096.  doi: 10.1016/j.ceramint.2022.12.096

    45. [45]

      X. Wang, H.T. Huang, M.T. Zhao, W.C. Hao, Z.S. Li, Z.G. Zou, J. Phys. Chem. C 121 (2017) 6864, https://doi.org/10.1021/acs.jpcc.7b01279.  doi: 10.1021/acs.jpcc.7b01279

    46. [46]

      E.M. Hutter, M.C. Gélvez-Rueda, A. Osherov, V. Bulovic, F.C. Grozema, S.D. Stranks, T.J. Savenije, Nat. Mater. 16 (2017) 115, https://doi.org/10.1038/nmat4765.  doi: 10.1038/nmat4765

    47. [47]

      M.C. Liu, L.Z. Wang, G.Q. Lu, X.D. Yao, L.J. Guo, Energ. Environ. Sci. 4 (2011) 1372, https://doi.org/10.1039/C0EE00604A.  doi: 10.1039/C0EE00604A

    48. [48]

      S. Zhang, Q.Y. Chen, Y.H. Wang, L.J. Guo, Int. J. Hydrogen Energ. 37 (2012) 13030, https://doi.org/10.1016/j.ijhydene.2012.05.060.  doi: 10.1016/j.ijhydene.2012.05.060

    49. [49]

      J. Jiang, G.H. Wang, Y.C. Shao, J. Wang, S. Zhou, Y.R. Su, Chin. J. Catal. 43 (2022) 329, https://doi.org/10.1016/S1872-2067(21)63889-5.  doi: 10.1016/S1872-2067(21)63889-5

    50. [50]

      J.Y. Shi, H.J. Yan, X.L. Wang, Z.C. Feng, Z.B. Lei, C. Li, Solid. State. Commun. 146 (2008) 249, https://doi.org/10.1016/j.ssc.2008.02.016.  doi: 10.1016/j.ssc.2008.02.016

    51. [51]

      X.Y. Fan, H. Liu, E. Anang, D.J. Ren, Materials 14 (2021) 4066, https://doi.org/10.3390/ma14154066.  doi: 10.3390/ma14154066

    52. [52]

      Y. Tang, Z.F. Xu, Y. Sun, C.Y. Wang, Y.C. Guo, W.C. Hao, X. Tan, J.H. Ye, T. Yu, Energ. Environ. Sci. 17 (2024) 7882, https://doi.org/10.1039/D4EE03092C.  doi: 10.1039/D4EE03092C

    53. [53]

      J.H. Yang, H.J. Yan, X.L. Wang, F.Y. Wen, Z.J. Wang, D.Y. Fan, J.Y. Shi, C. Li, J. Catal. 290 (2012) 151, https://doi.org/10.1016/j.jcat.2012.03.008.  doi: 10.1016/j.jcat.2012.03.008

    54. [54]

      P.B. Lin, Y. Yang, W. Chen, H.Y. Gao, X.P. Chen, J. Yuan, W.F. Shangguan, Acta. Phys.-Chim. Sin. 29 (2013) 1313, https://doi.org/10.3866/PKU.WHXB201303141.  doi: 10.3866/PKU.WHXB201303141

    55. [55]

      J.J. Liu, J. Phys. Chem. C 119 (2015) 28417, https://doi.org/10.1021/acs.jpcc.5b09092.  doi: 10.1021/acs.jpcc.5b09092

    56. [56]

      T.Y. Wang, L.P. Xu, J.W. Cui, J.H. Wu, Z.F. Li, Y.C. Wu, B.N. Tian, Y. Tian, Nano. Lett. 22 (2022) 6664, https://doi.org/10.1021/acs.nanolett.2c02005.  doi: 10.1021/acs.nanolett.2c02005

    57. [57]

      B. Yang, X. Mao, F. Hong, W.W. Meng, Y.X. Tang, X.S. Xia, S.Q. Yang, W.Q. Deng, K.L. Han, J. Am. Chem. Soc. 140 (2018) 17001, https://doi.org/10.1021/jacs.8b07424.  doi: 10.1021/jacs.8b07424

    58. [58]

      C.B. Bie, B.C. Zhu, L.X. Wang, H.G. Yu, C.H. Jiang, T. Chen, J.G. Yu, Angew. Chem. Int. Edit. 61 (2022) e202212045, https://doi.org/10.1002/ange.202212045.  doi: 10.1002/ange.202212045

    59. [59]

      N. Li, X.P. Zhai, B. Ma, H.J. Zhang, M.J. Xiao, Q. Wang, H.L. Zhang, J. Mater. Chem. A 11 (2023) 4020, https://doi.org/10.1039/d2ta09777j.  doi: 10.1039/d2ta09777j

    60. [60]

      C.M. Wolff, P.D. Frischmann, M. Schulze, B.J. Bohn, R. Wein, P. Livadas, M.T. Carlson, F. Jäckel, J. Feldmann, F. Würthner, J.K. Stolarczyk, Nat. Energy 3 (2018) 862, https://doi.org/10.1038/s41560-018-0229-6.  doi: 10.1038/s41560-018-0229-6

    61. [61]

      D.H.K. Murthy, H. Matsuzaki, Z. Wang, Y. Suzuki, T. Hisatomi, K. Seki, Y. Inoue, K. Domen, A. Furube, Chem. Sci. 10 (2019) 5353, https://doi.org/10.1039/C9SC00217K.  doi: 10.1039/C9SC00217K

    62. [62]

      C. Cheng, J.J. Zhang, B.C. Zhu, G.J. Liang, L.Y. Zhang, J.G. Yu, Angew. Chem. Int. Edit. 62 (2023) e202218688, https://doi.org/10.1002/anie.202218688.  doi: 10.1002/anie.202218688

  • 加载中
    1. [1]

      Kaihui HuangDejun ChenXin ZhangRongchen ShenPeng ZhangDifa XuXin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-0. doi: 10.3866/PKU.WHXB202407020

    2. [2]

      Xinwan ZhaoYue CaoMinjun LeiZhiliang JinTsubaki Noritatsu . Constructing S-scheme heterojunctions by integrating covalent organic frameworks with transition metal sulfides for efficient noble-metal-free photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(12): 100152-0. doi: 10.1016/j.actphy.2025.100152

    3. [3]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    4. [4]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    5. [5]

      Zhengyu ZhouHuiqin YaoYoulin WuTeng LiNoritatsu TsubakiZhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-0. doi: 10.3866/PKU.WHXB202312010

    6. [6]

      Jiaqi YangXuqiang HaoJiejie JingYuqiang HaoZhiliang Jin . 3D/2D ReSe2/ZnCdS S-scheme photocatalyst with efficient interfacial charge separation for optimized hydrogen production. Acta Physico-Chimica Sinica, 2025, 41(10): 100131-0. doi: 10.1016/j.actphy.2025.100131

    7. [7]

      Jingzhao ChengShiyu GaoBei ChengKai YangWang WangShaowen Cao . Construction of 4-Amino-1H-imidazole-5-carbonitrile Modified Carbon Nitride-Based Donor-Acceptor Photocatalyst for Efficient Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-0. doi: 10.3866/PKU.WHXB202406026

    8. [8]

      Xinyu MiaoHao YangJie HeJing WangZhiliang Jin . Adjusting the electronic structure of Keggin-type polyoxometalates to construct S-scheme heterojunction for photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-0. doi: 10.1016/j.actphy.2025.100051

    9. [9]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    10. [10]

      Zhuoyan LvYangming DingLeilei KangLin LiXiao Yan LiuAiqin WangTao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-0. doi: 10.3866/PKU.WHXB202408015

    11. [11]

      Changjun YouChunchun WangMingjie CaiYanping LiuBaikang ZhuShijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014

    12. [12]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-0. doi: 10.3866/PKU.WHXB202402016

    13. [13]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    14. [14]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    15. [15]

      Yuqiong LiBing LanBin GuanChunlong DaiFan ZhangZifeng Lin . Molten Salt Derived Mo2CTx MXene with Excellent Catalytic Performance for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(9): 2306031-0. doi: 10.3866/PKU.WHXB202306031

    16. [16]

      Ying Chen Ronghua Yan Weiyan Yin . Research Progress on the Synthesis of Metal Single-Atom Catalysts and Their Applications in Electrocatalytic Hydrogen Evolution Reactions. University Chemistry, 2025, 40(9): 344-353. doi: 10.12461/PKU.DXHX202503066

    17. [17]

      Ruyan LiuZhenrui NiOlim RuzimuradovKhayit TurayevTao LiuLuo YuPanyong Kuang . Ni-induced modulation of Pt 5d-H 1s antibonding orbitals for enhanced hydrogen evolution and urea oxidation. Acta Physico-Chimica Sinica, 2025, 41(12): 100159-0. doi: 10.1016/j.actphy.2025.100159

    18. [18]

      Xueqi YangJuntao ZhaoJiawei YeDesen ZhouTingmin DiJun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-0. doi: 10.1016/j.actphy.2025.100074

    19. [19]

      Mahmoud SayedHan LiChuanbiao Bie . Challenges and prospects of photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(9): 100117-0. doi: 10.1016/j.actphy.2025.100117

    20. [20]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

Metrics
  • PDF Downloads(1)
  • Abstract views(82)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return