Citation: Shumin Zhang, Yaqi Wang, Zelin Wang, Libo Wang, Changsheng An, Difa Xu. Ultrafast electron transfer at the ZIS1−x/UCN S-scheme interface enables efficient H2O2 photosynthesis coupled with tetracycline degradation[J]. Acta Physico-Chimica Sinica, ;2025, 41(11): 100136. doi: 10.1016/j.actphy.2025.100136 shu

Ultrafast electron transfer at the ZIS1−x/UCN S-scheme interface enables efficient H2O2 photosynthesis coupled with tetracycline degradation

  • Corresponding author: Changsheng An, z20190628@ccsu.edu.cn Difa Xu, xudifa@sina.com
  • Received Date: 24 June 2025
    Revised Date: 20 July 2025
    Accepted Date: 23 July 2025

    Fund Project: the Research Foundation Bureau of Hunan Province 24B0787the National Natural Science Foundation of China 52204307the National Natural Science Foundation of China 52202376

  • Coupling H2O2 production with organic pollutant degradation can effectively overcome the sluggish kinetics of water oxidation while concurrently addressing environmental pollution challenges. In this work, an S-defect-rich ZnIn2S4/g-C3N4 (ZIS1−x/UCN) S-scheme heterojunction photocatalyst was constructed by in situ growing ZIS1−x nanosheets on porous ultrathin UCN. The designed ZIS1−x/UCN photocatalyst demonstrates enhanced visible light absorption, abundant active sites, and intimate interfacial contact. The optimized ZIS1−x/UCN-1.0 photocatalyst exhibits outstanding dual functionality, simultaneously achieving an H2O2 production rate of 2902.2 µmol·g−1·h−1 and 91.3% tetracycline (50 mg·L−1) degradation efficiency. This H2O2 performance represents a 1.63-fold enhancement compared to its activity in pure water (1777.0 µmol·g−1·h−1). Through comprehensive characterization including femtosecond transient absorption spectroscopy (fs-TAS), in situ irradiation X-ray photoelectron spectroscopy (ISI-XPS), and in situ X-ray absorption fine structure spectroscopy (XAFS), we unequivocally confirm the S-scheme charge transfer mechanism. This S-scheme induced unique electronic structure not only fosters ultrafast electron transfer at the interface (3.54 ps) but also significantly enhances the redox capacity of photogenerated carriers. Collectively, this work opens new avenues for the dual application of photocatalytic technology in both energy production and environmental remediation.
  • 加载中
    1. [1]

      J. Song, C. Li, X. Zhang, P. Ma, K. Zheng, ACS Catal. 15 (2025) 9058, https://doi.org/10.1021/acscatal.5c01609.  doi: 10.1021/acscatal.5c01609

    2. [2]

      K. Zhang, S. Yuan, L. Zhang, Q. Wang, Acta Phys. -Chim. Sin. 39 (2023) 2212010, https://doi.org/10.3866/PKU.WHXB202212010.  doi: 10.3866/PKU.WHXB202212010

    3. [3]

      G. Gao, Y. Tian, X. Gong, Z. Pan, K. Yang, B. Zong, Chin. J. Catal. 41 (2020) 1039, https://doi.org/10.1016/s1872-2067(20)63562-8.  doi: 10.1016/s1872-2067(20)63562-8

    4. [4]

      Q. Zhang, C. Dong, C. Xue, H. Che, K. Zhang, Y. Ao, Angew. Chem. Int. Ed. 64 (2024) e202417591, https://doi.org/10.1002/anie.202417591.  doi: 10.1002/anie.202417591

    5. [5]

      Z. Chen, D. Yao, C. Chu, S. Mao, Chem. Eng. J. 451 (2023) 138489, https://doi.org/10.1016/j.cej.2022.138489.  doi: 10.1016/j.cej.2022.138489

    6. [6]

      Y. Luo, C. Liu, D. Xia, X. Ou, Y. Cai, Y. Zhou, J. Jiang, B. Han, Angew. Chem. Int. Ed. 62 (2023) e202305355, https://doi.org/10.1002/anie.202305355.  doi: 10.1002/anie.202305355

    7. [7]

      S. Qu, Y. Ng, Adv. Energy Mater. 13 (2023) 2301047, https://doi.org/10.1002/aenm.202301047.  doi: 10.1002/aenm.202301047

    8. [8]

      Z. Yong, T. Ma, Angew. Chem. Int. Ed. 62 (2023) e202308980, https://doi.org/10.1002/ange.202308980.  doi: 10.1002/ange.202308980

    9. [9]

      L. Sun, Z. Shen, Y. Pang, X. Ma, D. Qu, L. An, Z. Sun, Adv. Energ. Sust. Res. 4 (2023) 2300090, https://doi.org/10.1002/aesr.202300090.  doi: 10.1002/aesr.202300090

    10. [10]

      B. Zhu, C. Jiang, J. Xu, Z. Zhang, J. Fu, J. Yu, Mater. Today 82 (2025) 251, https://doi.org/10.1016/j.mattod.2024.11.012.  doi: 10.1016/j.mattod.2024.11.012

    11. [11]

      Y. Zhang, Y. Liu, S. Zhang, Y. Zhao, J. Zhang, J. Materiomics 11 (2025) 100985, https://doi.org/10.1016/j.jmat.2024.100985.  doi: 10.1016/j.jmat.2024.100985

    12. [12]

      K. Meng, B. Cheng, X. Ren, Z. Xia, F. Xu, L. Zhang, J. Yu, Adv. Mater. 36 (2024) 2406460, https://doi.org/10.1002/adma.202406460.  doi: 10.1002/adma.202406460

    13. [13]

      Y. Yang, M. Gu, B. Cheng, L. Wang, J. Yu, Appl. Catal. B: Environ. 333 (2023) 122780, https://doi.org/10.1016/j.apcatb.2023.122780.  doi: 10.1016/j.apcatb.2023.122780

    14. [14]

      Y. Yang, X. Zhou, M. Gu, B. Cheng, Z. Wu, J. Zhang, Acta Phys. -Chim. Sin. 41 (2025) 100064, https://doi.org/10.1039/D2CC06300J.  doi: 10.1039/D2CC06300J

    15. [15]

      Y. Mou, X. Wu, C. Qin, J. Chen, Y. Zhao, L. Jiang, C. Zhang, X. Yuan, E. H. Ang, H. Wang, Angew. Chem. Int. Ed. 62 (2023) e202309480, https://doi.org/10.1002/anie.202309480.  doi: 10.1002/anie.202309480

    16. [16]

      X. Zhang, B. Zhu, B. Cheng, J. Yu, H. Yu, Nat. Commun. 15 (2024) 3212, https://doi.org/10.1038/s41467-024-47624-7.  doi: 10.1038/s41467-024-47624-7

    17. [17]

      M. Gu, L. Zhang, B. Zhu, G. Liang, J. Yu, Appl. Catal. B: Environ. 324 (2023) 122227, https://doi.org/10.1016/j.apcatb.2022.122227.  doi: 10.1016/j.apcatb.2022.122227

    18. [18]

      B. Liu, J. Zhang, H. Li, B. Cheng, C. Bie, Acta Phys. -Chim. Sin. 41 (2025) 100121, https://doi.org/10.1016/j.actphy.2025.100121.  doi: 10.1016/j.actphy.2025.100121

    19. [19]

      M. Li, Y. Liu, S. Yang, Y. Zhang, L. Wei, B. Zhu, J. Mater. Sci. Technol. 224 (2025) 245, https://doi.org/10.1016/j.jmst.2024.12.001.  doi: 10.1016/j.jmst.2024.12.001

    20. [20]

      L. Zhang, J. Zhang, J. Yu, H. García, Nat. Rev. Chem. 9 (2025) 328, https://doi.org/10.1038/s41570-025-00698-3.  doi: 10.1038/s41570-025-00698-3

    21. [21]

      Y. Zhao, S. Zhang, Z. Wu, B. Zhu, G. Sun, J. Zhang, Chin. J. Catal. 60 (2024) 219, https://doi.org/10.1016/S1872‐2067(23)64645-5.  doi: 10.1016/S1872‐2067(23)64645-5

    22. [22]

      A. Meng, X. Ma, D. Wen, W. Zhong, S. Zhou, Y. Su, Chin. J. Catal. 60 (2024) 231, https://doi.org/10.1016/S1872-2067(24)60008-2.  doi: 10.1016/S1872-2067(24)60008-2

    23. [23]

      X. Zhou, C. Ai, X. Wang, Z. Wu, J. Zhang, J. Materiomics 11 (2025) 100974, https://doi.org/10.1016/j.jmat.2024.100974.  doi: 10.1016/j.jmat.2024.100974

    24. [24]

      Z. Jiang, J. Zhang, B. Cheng, Y. Zhang, J. Yu, L. Zhang, Small 21 (2025) 2409079, https://doi.org/10.1002/smll.202409079.  doi: 10.1002/smll.202409079

    25. [25]

      S. Zhang, C. An, R. Zhang, D. Kong, D. Xu, S. Zhang, Langmuir 40 (2024) 6453, https://doi.org/10.1021/acs.langmuir.3c04029.  doi: 10.1021/acs.langmuir.3c04029

    26. [26]

      S. Zhang, C. An, K. Xu, Y. Zhao, Y. Zhang, D. Xu, S. Zhang, J. Mater. Sci. Technol. 233 (2025) 1, https://doi.org/10.1016/j.jmst.2025.02.020.  doi: 10.1016/j.jmst.2025.02.020

    27. [27]

      R. Zhang, C. An, S. Zhang, Y. Zhang, Y. Wang, Y. Meng, J. Li, D. Xu, S. Zhang, Int. J. Hydrogen Energ. 84 (2024) 731, https://doi.org/10.1016/j.ijhydene.2024.08.236.  doi: 10.1016/j.ijhydene.2024.08.236

    28. [28]

      M. Sayed, K. Qi, X. Wu, L. Zhang, H. García, J. Yu, Chem. Soc. Rev. 54 (2025) 4874, https://doi.org/10.1039/d4cs01091d.  doi: 10.1039/d4cs01091d

    29. [29]

      F. Xu, J. Zhang, G. Liang, C. Liu, J. Yu, Angew. Chem. Int. Ed. 64 (2025) e202414672, https://doi.org/10.1002/anie.202414672.  doi: 10.1002/anie.202414672

    30. [30]

      X. Wu, L. Tan, G. Chen, J. Kang, G. Wang, Sci. China Mater. 67 (2024) 444, https://doi.org/10.1007/s40843-023-2755-2.  doi: 10.1007/s40843-023-2755-2

    31. [31]

      J. Fu, Q. Xu, J. Low, C. Jiang, J. Yu, Appl. Catal. B: Environ. 243 (2019) 556, https://doi.org/10.1016/j.apcatb.2018.11.011.  doi: 10.1016/j.apcatb.2018.11.011

    32. [32]

      Z. Meng, J. Zhang, H. Long, H. García, L. Zhang, B. Zhu, J. Yu, Angew. Chem. Int. Ed. 64 (2025) e202425456, https://doi.org/10.1002/anie.202505456.  doi: 10.1002/anie.202505456

    33. [33]

      J. Yan, J. Zhang, J. Mater. Sci. Technol. 193 (2024) 18, https://doi.org/10.1016/j.jmst.2023.12.054.  doi: 10.1016/j.jmst.2023.12.054

    34. [34]

      M. Gu, J. Zhang, I. V. Kurganskii, A. S. Poryvaev, M. V. Fedin, B. Cheng, J. Yu, L. Zhang, Adv. Mater. 37 (2025) 2414803, https://doi.org/10.1002/adma.202414803.  doi: 10.1002/adma.202414803

    35. [35]

      Y. Liu, X. Chen, M. Kamali, B. Rossi, L. Appels, R. Dewil, Adv. Funct. Mater. 34 (2024) 2405741, https://doi.org/10.1002/adfm.202405741.  doi: 10.1002/adfm.202405741

    36. [36]

      K. Zhang, J. Yang, F. Wu, L. Wang, H. Tang, Z. Liu, Adv. Funct. Mater. 33 (2023) 2302964, https://doi.org/10.1002/adfm.202302964.  doi: 10.1002/adfm.202302964

    37. [37]

      S. Zhang, H. Dong, C. An, Z. Li, D. Xu, K. Xu, Z. Wu, J. Shen, X. Chen, S. Zhang, J. Mater. Sci. Technol. 75 (2021) 59, https://doi.org/10.1016/j.jmst.2020.10.030.  doi: 10.1016/j.jmst.2020.10.030

    38. [38]

      M. Wei, X. Zhou, C. Cheng, J. Zhang, C. Jiang, B. Cheng, J. Mater. Sci. Technol. 232 (2025) 302, https://doi.org/10.1016/j.jmst.2025.01.036.  doi: 10.1016/j.jmst.2025.01.036

    39. [39]

      J. Sun, H. Liu, S. Wang, Y. Zhang, C. Bie, L. Zhang, J. Materiomics 11 (2025) 100975, https://doi.org/10.1016/j.jmat.2024.100975.  doi: 10.1016/j.jmat.2024.100975

    40. [40]

      M. Tan, C. Yu, Q. Luan, J. Li, C. Liu, W. Dong, Y. Su, L. Qiao, L. Gao, Q. Lu, et al., Adv. Funct. Mater. 32 (2022) 2111740, https://doi.org/10.1002/adfm.202111740.  doi: 10.1002/adfm.202111740

    41. [41]

      S. Zhang, D. Xu, X. Chen, S. Zhang, C. An, Appl. Surf. Sci. 528 (2020) 146858, https://doi.org/10.1016/j.apsusc.2020.146858.  doi: 10.1016/j.apsusc.2020.146858

    42. [42]

      G. Sun, J. Zhang, B. Cheng, H. Yu, J. Yu, Appl. Catal. B: Environ. 358 (2024) 124459, https://doi.org/10.1016/j.apcatb.2024.124459.  doi: 10.1016/j.apcatb.2024.124459

    43. [43]

      G. Liu, R. Chen, B. Xia, Z. Wu, S. Liu, A. Talebian-Kiakalaieh, J. Ran, Chin. J. Catal. 61 (2024) 97, https://doi.org/10.1016/S1872-2067(24)60014-8.  doi: 10.1016/S1872-2067(24)60014-8

    44. [44]

      S. Wang, L. Xue, Q. Kang, L. Wen, K. Lv, Appl. Catal. B: Environ. 358 (2024) 124366, https://doi.org/10.1016/j.apcatb.2024.124366.  doi: 10.1016/j.apcatb.2024.124366

    45. [45]

      X. Liu, G. Yang, Z. Wang, G. Gao, M. Dou, H. Yang, R. Li, D. Li, J. Dou, Int. J. Hydrogen Energ. 51 (2024) 410, https://doi.org/10.1016/j.ijhydene.2023.06.229.  doi: 10.1016/j.ijhydene.2023.06.229

    46. [46]

      X. Zhang, W. Macyk, S. Wageh, A. A. Al-Ghamdi, L. Wang, Adv. Sustainable Syst. 444 (2022) 2200113, https://doi.org/10.1002/adsu.202200113.  doi: 10.1002/adsu.202200113

    47. [47]

      F. Li, X. Yue, Y. Liao, L. Qiao, K. Lv, Q. Xiang, Nat. Commun. 14 (2023) 3901, https://doi.org/10.1038/s41467-023-39578-z.  doi: 10.1038/s41467-023-39578-z

    48. [48]

      Y. Quan, J. Li, X. Li, R. Chen, Y. Zhang, J. Huang, J. Hu, Y. Lai, Appl. Catal. B: Environ. 362 (2025) 124711, https://doi.org/10.1016/j.apcatb.2024.124711.  doi: 10.1016/j.apcatb.2024.124711

    49. [49]

      Y. Huang, S. Feng, C. Ma, P. Cao, F. Li, X. Lu, W. Shi, Sci. China Mater. 67 (2024) 1812, https://doi.org/10.1007/s40843-024-2844-8.  doi: 10.1007/s40843-024-2844-8

    50. [50]

      H. Tan, W. Si, R. Zhang, W. Peng, X. Liu, X. Zheng, F. Hou, L. Yin, J. Liang, Angew. Chem. Int. Ed. 64 (2025) e202416684, https://doi.org/10.1002/anie.202416684.  doi: 10.1002/anie.202416684

    51. [51]

      Q. Wang, Y. Xiao, S. Yang, Y. Zhang, L. Wu, H. Pan, D. Rao, T. Chen, Z. Sun, G. Wang, et al., Nano Lett. 22 (2022) 10216, https://doi.org/10.1021/acs.nanolett.2c03595.  doi: 10.1021/acs.nanolett.2c03595

    52. [52]

      Y. Ma, S. Wang, Y. Zhang, B. Cheng, L. Zhang, J. Materiomics 11 (2025) 100978, https://doi.org/10.1016/j.jmat.2024.100978.  doi: 10.1016/j.jmat.2024.100978

    53. [53]

      X. Li, W. Ho, S. Han, P. Wang, S. Lee, Z. Zhang, Appl. Cat. B: Environ. 338 (2023) 123048, https://doi.org/10.1016/j.apcatb.2023.123048.  doi: 10.1016/j.apcatb.2023.123048

    54. [54]

      J. Wang, Y. Jiang, J. Wan, B. Zheng, Y. Li, B. Jiang, Sci. China Mater. 66 (2023) 1053, https://doi.org/10.1007/s40843-022-2218-7.  doi: 10.1007/s40843-022-2218-7

    55. [55]

      J. Qiu, Y. Zhang, B. Cheng, J. Zhang, L. Wang, J. Yu, Adv. Mater. 36 (2024) 2400288, https://doi.org/10.1002/adma.202400288.  doi: 10.1002/adma.202400288

    56. [56]

      K. Meng, J. Zhang, B. Zhu, C. Jiang, H. García, J. Yu, Adv. Mater. 37 (2025) 2505088, https://doi.org/10.1002/adma.202505088.  doi: 10.1002/adma.202505088

    57. [57]

      Y. Zhang, B. Zhu, G. Sun, B. Cheng, L. Wang, Chin. J. Catal. 57 (2024) 143, https://doi.org/10.1002/smll.202409079.  doi: 10.1002/smll.202409079

    58. [58]

      M. Gu, Y. Yang, B. Cheng, L. Zhang, P. Xiao, T. Chen, Chin. J. Catal. 59 (2024) 185, https://doi.org/10.1016/S1872-2067(23)64610-8.  doi: 10.1016/S1872-2067(23)64610-8

    59. [59]

      Y. Zhao, S. Zhang, G. Sun, B. Zhu, L. Wang, J. Zhang, Chin. J. Catal. 63 (2024) 258, https://doi.org/10.1016/S1872-2067(24)60069-0.  doi: 10.1016/S1872-2067(24)60069-0

    60. [60]

      J. Hu, X. Li, T. Yang, X. Yang, J. Qu, Y. Cai, H. Yang, Z. Lin, Adv. Mater. 36 (2024) 2412070, https://doi.org/10.1002/adma.202412070.  doi: 10.1002/adma.202412070

    61. [61]

      Y. Liu, M. Li, T. Liu, Z. Wu, L. Zhang, J. Mater. Sci. Technol. 233 (2025) 201, https://doi.org/10.1016/j.jmst.2025.03.005.  doi: 10.1016/j.jmst.2025.03.005

  • 加载中
    1. [1]

      Yiting HuoXin ZhouFeifan ZhaoChenbin AiZhen WuZhidong ChangBicheng Zhu . Boosting photocatalytic CO2 methanation through TiO2/CdS S-scheme heterojunction and fs-TAS mechanism study. Acta Physico-Chimica Sinica, 2025, 41(11): 100148-0. doi: 10.1016/j.actphy.2025.100148

    2. [2]

      Jinwang WuQijing XieChengliang ZhangHaifeng Shi . Rationally Designed ZnFe1.2Co0.8O4/BiVO4 S-Scheme Heterojunction with Spin-Polarization for the Elimination of Antibiotic. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-0. doi: 10.1016/j.actphy.2025.100050

    3. [3]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    4. [4]

      Yi YangXin ZhouMiaoli GuBei ChengZhen WuJianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064

    5. [5]

      Menglan WeiXiaoxia OuYimeng WangMengyuan ZhangFei TengKaixuan Wang . S-scheme heterojunction g-C3N4/Bi2WO6 highly efficient degradation of levofloxacin: performance, mechanism and degradation pathway. Acta Physico-Chimica Sinica, 2025, 41(9): 100105-0. doi: 10.1016/j.actphy.2025.100105

    6. [6]

      Jinhui JiangJiaqi SunYongyi ChenLei ZhangPengyu Dong . W18O49/Al-doped SrTiO3 S-scheme heterojunction aided by the LSPR effect for full-spectrum solar light-driven photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(11): 100145-0. doi: 10.1016/j.actphy.2025.100145

    7. [7]

      Jizhou LiuChenbin AiChenrui HuBei ChengJianjun Zhang . Accelerated Interfacial Electron Transfer in Perovskite Solar Cell by Ammonium Hexachlorostannate Modification and fs-TAS Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-0. doi: 10.3866/PKU.WHXB202402006

    8. [8]

      Bowen LiuJianjun ZhangHan LiBei ChengChuanbiao Bie . MOF-derived ZnO/PANI S-scheme heterojunction for efficient photocatalytic phenol mineralization coupled with H2O2 generation. Acta Physico-Chimica Sinica, 2025, 41(10): 100121-0. doi: 10.1016/j.actphy.2025.100121

    9. [9]

      Yuejiao AnWenxuan LiuYanfeng ZhangJianjun ZhangZhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-0. doi: 10.3866/PKU.WHXB202407021

    10. [10]

      Weikang WangYadong WuJianjun ZhangKai MengJinhe LiLele WangQinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093

    11. [11]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    12. [12]

      Jianyu QinYuejiao AnYanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-0. doi: 10.3866/PKU.WHXB202408002

    13. [13]

      Qishen WangChangzhao ChenMengqing LiLingmin WuKai Dai . Lignin derived carbon quantum dots and oxygen vacancies coregulated S-scheme LCQDs/Bi2WO6 heterojunction for photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(11): 100147-0. doi: 10.1016/j.actphy.2025.100147

    14. [14]

      You WuChang ChengKezhen QiBei ChengJianjun ZhangJiaguo YuLiuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027

    15. [15]

      Xiutao XuChunfeng ShaoJinfeng ZhangZhongliao WangKai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-0. doi: 10.3866/PKU.WHXB202309031

    16. [16]

      Wenlong WangWentao HaoLang HeJia QiaoNing LiChaoqiu ChenYong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116

    17. [17]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    18. [18]

      Jiaxing CaiWendi XuHaoqiang ChiQian LiuWa GaoLi ShiJingxiang LowZhigang ZouYong Zhou . Highly Efficient InOOH/ZnIn2S4 Hollow Sphere S-Scheme Heterojunction with 0D/2D Interface for Enhancing Photocatalytic CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-0. doi: 10.3866/PKU.WHXB202407002

    19. [19]

      Peng LiYuanying CuiZhongliao WangGraham DawsonChunfeng ShaoKai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-0. doi: 10.1016/j.actphy.2025.100065

    20. [20]

      Kexin DongChuqi ShenRuyu YanYanping LiuChunqiang ZhuangShijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-0. doi: 10.3866/PKU.WHXB202310013

Metrics
  • PDF Downloads(0)
  • Abstract views(18)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return