Citation: Shiyi Chen, Jialong Fu, Jianping Qiu, Guoju Chang, Shiyou Hao. Waste medical mask-derived carbon quantum dots enhance the photocatalytic degradation of polyethylene terephthalate (PET) over BiOBr/g-C3N4 S-scheme heterojunction[J]. Acta Physico-Chimica Sinica, ;2026, 42(1): 100135. doi: 10.1016/j.actphy.2025.100135 shu

Waste medical mask-derived carbon quantum dots enhance the photocatalytic degradation of polyethylene terephthalate (PET) over BiOBr/g-C3N4 S-scheme heterojunction

  • Corresponding author: Shiyou Hao, sky54@zjnu.cn
  • Received Date: 22 June 2025
    Revised Date: 19 July 2025
    Accepted Date: 23 July 2025

  • The coronavirus disease 2019 (COVID-19) pandemic has increased the necessity of medical masks, and to date, many waste masks have been discarded without being reprocessed, causing environmental harm. PET, a commonly used plastic product, presents certain hurdles to its natural degradation. In this work, waste medical masks were converted into carbon quantum dots (MCQDs) with blue fluorescence emissions using a simple solvothermal process and then doped into BiOBr/g-C3N4 composite material to construct S-scheme heterojunctions for PET degradation. Density functional theory (DFT) calculations revealed that an interfacial electric field (IEF) was formed between g-C3N4 and BiOBr. The findings demonstrate that the MCQDs, as a cocatalyst for electron transmission and storage, encourage S-scheme heterojunctions to further separate photogenerated electrons and holes. Levofloxacin (LEV) was used as a molecular probe to visually compare the catalytic activities of various catalysts. These catalysts with different photocatalytic activity were then used to degrade PET. The findings demonstrate that the degradation efficiency of PET over the BiOBr/g-C3N4/3MCQDs in seawater is 39.88 ± 1.04% (weight loss), which is 1.37 times higher than that of BiOBr/g-C3N4, and also better than those reported in most of the literature. Free radical capture tests, electrostatic field orbital trap high-resolution gas chromatography-mass spectrometry (HRGC-MS), and ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) experiments uncovered and briefly revealed the key products in the photocatalytic degradation of PET, as well as the relevant mechanism of photocatalytic degradation of PET. The degradation products are expected to become precursors for the further production of polymers and medicines, etc. This study offers fresh perspectives for the creation of innovative photocatalysts for the ecologically benign breakdown of PET, which helps to further lessen environmental damage caused by microplastics (MPs) and enhance resource sustainability.
  • 加载中
    1. [1]

      S. Zhao, K.F. Kvale, L. Zhu, E.R. Zettler, M. Egger, T.J. Mincer, L.A. Amaral-Zettler, L. Lebreton, H. Niemann, R. Nakajima, M. Thiel, R.P. Bos, L. Galgani, A. Stubbins, Nature 641 (2025) 51, https://doi.org/10.1038/s41586-025-08818-1.  doi: 10.1038/s41586-025-08818-1

    2. [2]

      N.H. Le, T.T. Ngoc Van, B. Shong, J. Cho, ACS Sustainable Chem. Eng. 10 (2022) 17261, https://doi.org/10.1021/acssuschemeng.2c05570.  doi: 10.1021/acssuschemeng.2c05570

    3. [3]

      J. Ma, F. Chen, C.C. Chen, Z. Zhang, Z. Zhong, H. Jiang, J. Pu, Y. Li, K. Pan, J. Hazard. Mater. 455 (2023) 131583, https://doi.org/10.1016/j.jhazmat.2023.131583.  doi: 10.1016/j.jhazmat.2023.131583

    4. [4]

      Q. Qian, Q. Pu, L. Li, J. Wu, G. Cheng, Y. Cheng, X. Wang, H. Wang, J. Hazard. Mater. 488 (2025) 137306, https://doi.org/10.1016/j.jhazmat.2025.137306.  doi: 10.1016/j.jhazmat.2025.137306

    5. [5]

      R.G. Santos, G.E. Machovsky-Capuska, R. Andrades, Science 373 (2021) 56, https://doi.org/10.1126/science.abh0945.  doi: 10.1126/science.abh0945

    6. [6]

      M. Wang, P. Zhou, S. DuBay, S. Zhang, Z. Yang, Y. Wang, J. Zhang, Y. Cao, Z. Hu, X. He, S. Wang, M. Li, C. Fan, B. Zou, C. Zhou, Y. Wu, J. Hazard. Mater. 487 (2025) 137274, https://doi.org/10.1016/j.jhazmat.2025.137274.  doi: 10.1016/j.jhazmat.2025.137274

    7. [7]

      S.J. Proma, B. Biswas, M.Y. Noor, H.C. Allen, Environ. Sci. Technol. 59 (2025) 10215, https://doi.org/10.1021/acs.est.5c04793.  doi: 10.1021/acs.est.5c04793

    8. [8]

      S. Huang, X. Huang, R. Bi, Q. Guo, X. Yu, Q. Zeng, Z. Huang, T. Liu, H. Wu, Y. Chen, J. Xu, Y. Wu, P. Guo, Environ. Sci. Technol. 56 (2022) 2476, https://doi.org/10.1021/acs.est.1c03859.  doi: 10.1021/acs.est.1c03859

    9. [9]

      L. Ma, Z.Y. Fan, W.Q. Lian, X.F. Wei, R.Y. Bao, W. Yang, J. Hazard. Mater. 489 (2025) 137640, https://doi.org/10.1016/j.jhazmat.2025.137640.  doi: 10.1016/j.jhazmat.2025.137640

    10. [10]

      G. Ji, Y. Xing, T. You, J. Environ. Chem. Eng. 12 (2024) 113377, https://doi.org/10.1016/j.jece.2024.113377.  doi: 10.1016/j.jece.2024.113377

    11. [11]

      J. Luo, H. Han, X. Wang, X. Qiu, B. Liu, Y. Lai, X. Chen, R. Zhong, L. Wang, C. Wang, Appl. Catal. B: Environ. Energy 328 (2023) 122495, https://doi.org/10.1016/j.apcatb.2023.122495.  doi: 10.1016/j.apcatb.2023.122495

    12. [12]

      F. He, A. Meng, B. Cheng, W. Ho, J. Yu, Chinese J. Catal. 41 (2020) 9, https://doi.org/10.1016/S1872-2067(19)63382-6.  doi: 10.1016/S1872-2067(19)63382-6

    13. [13]

      X. Wang, S. Dong, K. Qi, V. Popkov, X. Xiang, Acta Phys. -Chim. Sin. 40 (2024) 2408005, https://doi.org/10.3866/PKU.WHXB202408005.  doi: 10.3866/PKU.WHXB202408005

    14. [14]

      R. Ma, C. Li, Y. Su, S. Hou, W. Zhang, H. Wang, J. Environ. Chem. Eng. 13 (2025) 116421, https://doi.org/10.1016/j.jece.2025.116421.  doi: 10.1016/j.jece.2025.116421

    15. [15]

      X. Qian, W. Li, X. Wang, H. Guan, Q. Bao, B. Zhao, B. Wulan, S. Liu, D. Zhu, X. Feng, J. Sun, Adv. Func. Mater. 35 (2025) 2416946, https://doi.org/10.1002/adfm.202416946.  doi: 10.1002/adfm.202416946

    16. [16]

      H. Wang, L. Yu, J. Jiang, Arramel, J. Zou, Acta Phys. -Chim. Sin. 40 (2024) 2305047, https://doi.org/10.3866/PKU.WHXB202305047.  doi: 10.3866/PKU.WHXB202305047

    17. [17]

      B. Zhu, J. Sun, Y. Zhao, L. Zhang, J. Yu, Adv. Mater. 36 (2024) 2310600, https://doi.org/10.1002/adma.202310600.  doi: 10.1002/adma.202310600

    18. [18]

      X. Wu, L. Tan, G. Chen, J. Kang, G. Wang, Sci. China Mater. 67 (2024) 444, https://doi.org/10.1007/s40843-023-2755-2.  doi: 10.1007/s40843-023-2755-2

    19. [19]

      Y. Luo, H. Zheng, X. Li, F. Li, H. Tang, X. She, Acta Phys. -Chim. Sin. 41 (2025) 100052, https://doi.org/10.1016/j.actphy.2025.100052.  doi: 10.1016/j.actphy.2025.100052

    20. [20]

      Y. Huang, T. Ding, W. Zuo, Z. Nie, M. Zheng, Y. Zeng, Environ. Res. 274 (2025) 121302, https://doi.org/10.1016/j.envres.2025.121302.  doi: 10.1016/j.envres.2025.121302

    21. [21]

      C. Zheng, Y. Guo, C. Zhang, X. Cao, J. Wan, Appl. Catal. B: Environ. Energy 365 (2025) 124879, https://doi.org/10.1016/j.apcatb.2024.124879.  doi: 10.1016/j.apcatb.2024.124879

    22. [22]

      J. Lu, Z. Li, B. Wu, Z. Jiang, C. Pei, ACS Appl. Nano Mater. 8 (2025) 6133, https://doi.org/10.1021/acsanm.5c00363.  doi: 10.1021/acsanm.5c00363

    23. [23]

      X. Wang, Z. Zhu, J. Jiang, R. Li, J. Xiong, Chemosphere 337 (2023) 139206, https://doi.org/10.1016/j.chemosphere.2023.139206.  doi: 10.1016/j.chemosphere.2023.139206

    24. [24]

      S. Wu, J. Peng, Y. Jiang, S. Lin, Chinese Chem. Lett. (2025) 110819, https://doi.org/10.1016/j.cclet.2025.110819.  doi: 10.1016/j.cclet.2025.110819

    25. [25]

      Y. Shi, J. Li, D. Huang, X. Wang, Y. Huang, C. Chen, R. Li, ACS Catal. 13 (2023) 445, https://doi.org/10.1021/acscatal.2c04228.  doi: 10.1021/acscatal.2c04228

    26. [26]

      L. Ouyang, M. Ng, Z. Zhou, H. Wu, M. Tang, S.S. Chen, Adv. Sci. 12 (2025) 2417390, https://doi.org/10.1002/advs.202417390.  doi: 10.1002/advs.202417390

    27. [27]

      Q. Chen, Q. Xiao, F. He, W. He, K. Liu, C. Zhao, Z. Chang, H. Wang, Sep. Purif. Technol. 363 (2025) 132193, https://doi.org/10.1016/j.seppur.2025.132193.  doi: 10.1016/j.seppur.2025.132193

    28. [28]

      D. Langford, Y. Reva, Y. Bo, K. Gubanov, M. Wu, A. Günay‐Gürer, L.A. Mai, R.W. Crisp, I. Engelmann, E. Spiecker, R.H. Fink, A. Kahnt, B. Jana, D.M. Guldi, Angew. Chem. Int. Ed. 64 (2025) e202418626, https://doi.org/10.1002/anie.202418626.  doi: 10.1002/anie.202418626

    29. [29]

      J. Liu, L. Ji, Q. He, S. Zang, J. Sun, H. Yang, T. Dong, T. Liu, H. Wu, X. Chen, Z. Zhong, X. Deng, Sep. Purif. Technol. 363 (2025) 132196, https://doi.org/10.1016/j.seppur.2025.132196.  doi: 10.1016/j.seppur.2025.132196

    30. [30]

      Y. Guan, S. Wang, Q. Du, M. Wu, Z. Zheng, Z. Li, S. Yan, J. Colloid Interf. Sci. 624 (2022) 168, https://doi.org/10.1016/j.jcis.2022.05.091.  doi: 10.1016/j.jcis.2022.05.091

    31. [31]

      N. Sharma, A. Sharma, H.J. Lee, Environ. Chem. Lett. 23 (2025) 1061, https://doi.org/10.1007/s10311-025-01831-w.  doi: 10.1007/s10311-025-01831-w

    32. [32]

      T.V. de Medeiros, J. Manioudakis, F. Noun, J.R. Macairan, F. Victoria, R. Naccache, J. Mater. Chem. C 7 (2019) 7175, https://doi.org/10.1039/C9TC01640F.  doi: 10.1039/C9TC01640F

    33. [33]

      Z. Sun, H. Li, A.S. Pittman, Y. Cao, Ceram. Int. 51 (2025) 16923, https://doi.org/10.1016/j.ceramint.2025.02.356.  doi: 10.1016/j.ceramint.2025.02.356

    34. [34]

      L. Zhou, Z. Wu, Z. Li, Y. Zhang, J.M. McGoogan, Q. Li, X. Dong, R. Ren, L. Feng, X. Qi, J. Xi, Y. Cui, W. Tan, G. Shi, G. Wu, W. Xu, X. Wang, J. Ma, X. Su, Z. Feng, G.F. Gao, Clin. Infect. Dis. 72 (2021) 332, https://doi.org/10.1093/cid/ciaa725.  doi: 10.1093/cid/ciaa725

    35. [35]

      J. Wang, C. Zhang, X. Zhao, Y. Weng, X. Nan, X. Han, C. Li, B. Liu, Sci. Total Environ. 904 (2023) 166808, https://doi.org/10.1016/j.scitotenv.2023.166808.  doi: 10.1016/j.scitotenv.2023.166808

    36. [36]

      C. Miao, Q. Wang, S. Yang, Y. Tang, X. Liu, S. Lu, Talanta 275 (2024) 126070, https://doi.org/10.1016/j.talanta.2024.126070.  doi: 10.1016/j.talanta.2024.126070

    37. [37]

      L. Li, Z. Yang, H. Xiong, M. Ma, R. Zhang, Z. Jiang, ACS Appl. Mater. Interfaces, 17 (2025) 15287, https://doi.org/10.1021/acsami.4c18585.  doi: 10.1021/acsami.4c18585

    38. [38]

      Y. Zhong, X. Zhang, Y. Wang, X. Zhang, X. Wang, Appl. Surf. Sci. 639 (2023) 158254, https://doi.org/10.1016/j.apsusc.2023.158254.  doi: 10.1016/j.apsusc.2023.158254

    39. [39]

      J. Luo, X. Xue, W. Pan, T. Chen, Y. Jian, J. Zeng, W. Dong, Appl. Catal. B: Environ. Energy 375 (2025) 125442, https://doi.org/10.1016/j.apcatb.2025.125442.  doi: 10.1016/j.apcatb.2025.125442

    40. [40]

      D. Majhi, K. Das, A. Mishra, R. Dhiman, B.G. Mishra, Appl. Catal. B: Environ. Energy 260 (2020) 118222, https://doi.org/10.1016/j.apcatb.2019.118222.  doi: 10.1016/j.apcatb.2019.118222

    41. [41]

      Q. Han, B. Wang, J. Gao, Z. Cheng, Y. Zhao, Z. Zhang, L. Qu, ACS Nano 10 (2016) 2745, https://doi.org/10.1021/acsnano.5b07831.  doi: 10.1021/acsnano.5b07831

    42. [42]

      S. Li, J. Hu, A.A. Aryee, Y. Sun, Z. Li, Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 296 (2023) 122659, https://doi.org/10.1016/j.saa.2023.122659.  doi: 10.1016/j.saa.2023.122659

    43. [43]

      Q. Shi, A. Raza, L. Xu, G. Li, J. Colloid Interface Sci. 625 (2022) 750, https://doi.org/10.1016/j.jcis.2022.06.066.  doi: 10.1016/j.jcis.2022.06.066

    44. [44]

      J. Shen, M. Yi, X. Yao, H. Zhang, J. Chen, G. Fan, Z. Jiang, Chem. Eng. J. 514 (2025) 163170, https://doi.org/10.1016/j.cej.2025.163170.  doi: 10.1016/j.cej.2025.163170

    45. [45]

      L. Lin, J. Yi, J. Wang, Q. Qian, Q. Chen, C. Cao, W. Zhou, Langmuir 40 (2024) 22582, https://doi.org/10.1021/acs.langmuir.4c02124.  doi: 10.1021/acs.langmuir.4c02124

    46. [46]

      A.P. Sinitsyn, O.V. Mitkevich, A.V. Gusakov, A.A. Klyosov, Carbohyd. Polym. 10 (1989) 1, https://doi.org/10.1016/0144-8617(89)90028-3.  doi: 10.1016/0144-8617(89)90028-3

    47. [47]

      B. Guo, X. Lopez‐Lorenzo, Y. Fang, E. Bäckström, A.J. Capezza, S.R. Vanga, I. Furó, M. Hakkarainen, P. Syrén, ChemSusChem 16 (2023) e202300742, https://doi.org/10.1002/cssc.202300742.  doi: 10.1002/cssc.202300742

    48. [48]

      R. Chen, Z. Zhang, Y. Deng, J. Wang, Y. Cui, Y. Zhao, H. Ge, Ind. Eng. Chem. Res. 64 (2025) 7915, https://doi.org/10.1021/acs.iecr.5c00311.  doi: 10.1021/acs.iecr.5c00311

    49. [49]

      D. Zhou, L. Wang, F. Zhang, J. Wu, H. Wang, J. Yang, Adv. Sustain. Syst. 6 (2022) 2100516, https://doi.org/10.1002/adsu.202100516.  doi: 10.1002/adsu.202100516

    50. [50]

      M.C. Ariza-Tarazona, C. Siligardi, H.A. Carreón-López, J.E. Valdéz-Cerda, P. Pozzi, G. Kaushik, J.F. Villarreal-Chiu, E.I. Cedillo-González, Mar. Pollut. Bull. 193 (2023) 115206, https://doi.org/10.1016/j.marpolbul.2023.115206.  doi: 10.1016/j.marpolbul.2023.115206

    51. [51]

      D. Zhou, H. Luo, F. Zhang, J. Wu, J. Yang, H. Wang, Adv. Fiber Mater. 4 (2022) 1094, https://doi.org/10.1007/s42765-022-00149-4.  doi: 10.1007/s42765-022-00149-4

    52. [52]

      G. Peng, X. Qi, W. Qu, X. Shao, L. Song, P. Du, J. Xiong, Catal. Sci. Technol. 13 (2023) 5868, https://doi.org/10.1039/D3CY00815K.  doi: 10.1039/D3CY00815K

    53. [53]

      W. Qu, L. Song, G. Peng, X. Shao, Y. Wang, P. Du, J. Xiong, Appl. Catal. A: Gen. 693 (2025) 120119, https://doi.org/10.1016/j.apcata.2025.120119.  doi: 10.1016/j.apcata.2025.120119

    54. [54]

      V. Blanco-Gutiérrez, P. Li, R. Berzal-Cabetas, A.J.D. santos-García, J. Solid State Chem. 316 (2022) 123509, https://doi.org/10.1016/j.jssc.2022.123509.  doi: 10.1016/j.jssc.2022.123509

    55. [55]

      J. Zhang, F. Fan, W. Zhu, W. Yao, F. Zhao, Z. Yang, C. Wang, Y. Wang, J. Mater. Chem. A 12 (2024) 19331, https://doi.org/10.1039/D4TA02737J.  doi: 10.1039/D4TA02737J

    56. [56]

      W. Qu, G. Peng, L. Song, W. Guo, Y. Chen, P. Du, J. Xiong, J. Mater. Chem. C 12 (2024) 8837, https://doi.org/10.1039/D4TC01616E.  doi: 10.1039/D4TC01616E

    57. [57]

      J.M. Musthafa, B.K. Mandal, Opt. Mater. 154 (2024) 115701, https://doi.org/10.1016/j.optmat.2024.115701.  doi: 10.1016/j.optmat.2024.115701

    58. [58]

      F. He, B. Zhu, B. Cheng, J. Yu, W. Ho, W. Macyk, Appl. Catal. B: Environ. Energy 272 (2020) 119006, https://doi.org/10.1016/j.apcatb.2020.119006.  doi: 10.1016/j.apcatb.2020.119006

    59. [59]

      X. Lian, S. Chen, F. He, S. Dong, E. Liu, H. Li, K. Xu, Sep. Purif. Technol. 286 (2022) 120449, https://doi.org/10.1016/j.seppur.2022.120449.  doi: 10.1016/j.seppur.2022.120449

    60. [60]

      Q. Wang, W. Wang, L. Zhong, D. Liu, X. Cao, F. Cui, Appl. Catal. B: Environ. Energy 220 (2018) 290, http://dx.doi.org/10.1016/j.apcatb.2017.08.049.  doi: 10.1016/j.apcatb.2017.08.049

    61. [61]

      J. Shang, W. Hao, X. Lv, T. Wang, X. Wang, Y. Du, S. Dou, T. Xie, D. Wang, J. Wang, ACS Catal. 4 (2014) 954, https://doi.org/10.1021/cs401025u.  doi: 10.1021/cs401025u

    62. [62]

      V. K. Sriramadasu, H. Joshi, S. K. Patro, N. Sharma, A. Singh, S. Pakhira, S. Bhattacharyya, Small 21 (2025) 2503321, https://doi.org/10.1002/smll.202503321.  doi: 10.1002/smll.202503321

    63. [63]

      Q. Xu, R. He, Y. Li, Acta Phys. -Chim. Sin. 39 (2023) 2211009, http://doi.org/10.3866/PKU.WHXB202211009.  doi: 10.3866/PKU.WHXB202211009

    64. [64]

      J. Yan, L. Wei, Acta Phys. -Chim. Sin. 40 (2024) 2312024, http://doi.org/10.3866/PKU.WHXB202312024.  doi: 10.3866/PKU.WHXB202312024

    65. [65]

      S. Li, K. Rong, X. Wang, C. Shen, F. Yang, Q. Zhang, Acta Phys. -Chim. Sin. 40 (2024) 2403005, https://doi.org/10.3866/PKU.WHXB202403005.  doi: 10.3866/PKU.WHXB202403005

    66. [66]

      M. Sayed, K. Qi, X. Wu, L. Zhang, H. García, J. Yu, Chem. Soc. Rev. 54 (2025) 4874, https://doi.org/10.1039/D4CS01091D.  doi: 10.1039/D4CS01091D

    67. [67]

      L. Zhang, J. Zhang, J. Yu, H. García, Nat. Rev. Chem. 9 (2025) 328, https://doi.org/10.1038/s41570-025-00698-3.  doi: 10.1038/s41570-025-00698-3

    68. [68]

      S. Cao, B. Zhong, C. Bie, B. Cheng, F. Xu, Acta Phys. -Chim. Sin. 40 (2024) 2307016, https://doi.org/10.3866/PKU.WHXB202307016.  doi: 10.3866/PKU.WHXB202307016

  • 加载中
    1. [1]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

    2. [2]

      Shuting Zhuang Lida Zhao . Teaching through Research: A Comprehensive Experiment on Carbon Quantum Dots from Microplastic Waste. University Chemistry, 2025, 40(10): 217-224. doi: 10.12461/PKU.DXHX202412010

    3. [3]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    4. [4]

      Tong WANGQinyue ZHONGQiong HUANGWeimin GUOXinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011

    5. [5]

      Changjun YouChunchun WangMingjie CaiYanping LiuBaikang ZhuShijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014

    6. [6]

      Zehui JIABin WENShuting ZHANGZhengliang ZHAOHongfei HANChuntao WANGCaimei FAN . Mechanism of carbon quantum dots-modified BiOCl/diatomite composites for ciprofloxacin degradation under visible light irradiation. Chinese Journal of Inorganic Chemistry, 2026, 42(2): 317-330. doi: 10.11862/CJIC.20250199

    7. [7]

      Menglan WeiXiaoxia OuYimeng WangMengyuan ZhangFei TengKaixuan Wang . S-scheme heterojunction g-C3N4/Bi2WO6 highly efficient degradation of levofloxacin: performance, mechanism and degradation pathway. Acta Physico-Chimica Sinica, 2025, 41(9): 100105-0. doi: 10.1016/j.actphy.2025.100105

    8. [8]

      Deyun MaFenglan LiangQingquan XueYanping LiuChunqiang ZhuangShijie Li . Interfacial engineering of Cd0.5Zn0.5S/BiOBr S-scheme heterojunction with oxygen vacancies for effective photocatalytic antibiotic removal. Acta Physico-Chimica Sinica, 2025, 41(12): 100190-0. doi: 10.1016/j.actphy.2025.100190

    9. [9]

      Wenlong WangWentao HaoLang HeJia QiaoNing LiChaoqiu ChenYong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116

    10. [10]

      Ze LuoYukun ZhuYadan LuoGuangmin RenYonghong WangHua Tang . Photocatalytic selective oxidation of 5-hydroxymethylfurfural coupled with H2 evolution over In2O3/ZnIn2S4 S-scheme heterojunction. Acta Physico-Chimica Sinica, 2026, 42(3): 100166-0. doi: 10.1016/j.actphy.2025.100166

    11. [11]

      Yanping QiuJiatong ZhangLinping LiYangqin GaoNing LiLei Ge . MOF-derived g-C3N4/ZnIn2S4 S-scheme heterojunction: interface-engineering enhanced photocatalytic NO conversion. Acta Physico-Chimica Sinica, 2026, 42(4): 100175-0. doi: 10.1016/j.actphy.2025.100175

    12. [12]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    13. [13]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    14. [14]

      Bowen LiuJianjun ZhangHan LiBei ChengChuanbiao Bie . MOF-derived ZnO/PANI S-scheme heterojunction for efficient photocatalytic phenol mineralization coupled with H2O2 generation. Acta Physico-Chimica Sinica, 2025, 41(10): 100121-0. doi: 10.1016/j.actphy.2025.100121

    15. [15]

      Qishen WangChangzhao ChenMengqing LiLingmin WuKai Dai . Lignin derived carbon quantum dots and oxygen vacancies coregulated S-scheme LCQDs/Bi2WO6 heterojunction for photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(11): 100147-0. doi: 10.1016/j.actphy.2025.100147

    16. [16]

      Xiutao XuChunfeng ShaoJinfeng ZhangZhongliao WangKai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-0. doi: 10.3866/PKU.WHXB202309031

    17. [17]

      Jinwang WuQijing XieChengliang ZhangHaifeng Shi . Rationally Designed ZnFe1.2Co0.8O4/BiVO4 S-Scheme Heterojunction with Spin-Polarization for the Elimination of Antibiotic. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-0. doi: 10.1016/j.actphy.2025.100050

    18. [18]

      Kaihui HuangDejun ChenXin ZhangRongchen ShenPeng ZhangDifa XuXin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-0. doi: 10.3866/PKU.WHXB202407020

    19. [19]

      Kexin DongChuqi ShenRuyu YanYanping LiuChunqiang ZhuangShijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-0. doi: 10.3866/PKU.WHXB202310013

    20. [20]

      Aoyun MengZhenhua LiGuoyuan XiongZhen LiJinfeng Zhang . S-scheme heterojunction Al6Si2O13/BiOBr with enhanced charge transfer effect for efficient and stable photocatalytic degradation of triazophos and dichlorvos pesticides. Acta Physico-Chimica Sinica, 2026, 42(5): 100186-0. doi: 10.1016/j.actphy.2025.100186

Metrics
  • PDF Downloads(1)
  • Abstract views(742)
  • HTML views(63)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return