Waste medical mask-derived carbon quantum dots enhance the photocatalytic degradation of polyethylene terephthalate (PET) over BiOBr/g-C3N4 S-scheme heterojunction
- Corresponding author: Shiyou Hao, sky54@zjnu.cn
Citation:
Shiyi Chen, Jialong Fu, Jianping Qiu, Guoju Chang, Shiyou Hao. Waste medical mask-derived carbon quantum dots enhance the photocatalytic degradation of polyethylene terephthalate (PET) over BiOBr/g-C3N4 S-scheme heterojunction[J]. Acta Physico-Chimica Sinica,
;2026, 42(1): 100135.
doi:
10.1016/j.actphy.2025.100135
S. Zhao, K.F. Kvale, L. Zhu, E.R. Zettler, M. Egger, T.J. Mincer, L.A. Amaral-Zettler, L. Lebreton, H. Niemann, R. Nakajima, M. Thiel, R.P. Bos, L. Galgani, A. Stubbins, Nature 641 (2025) 51, https://doi.org/10.1038/s41586-025-08818-1.
doi: 10.1038/s41586-025-08818-1
N.H. Le, T.T. Ngoc Van, B. Shong, J. Cho, ACS Sustainable Chem. Eng. 10 (2022) 17261, https://doi.org/10.1021/acssuschemeng.2c05570.
doi: 10.1021/acssuschemeng.2c05570
J. Ma, F. Chen, C.C. Chen, Z. Zhang, Z. Zhong, H. Jiang, J. Pu, Y. Li, K. Pan, J. Hazard. Mater. 455 (2023) 131583, https://doi.org/10.1016/j.jhazmat.2023.131583.
doi: 10.1016/j.jhazmat.2023.131583
Q. Qian, Q. Pu, L. Li, J. Wu, G. Cheng, Y. Cheng, X. Wang, H. Wang, J. Hazard. Mater. 488 (2025) 137306, https://doi.org/10.1016/j.jhazmat.2025.137306.
doi: 10.1016/j.jhazmat.2025.137306
R.G. Santos, G.E. Machovsky-Capuska, R. Andrades, Science 373 (2021) 56, https://doi.org/10.1126/science.abh0945.
doi: 10.1126/science.abh0945
M. Wang, P. Zhou, S. DuBay, S. Zhang, Z. Yang, Y. Wang, J. Zhang, Y. Cao, Z. Hu, X. He, S. Wang, M. Li, C. Fan, B. Zou, C. Zhou, Y. Wu, J. Hazard. Mater. 487 (2025) 137274, https://doi.org/10.1016/j.jhazmat.2025.137274.
doi: 10.1016/j.jhazmat.2025.137274
S.J. Proma, B. Biswas, M.Y. Noor, H.C. Allen, Environ. Sci. Technol. 59 (2025) 10215, https://doi.org/10.1021/acs.est.5c04793.
doi: 10.1021/acs.est.5c04793
S. Huang, X. Huang, R. Bi, Q. Guo, X. Yu, Q. Zeng, Z. Huang, T. Liu, H. Wu, Y. Chen, J. Xu, Y. Wu, P. Guo, Environ. Sci. Technol. 56 (2022) 2476, https://doi.org/10.1021/acs.est.1c03859.
doi: 10.1021/acs.est.1c03859
L. Ma, Z.Y. Fan, W.Q. Lian, X.F. Wei, R.Y. Bao, W. Yang, J. Hazard. Mater. 489 (2025) 137640, https://doi.org/10.1016/j.jhazmat.2025.137640.
doi: 10.1016/j.jhazmat.2025.137640
G. Ji, Y. Xing, T. You, J. Environ. Chem. Eng. 12 (2024) 113377, https://doi.org/10.1016/j.jece.2024.113377.
doi: 10.1016/j.jece.2024.113377
J. Luo, H. Han, X. Wang, X. Qiu, B. Liu, Y. Lai, X. Chen, R. Zhong, L. Wang, C. Wang, Appl. Catal. B: Environ. Energy 328 (2023) 122495, https://doi.org/10.1016/j.apcatb.2023.122495.
doi: 10.1016/j.apcatb.2023.122495
F. He, A. Meng, B. Cheng, W. Ho, J. Yu, Chinese J. Catal. 41 (2020) 9, https://doi.org/10.1016/S1872-2067(19)63382-6.
doi: 10.1016/S1872-2067(19)63382-6
X. Wang, S. Dong, K. Qi, V. Popkov, X. Xiang, Acta Phys. -Chim. Sin. 40 (2024) 2408005, https://doi.org/10.3866/PKU.WHXB202408005.
doi: 10.3866/PKU.WHXB202408005
R. Ma, C. Li, Y. Su, S. Hou, W. Zhang, H. Wang, J. Environ. Chem. Eng. 13 (2025) 116421, https://doi.org/10.1016/j.jece.2025.116421.
doi: 10.1016/j.jece.2025.116421
X. Qian, W. Li, X. Wang, H. Guan, Q. Bao, B. Zhao, B. Wulan, S. Liu, D. Zhu, X. Feng, J. Sun, Adv. Func. Mater. 35 (2025) 2416946, https://doi.org/10.1002/adfm.202416946.
doi: 10.1002/adfm.202416946
H. Wang, L. Yu, J. Jiang, Arramel, J. Zou, Acta Phys. -Chim. Sin. 40 (2024) 2305047, https://doi.org/10.3866/PKU.WHXB202305047.
doi: 10.3866/PKU.WHXB202305047
B. Zhu, J. Sun, Y. Zhao, L. Zhang, J. Yu, Adv. Mater. 36 (2024) 2310600, https://doi.org/10.1002/adma.202310600.
doi: 10.1002/adma.202310600
X. Wu, L. Tan, G. Chen, J. Kang, G. Wang, Sci. China Mater. 67 (2024) 444, https://doi.org/10.1007/s40843-023-2755-2.
doi: 10.1007/s40843-023-2755-2
Y. Luo, H. Zheng, X. Li, F. Li, H. Tang, X. She, Acta Phys. -Chim. Sin. 41 (2025) 100052, https://doi.org/10.1016/j.actphy.2025.100052.
doi: 10.1016/j.actphy.2025.100052
Y. Huang, T. Ding, W. Zuo, Z. Nie, M. Zheng, Y. Zeng, Environ. Res. 274 (2025) 121302, https://doi.org/10.1016/j.envres.2025.121302.
doi: 10.1016/j.envres.2025.121302
C. Zheng, Y. Guo, C. Zhang, X. Cao, J. Wan, Appl. Catal. B: Environ. Energy 365 (2025) 124879, https://doi.org/10.1016/j.apcatb.2024.124879.
doi: 10.1016/j.apcatb.2024.124879
J. Lu, Z. Li, B. Wu, Z. Jiang, C. Pei, ACS Appl. Nano Mater. 8 (2025) 6133, https://doi.org/10.1021/acsanm.5c00363.
doi: 10.1021/acsanm.5c00363
X. Wang, Z. Zhu, J. Jiang, R. Li, J. Xiong, Chemosphere 337 (2023) 139206, https://doi.org/10.1016/j.chemosphere.2023.139206.
doi: 10.1016/j.chemosphere.2023.139206
S. Wu, J. Peng, Y. Jiang, S. Lin, Chinese Chem. Lett. (2025) 110819, https://doi.org/10.1016/j.cclet.2025.110819.
doi: 10.1016/j.cclet.2025.110819
Y. Shi, J. Li, D. Huang, X. Wang, Y. Huang, C. Chen, R. Li, ACS Catal. 13 (2023) 445, https://doi.org/10.1021/acscatal.2c04228.
doi: 10.1021/acscatal.2c04228
L. Ouyang, M. Ng, Z. Zhou, H. Wu, M. Tang, S.S. Chen, Adv. Sci. 12 (2025) 2417390, https://doi.org/10.1002/advs.202417390.
doi: 10.1002/advs.202417390
Q. Chen, Q. Xiao, F. He, W. He, K. Liu, C. Zhao, Z. Chang, H. Wang, Sep. Purif. Technol. 363 (2025) 132193, https://doi.org/10.1016/j.seppur.2025.132193.
doi: 10.1016/j.seppur.2025.132193
D. Langford, Y. Reva, Y. Bo, K. Gubanov, M. Wu, A. Günay‐Gürer, L.A. Mai, R.W. Crisp, I. Engelmann, E. Spiecker, R.H. Fink, A. Kahnt, B. Jana, D.M. Guldi, Angew. Chem. Int. Ed. 64 (2025) e202418626, https://doi.org/10.1002/anie.202418626.
doi: 10.1002/anie.202418626
J. Liu, L. Ji, Q. He, S. Zang, J. Sun, H. Yang, T. Dong, T. Liu, H. Wu, X. Chen, Z. Zhong, X. Deng, Sep. Purif. Technol. 363 (2025) 132196, https://doi.org/10.1016/j.seppur.2025.132196.
doi: 10.1016/j.seppur.2025.132196
Y. Guan, S. Wang, Q. Du, M. Wu, Z. Zheng, Z. Li, S. Yan, J. Colloid Interf. Sci. 624 (2022) 168, https://doi.org/10.1016/j.jcis.2022.05.091.
doi: 10.1016/j.jcis.2022.05.091
N. Sharma, A. Sharma, H.J. Lee, Environ. Chem. Lett. 23 (2025) 1061, https://doi.org/10.1007/s10311-025-01831-w.
doi: 10.1007/s10311-025-01831-w
T.V. de Medeiros, J. Manioudakis, F. Noun, J.R. Macairan, F. Victoria, R. Naccache, J. Mater. Chem. C 7 (2019) 7175, https://doi.org/10.1039/C9TC01640F.
doi: 10.1039/C9TC01640F
Z. Sun, H. Li, A.S. Pittman, Y. Cao, Ceram. Int. 51 (2025) 16923, https://doi.org/10.1016/j.ceramint.2025.02.356.
doi: 10.1016/j.ceramint.2025.02.356
L. Zhou, Z. Wu, Z. Li, Y. Zhang, J.M. McGoogan, Q. Li, X. Dong, R. Ren, L. Feng, X. Qi, J. Xi, Y. Cui, W. Tan, G. Shi, G. Wu, W. Xu, X. Wang, J. Ma, X. Su, Z. Feng, G.F. Gao, Clin. Infect. Dis. 72 (2021) 332, https://doi.org/10.1093/cid/ciaa725.
doi: 10.1093/cid/ciaa725
J. Wang, C. Zhang, X. Zhao, Y. Weng, X. Nan, X. Han, C. Li, B. Liu, Sci. Total Environ. 904 (2023) 166808, https://doi.org/10.1016/j.scitotenv.2023.166808.
doi: 10.1016/j.scitotenv.2023.166808
C. Miao, Q. Wang, S. Yang, Y. Tang, X. Liu, S. Lu, Talanta 275 (2024) 126070, https://doi.org/10.1016/j.talanta.2024.126070.
doi: 10.1016/j.talanta.2024.126070
L. Li, Z. Yang, H. Xiong, M. Ma, R. Zhang, Z. Jiang, ACS Appl. Mater. Interfaces, 17 (2025) 15287, https://doi.org/10.1021/acsami.4c18585.
doi: 10.1021/acsami.4c18585
Y. Zhong, X. Zhang, Y. Wang, X. Zhang, X. Wang, Appl. Surf. Sci. 639 (2023) 158254, https://doi.org/10.1016/j.apsusc.2023.158254.
doi: 10.1016/j.apsusc.2023.158254
J. Luo, X. Xue, W. Pan, T. Chen, Y. Jian, J. Zeng, W. Dong, Appl. Catal. B: Environ. Energy 375 (2025) 125442, https://doi.org/10.1016/j.apcatb.2025.125442.
doi: 10.1016/j.apcatb.2025.125442
D. Majhi, K. Das, A. Mishra, R. Dhiman, B.G. Mishra, Appl. Catal. B: Environ. Energy 260 (2020) 118222, https://doi.org/10.1016/j.apcatb.2019.118222.
doi: 10.1016/j.apcatb.2019.118222
Q. Han, B. Wang, J. Gao, Z. Cheng, Y. Zhao, Z. Zhang, L. Qu, ACS Nano 10 (2016) 2745, https://doi.org/10.1021/acsnano.5b07831.
doi: 10.1021/acsnano.5b07831
S. Li, J. Hu, A.A. Aryee, Y. Sun, Z. Li, Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 296 (2023) 122659, https://doi.org/10.1016/j.saa.2023.122659.
doi: 10.1016/j.saa.2023.122659
Q. Shi, A. Raza, L. Xu, G. Li, J. Colloid Interface Sci. 625 (2022) 750, https://doi.org/10.1016/j.jcis.2022.06.066.
doi: 10.1016/j.jcis.2022.06.066
J. Shen, M. Yi, X. Yao, H. Zhang, J. Chen, G. Fan, Z. Jiang, Chem. Eng. J. 514 (2025) 163170, https://doi.org/10.1016/j.cej.2025.163170.
doi: 10.1016/j.cej.2025.163170
L. Lin, J. Yi, J. Wang, Q. Qian, Q. Chen, C. Cao, W. Zhou, Langmuir 40 (2024) 22582, https://doi.org/10.1021/acs.langmuir.4c02124.
doi: 10.1021/acs.langmuir.4c02124
A.P. Sinitsyn, O.V. Mitkevich, A.V. Gusakov, A.A. Klyosov, Carbohyd. Polym. 10 (1989) 1, https://doi.org/10.1016/0144-8617(89)90028-3.
doi: 10.1016/0144-8617(89)90028-3
B. Guo, X. Lopez‐Lorenzo, Y. Fang, E. Bäckström, A.J. Capezza, S.R. Vanga, I. Furó, M. Hakkarainen, P. Syrén, ChemSusChem 16 (2023) e202300742, https://doi.org/10.1002/cssc.202300742.
doi: 10.1002/cssc.202300742
R. Chen, Z. Zhang, Y. Deng, J. Wang, Y. Cui, Y. Zhao, H. Ge, Ind. Eng. Chem. Res. 64 (2025) 7915, https://doi.org/10.1021/acs.iecr.5c00311.
doi: 10.1021/acs.iecr.5c00311
D. Zhou, L. Wang, F. Zhang, J. Wu, H. Wang, J. Yang, Adv. Sustain. Syst. 6 (2022) 2100516, https://doi.org/10.1002/adsu.202100516.
doi: 10.1002/adsu.202100516
M.C. Ariza-Tarazona, C. Siligardi, H.A. Carreón-López, J.E. Valdéz-Cerda, P. Pozzi, G. Kaushik, J.F. Villarreal-Chiu, E.I. Cedillo-González, Mar. Pollut. Bull. 193 (2023) 115206, https://doi.org/10.1016/j.marpolbul.2023.115206.
doi: 10.1016/j.marpolbul.2023.115206
D. Zhou, H. Luo, F. Zhang, J. Wu, J. Yang, H. Wang, Adv. Fiber Mater. 4 (2022) 1094, https://doi.org/10.1007/s42765-022-00149-4.
doi: 10.1007/s42765-022-00149-4
G. Peng, X. Qi, W. Qu, X. Shao, L. Song, P. Du, J. Xiong, Catal. Sci. Technol. 13 (2023) 5868, https://doi.org/10.1039/D3CY00815K.
doi: 10.1039/D3CY00815K
W. Qu, L. Song, G. Peng, X. Shao, Y. Wang, P. Du, J. Xiong, Appl. Catal. A: Gen. 693 (2025) 120119, https://doi.org/10.1016/j.apcata.2025.120119.
doi: 10.1016/j.apcata.2025.120119
V. Blanco-Gutiérrez, P. Li, R. Berzal-Cabetas, A.J.D. santos-García, J. Solid State Chem. 316 (2022) 123509, https://doi.org/10.1016/j.jssc.2022.123509.
doi: 10.1016/j.jssc.2022.123509
J. Zhang, F. Fan, W. Zhu, W. Yao, F. Zhao, Z. Yang, C. Wang, Y. Wang, J. Mater. Chem. A 12 (2024) 19331, https://doi.org/10.1039/D4TA02737J.
doi: 10.1039/D4TA02737J
W. Qu, G. Peng, L. Song, W. Guo, Y. Chen, P. Du, J. Xiong, J. Mater. Chem. C 12 (2024) 8837, https://doi.org/10.1039/D4TC01616E.
doi: 10.1039/D4TC01616E
J.M. Musthafa, B.K. Mandal, Opt. Mater. 154 (2024) 115701, https://doi.org/10.1016/j.optmat.2024.115701.
doi: 10.1016/j.optmat.2024.115701
F. He, B. Zhu, B. Cheng, J. Yu, W. Ho, W. Macyk, Appl. Catal. B: Environ. Energy 272 (2020) 119006, https://doi.org/10.1016/j.apcatb.2020.119006.
doi: 10.1016/j.apcatb.2020.119006
X. Lian, S. Chen, F. He, S. Dong, E. Liu, H. Li, K. Xu, Sep. Purif. Technol. 286 (2022) 120449, https://doi.org/10.1016/j.seppur.2022.120449.
doi: 10.1016/j.seppur.2022.120449
Q. Wang, W. Wang, L. Zhong, D. Liu, X. Cao, F. Cui, Appl. Catal. B: Environ. Energy 220 (2018) 290, http://dx.doi.org/10.1016/j.apcatb.2017.08.049.
doi: 10.1016/j.apcatb.2017.08.049
J. Shang, W. Hao, X. Lv, T. Wang, X. Wang, Y. Du, S. Dou, T. Xie, D. Wang, J. Wang, ACS Catal. 4 (2014) 954, https://doi.org/10.1021/cs401025u.
doi: 10.1021/cs401025u
V. K. Sriramadasu, H. Joshi, S. K. Patro, N. Sharma, A. Singh, S. Pakhira, S. Bhattacharyya, Small 21 (2025) 2503321, https://doi.org/10.1002/smll.202503321.
doi: 10.1002/smll.202503321
Q. Xu, R. He, Y. Li, Acta Phys. -Chim. Sin. 39 (2023) 2211009, http://doi.org/10.3866/PKU.WHXB202211009.
doi: 10.3866/PKU.WHXB202211009
J. Yan, L. Wei, Acta Phys. -Chim. Sin. 40 (2024) 2312024, http://doi.org/10.3866/PKU.WHXB202312024.
doi: 10.3866/PKU.WHXB202312024
S. Li, K. Rong, X. Wang, C. Shen, F. Yang, Q. Zhang, Acta Phys. -Chim. Sin. 40 (2024) 2403005, https://doi.org/10.3866/PKU.WHXB202403005.
doi: 10.3866/PKU.WHXB202403005
M. Sayed, K. Qi, X. Wu, L. Zhang, H. García, J. Yu, Chem. Soc. Rev. 54 (2025) 4874, https://doi.org/10.1039/D4CS01091D.
doi: 10.1039/D4CS01091D
L. Zhang, J. Zhang, J. Yu, H. García, Nat. Rev. Chem. 9 (2025) 328, https://doi.org/10.1038/s41570-025-00698-3.
doi: 10.1038/s41570-025-00698-3
S. Cao, B. Zhong, C. Bie, B. Cheng, F. Xu, Acta Phys. -Chim. Sin. 40 (2024) 2307016, https://doi.org/10.3866/PKU.WHXB202307016.
doi: 10.3866/PKU.WHXB202307016
Yadan Luo , Hao Zheng , Xin Li , Fengmin Li , Hua Tang , Xilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052
Shuting Zhuang , Lida Zhao . Teaching through Research: A Comprehensive Experiment on Carbon Quantum Dots from Microplastic Waste. University Chemistry, 2025, 40(10): 217-224. doi: 10.12461/PKU.DXHX202412010
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005
Tong WANG , Qinyue ZHONG , Qiong HUANG , Weimin GUO , Xinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011
Changjun You , Chunchun Wang , Mingjie Cai , Yanping Liu , Baikang Zhu , Shijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014
Menglan Wei , Xiaoxia Ou , Yimeng Wang , Mengyuan Zhang , Fei Teng , Kaixuan Wang . S-scheme heterojunction g-C3N4/Bi2WO6 highly efficient degradation of levofloxacin: performance, mechanism and degradation pathway. Acta Physico-Chimica Sinica, 2025, 41(9): 100105-0. doi: 10.1016/j.actphy.2025.100105
Deyun Ma , Fenglan Liang , Qingquan Xue , Yanping Liu , Chunqiang Zhuang , Shijie Li . Interfacial engineering of Cd0.5Zn0.5S/BiOBr S-scheme heterojunction with oxygen vacancies for effective photocatalytic antibiotic removal. Acta Physico-Chimica Sinica, 2025, 41(12): 100190-0. doi: 10.1016/j.actphy.2025.100190
Wenlong Wang , Wentao Hao , Lang He , Jia Qiao , Ning Li , Chaoqiu Chen , Yong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116
Jiajie Cai , Chang Cheng , Bowen Liu , Jianjun Zhang , Chuanjia Jiang , Bei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084
Chenye An , Sikandaier Abiduweili , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019
Bowen Liu , Jianjun Zhang , Han Li , Bei Cheng , Chuanbiao Bie . MOF-derived ZnO/PANI S-scheme heterojunction for efficient photocatalytic phenol mineralization coupled with H2O2 generation. Acta Physico-Chimica Sinica, 2025, 41(10): 100121-0. doi: 10.1016/j.actphy.2025.100121
Qishen Wang , Changzhao Chen , Mengqing Li , Lingmin Wu , Kai Dai . Lignin derived carbon quantum dots and oxygen vacancies coregulated S-scheme LCQDs/Bi2WO6 heterojunction for photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(11): 100147-0. doi: 10.1016/j.actphy.2025.100147
Xiutao Xu , Chunfeng Shao , Jinfeng Zhang , Zhongliao Wang , Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-0. doi: 10.3866/PKU.WHXB202309031
Jinwang Wu , Qijing Xie , Chengliang Zhang , Haifeng Shi . Rationally Designed ZnFe1.2Co0.8O4/BiVO4 S-Scheme Heterojunction with Spin-Polarization for the Elimination of Antibiotic. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-0. doi: 10.1016/j.actphy.2025.100050
Kaihui Huang , Dejun Chen , Xin Zhang , Rongchen Shen , Peng Zhang , Difa Xu , Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-0. doi: 10.3866/PKU.WHXB202407020
Kexin Dong , Chuqi Shen , Ruyu Yan , Yanping Liu , Chunqiang Zhuang , Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-0. doi: 10.3866/PKU.WHXB202310013
Yang Xia , Kangyan Zhang , Heng Yang , Lijuan Shi , Qun Yi . Improving Photocatalytic H2O2 Production over iCOF/Bi2O3 S-Scheme Heterojunction in Pure Water via Dual Channel Pathways. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-0. doi: 10.3866/PKU.WHXB202407012
Jingzhuo Tian , Chaohong Guan , Haobin Hu , Enzhou Liu , Dongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-0. doi: 10.1016/j.actphy.2025.100068
Yifan ZHAO , Qiyun MAO , Meijing GUO , Guoying ZHANG , Tongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005