废弃医用口罩衍生的碳量子点增强BiOBr/g-C3N4 S型异质结光催化降解聚对苯二甲酸乙二醇酯(PET)

陈轼逸 付家龙 裘建平 常国菊 郝仕油

引用本文: 陈轼逸, 付家龙, 裘建平, 常国菊, 郝仕油. 废弃医用口罩衍生的碳量子点增强BiOBr/g-C3N4 S型异质结光催化降解聚对苯二甲酸乙二醇酯(PET)[J]. 物理化学学报, 2026, 42(1): 100135. doi: 10.1016/j.actphy.2025.100135 shu
Citation:  Shiyi Chen, Jialong Fu, Jianping Qiu, Guoju Chang, Shiyou Hao. Waste medical mask-derived carbon quantum dots enhance the photocatalytic degradation of polyethylene terephthalate (PET) over BiOBr/g-C3N4 S-scheme heterojunction[J]. Acta Physico-Chimica Sinica, 2026, 42(1): 100135. doi: 10.1016/j.actphy.2025.100135 shu

废弃医用口罩衍生的碳量子点增强BiOBr/g-C3N4 S型异质结光催化降解聚对苯二甲酸乙二醇酯(PET)

    通讯作者: Email: sky54@zjnu.cn (郝仕油)
摘要: 2019冠状病毒病(COVID-19)的大流行增加了医用口罩的需求,迄今为止,许多废弃口罩未经再处理就被丢弃,造成了环境的破坏。PET作为一种常用的塑料产品,其自然降解存在一定的障碍。在本研究中,通过简单的溶剂热法将废弃医用口罩转化为具有蓝色荧光发射的碳量子点(MCQDs),然后将其掺杂到BiOBr/g-C3N4复合材料中,构建S型异质结用于PET降解。密度泛函理论(DFT)计算表明,g-C3N4和BiOBr之间形成了界面电场(IEF)。研究结果表明,MCQDs作为电子传输和存储的助催化剂,促进了S型异质结进一步分离光生电子和空穴。左氧氟沙星(LEV)被用作分子探针,直观地比较了各种催化剂的催化活性。这些具有不同光催化活性的催化剂随后被用于降解PET。研究结果表明,BiOBr/g-C3N4/3MCQDs在海水中对于PET的降解效率为39.88% ± 1.04% (重量损失),比BiOBr/g-C3N4高1.37倍,并且优于大多数文献报道的结果。自由基捕获实验、静电场轨道阱高分辨率气相色谱质谱联用(HRGC-MS)和超高效液相色谱质谱联用(UPLC-MS)实验数据揭示并简要分析了PET光催化降解过程中的关键产物,以及PET光催化降解的相关机理。降解产物有望成为进一步生产聚合物和药物等的前体。本研究为开发用于PET生态友好降解的创新光催化剂提供了新的视角,有助于进一步减少微塑料(MPs)造成的环境损害,并提高资源的可持续性。

English

    1. [1]

      S. Zhao, K.F. Kvale, L. Zhu, E.R. Zettler, M. Egger, T.J. Mincer, L.A. Amaral-Zettler, L. Lebreton, H. Niemann, R. Nakajima, M. Thiel, R.P. Bos, L. Galgani, A. Stubbins, Nature 641 (2025) 51, https://doi.org/10.1038/s41586-025-08818-1. doi: 10.1038/s41586-025-08818-1

    2. [2]

      N.H. Le, T.T. Ngoc Van, B. Shong, J. Cho, ACS Sustainable Chem. Eng. 10 (2022) 17261, https://doi.org/10.1021/acssuschemeng.2c05570. doi: 10.1021/acssuschemeng.2c05570

    3. [3]

      J. Ma, F. Chen, C.C. Chen, Z. Zhang, Z. Zhong, H. Jiang, J. Pu, Y. Li, K. Pan, J. Hazard. Mater. 455 (2023) 131583, https://doi.org/10.1016/j.jhazmat.2023.131583. doi: 10.1016/j.jhazmat.2023.131583

    4. [4]

      Q. Qian, Q. Pu, L. Li, J. Wu, G. Cheng, Y. Cheng, X. Wang, H. Wang, J. Hazard. Mater. 488 (2025) 137306, https://doi.org/10.1016/j.jhazmat.2025.137306. doi: 10.1016/j.jhazmat.2025.137306

    5. [5]

      R.G. Santos, G.E. Machovsky-Capuska, R. Andrades, Science 373 (2021) 56, https://doi.org/10.1126/science.abh0945. doi: 10.1126/science.abh0945

    6. [6]

      M. Wang, P. Zhou, S. DuBay, S. Zhang, Z. Yang, Y. Wang, J. Zhang, Y. Cao, Z. Hu, X. He, S. Wang, M. Li, C. Fan, B. Zou, C. Zhou, Y. Wu, J. Hazard. Mater. 487 (2025) 137274, https://doi.org/10.1016/j.jhazmat.2025.137274. doi: 10.1016/j.jhazmat.2025.137274

    7. [7]

      S.J. Proma, B. Biswas, M.Y. Noor, H.C. Allen, Environ. Sci. Technol. 59 (2025) 10215, https://doi.org/10.1021/acs.est.5c04793. doi: 10.1021/acs.est.5c04793

    8. [8]

      S. Huang, X. Huang, R. Bi, Q. Guo, X. Yu, Q. Zeng, Z. Huang, T. Liu, H. Wu, Y. Chen, J. Xu, Y. Wu, P. Guo, Environ. Sci. Technol. 56 (2022) 2476, https://doi.org/10.1021/acs.est.1c03859. doi: 10.1021/acs.est.1c03859

    9. [9]

      L. Ma, Z.Y. Fan, W.Q. Lian, X.F. Wei, R.Y. Bao, W. Yang, J. Hazard. Mater. 489 (2025) 137640, https://doi.org/10.1016/j.jhazmat.2025.137640. doi: 10.1016/j.jhazmat.2025.137640

    10. [10]

      G. Ji, Y. Xing, T. You, J. Environ. Chem. Eng. 12 (2024) 113377, https://doi.org/10.1016/j.jece.2024.113377. doi: 10.1016/j.jece.2024.113377

    11. [11]

      J. Luo, H. Han, X. Wang, X. Qiu, B. Liu, Y. Lai, X. Chen, R. Zhong, L. Wang, C. Wang, Appl. Catal. B: Environ. Energy 328 (2023) 122495, https://doi.org/10.1016/j.apcatb.2023.122495. doi: 10.1016/j.apcatb.2023.122495

    12. [12]

      F. He, A. Meng, B. Cheng, W. Ho, J. Yu, Chinese J. Catal. 41 (2020) 9, https://doi.org/10.1016/S1872-2067(19)63382-6. doi: 10.1016/S1872-2067(19)63382-6

    13. [13]

      X. Wang, S. Dong, K. Qi, V. Popkov, X. Xiang, Acta Phys. -Chim. Sin. 40 (2024) 2408005, https://doi.org/10.3866/PKU.WHXB202408005. doi: 10.3866/PKU.WHXB202408005

    14. [14]

      R. Ma, C. Li, Y. Su, S. Hou, W. Zhang, H. Wang, J. Environ. Chem. Eng. 13 (2025) 116421, https://doi.org/10.1016/j.jece.2025.116421. doi: 10.1016/j.jece.2025.116421

    15. [15]

      X. Qian, W. Li, X. Wang, H. Guan, Q. Bao, B. Zhao, B. Wulan, S. Liu, D. Zhu, X. Feng, J. Sun, Adv. Func. Mater. 35 (2025) 2416946, https://doi.org/10.1002/adfm.202416946. doi: 10.1002/adfm.202416946

    16. [16]

      H. Wang, L. Yu, J. Jiang, Arramel, J. Zou, Acta Phys. -Chim. Sin. 40 (2024) 2305047, https://doi.org/10.3866/PKU.WHXB202305047. doi: 10.3866/PKU.WHXB202305047

    17. [17]

      B. Zhu, J. Sun, Y. Zhao, L. Zhang, J. Yu, Adv. Mater. 36 (2024) 2310600, https://doi.org/10.1002/adma.202310600. doi: 10.1002/adma.202310600

    18. [18]

      X. Wu, L. Tan, G. Chen, J. Kang, G. Wang, Sci. China Mater. 67 (2024) 444, https://doi.org/10.1007/s40843-023-2755-2. doi: 10.1007/s40843-023-2755-2

    19. [19]

      Y. Luo, H. Zheng, X. Li, F. Li, H. Tang, X. She, Acta Phys. -Chim. Sin. 41 (2025) 100052, https://doi.org/10.1016/j.actphy.2025.100052. doi: 10.1016/j.actphy.2025.100052

    20. [20]

      Y. Huang, T. Ding, W. Zuo, Z. Nie, M. Zheng, Y. Zeng, Environ. Res. 274 (2025) 121302, https://doi.org/10.1016/j.envres.2025.121302. doi: 10.1016/j.envres.2025.121302

    21. [21]

      C. Zheng, Y. Guo, C. Zhang, X. Cao, J. Wan, Appl. Catal. B: Environ. Energy 365 (2025) 124879, https://doi.org/10.1016/j.apcatb.2024.124879. doi: 10.1016/j.apcatb.2024.124879

    22. [22]

      J. Lu, Z. Li, B. Wu, Z. Jiang, C. Pei, ACS Appl. Nano Mater. 8 (2025) 6133, https://doi.org/10.1021/acsanm.5c00363. doi: 10.1021/acsanm.5c00363

    23. [23]

      X. Wang, Z. Zhu, J. Jiang, R. Li, J. Xiong, Chemosphere 337 (2023) 139206, https://doi.org/10.1016/j.chemosphere.2023.139206. doi: 10.1016/j.chemosphere.2023.139206

    24. [24]

      S. Wu, J. Peng, Y. Jiang, S. Lin, Chinese Chem. Lett. (2025) 110819, https://doi.org/10.1016/j.cclet.2025.110819. doi: 10.1016/j.cclet.2025.110819

    25. [25]

      Y. Shi, J. Li, D. Huang, X. Wang, Y. Huang, C. Chen, R. Li, ACS Catal. 13 (2023) 445, https://doi.org/10.1021/acscatal.2c04228. doi: 10.1021/acscatal.2c04228

    26. [26]

      L. Ouyang, M. Ng, Z. Zhou, H. Wu, M. Tang, S.S. Chen, Adv. Sci. 12 (2025) 2417390, https://doi.org/10.1002/advs.202417390. doi: 10.1002/advs.202417390

    27. [27]

      Q. Chen, Q. Xiao, F. He, W. He, K. Liu, C. Zhao, Z. Chang, H. Wang, Sep. Purif. Technol. 363 (2025) 132193, https://doi.org/10.1016/j.seppur.2025.132193. doi: 10.1016/j.seppur.2025.132193

    28. [28]

      D. Langford, Y. Reva, Y. Bo, K. Gubanov, M. Wu, A. Günay‐Gürer, L.A. Mai, R.W. Crisp, I. Engelmann, E. Spiecker, R.H. Fink, A. Kahnt, B. Jana, D.M. Guldi, Angew. Chem. Int. Ed. 64 (2025) e202418626, https://doi.org/10.1002/anie.202418626. doi: 10.1002/anie.202418626

    29. [29]

      J. Liu, L. Ji, Q. He, S. Zang, J. Sun, H. Yang, T. Dong, T. Liu, H. Wu, X. Chen, Z. Zhong, X. Deng, Sep. Purif. Technol. 363 (2025) 132196, https://doi.org/10.1016/j.seppur.2025.132196. doi: 10.1016/j.seppur.2025.132196

    30. [30]

      Y. Guan, S. Wang, Q. Du, M. Wu, Z. Zheng, Z. Li, S. Yan, J. Colloid Interf. Sci. 624 (2022) 168, https://doi.org/10.1016/j.jcis.2022.05.091. doi: 10.1016/j.jcis.2022.05.091

    31. [31]

      N. Sharma, A. Sharma, H.J. Lee, Environ. Chem. Lett. 23 (2025) 1061, https://doi.org/10.1007/s10311-025-01831-w. doi: 10.1007/s10311-025-01831-w

    32. [32]

      T.V. de Medeiros, J. Manioudakis, F. Noun, J.R. Macairan, F. Victoria, R. Naccache, J. Mater. Chem. C 7 (2019) 7175, https://doi.org/10.1039/C9TC01640F. doi: 10.1039/C9TC01640F

    33. [33]

      Z. Sun, H. Li, A.S. Pittman, Y. Cao, Ceram. Int. 51 (2025) 16923, https://doi.org/10.1016/j.ceramint.2025.02.356. doi: 10.1016/j.ceramint.2025.02.356

    34. [34]

      L. Zhou, Z. Wu, Z. Li, Y. Zhang, J.M. McGoogan, Q. Li, X. Dong, R. Ren, L. Feng, X. Qi, J. Xi, Y. Cui, W. Tan, G. Shi, G. Wu, W. Xu, X. Wang, J. Ma, X. Su, Z. Feng, G.F. Gao, Clin. Infect. Dis. 72 (2021) 332, https://doi.org/10.1093/cid/ciaa725. doi: 10.1093/cid/ciaa725

    35. [35]

      J. Wang, C. Zhang, X. Zhao, Y. Weng, X. Nan, X. Han, C. Li, B. Liu, Sci. Total Environ. 904 (2023) 166808, https://doi.org/10.1016/j.scitotenv.2023.166808. doi: 10.1016/j.scitotenv.2023.166808

    36. [36]

      C. Miao, Q. Wang, S. Yang, Y. Tang, X. Liu, S. Lu, Talanta 275 (2024) 126070, https://doi.org/10.1016/j.talanta.2024.126070. doi: 10.1016/j.talanta.2024.126070

    37. [37]

      L. Li, Z. Yang, H. Xiong, M. Ma, R. Zhang, Z. Jiang, ACS Appl. Mater. Interfaces, 17 (2025) 15287, https://doi.org/10.1021/acsami.4c18585. doi: 10.1021/acsami.4c18585

    38. [38]

      Y. Zhong, X. Zhang, Y. Wang, X. Zhang, X. Wang, Appl. Surf. Sci. 639 (2023) 158254, https://doi.org/10.1016/j.apsusc.2023.158254. doi: 10.1016/j.apsusc.2023.158254

    39. [39]

      J. Luo, X. Xue, W. Pan, T. Chen, Y. Jian, J. Zeng, W. Dong, Appl. Catal. B: Environ. Energy 375 (2025) 125442, https://doi.org/10.1016/j.apcatb.2025.125442. doi: 10.1016/j.apcatb.2025.125442

    40. [40]

      D. Majhi, K. Das, A. Mishra, R. Dhiman, B.G. Mishra, Appl. Catal. B: Environ. Energy 260 (2020) 118222, https://doi.org/10.1016/j.apcatb.2019.118222. doi: 10.1016/j.apcatb.2019.118222

    41. [41]

      Q. Han, B. Wang, J. Gao, Z. Cheng, Y. Zhao, Z. Zhang, L. Qu, ACS Nano 10 (2016) 2745, https://doi.org/10.1021/acsnano.5b07831. doi: 10.1021/acsnano.5b07831

    42. [42]

      S. Li, J. Hu, A.A. Aryee, Y. Sun, Z. Li, Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 296 (2023) 122659, https://doi.org/10.1016/j.saa.2023.122659. doi: 10.1016/j.saa.2023.122659

    43. [43]

      Q. Shi, A. Raza, L. Xu, G. Li, J. Colloid Interface Sci. 625 (2022) 750, https://doi.org/10.1016/j.jcis.2022.06.066. doi: 10.1016/j.jcis.2022.06.066

    44. [44]

      J. Shen, M. Yi, X. Yao, H. Zhang, J. Chen, G. Fan, Z. Jiang, Chem. Eng. J. 514 (2025) 163170, https://doi.org/10.1016/j.cej.2025.163170. doi: 10.1016/j.cej.2025.163170

    45. [45]

      L. Lin, J. Yi, J. Wang, Q. Qian, Q. Chen, C. Cao, W. Zhou, Langmuir 40 (2024) 22582, https://doi.org/10.1021/acs.langmuir.4c02124. doi: 10.1021/acs.langmuir.4c02124

    46. [46]

      A.P. Sinitsyn, O.V. Mitkevich, A.V. Gusakov, A.A. Klyosov, Carbohyd. Polym. 10 (1989) 1, https://doi.org/10.1016/0144-8617(89)90028-3. doi: 10.1016/0144-8617(89)90028-3

    47. [47]

      B. Guo, X. Lopez‐Lorenzo, Y. Fang, E. Bäckström, A.J. Capezza, S.R. Vanga, I. Furó, M. Hakkarainen, P. Syrén, ChemSusChem 16 (2023) e202300742, https://doi.org/10.1002/cssc.202300742. doi: 10.1002/cssc.202300742

    48. [48]

      R. Chen, Z. Zhang, Y. Deng, J. Wang, Y. Cui, Y. Zhao, H. Ge, Ind. Eng. Chem. Res. 64 (2025) 7915, https://doi.org/10.1021/acs.iecr.5c00311. doi: 10.1021/acs.iecr.5c00311

    49. [49]

      D. Zhou, L. Wang, F. Zhang, J. Wu, H. Wang, J. Yang, Adv. Sustain. Syst. 6 (2022) 2100516, https://doi.org/10.1002/adsu.202100516. doi: 10.1002/adsu.202100516

    50. [50]

      M.C. Ariza-Tarazona, C. Siligardi, H.A. Carreón-López, J.E. Valdéz-Cerda, P. Pozzi, G. Kaushik, J.F. Villarreal-Chiu, E.I. Cedillo-González, Mar. Pollut. Bull. 193 (2023) 115206, https://doi.org/10.1016/j.marpolbul.2023.115206. doi: 10.1016/j.marpolbul.2023.115206

    51. [51]

      D. Zhou, H. Luo, F. Zhang, J. Wu, J. Yang, H. Wang, Adv. Fiber Mater. 4 (2022) 1094, https://doi.org/10.1007/s42765-022-00149-4. doi: 10.1007/s42765-022-00149-4

    52. [52]

      G. Peng, X. Qi, W. Qu, X. Shao, L. Song, P. Du, J. Xiong, Catal. Sci. Technol. 13 (2023) 5868, https://doi.org/10.1039/D3CY00815K. doi: 10.1039/D3CY00815K

    53. [53]

      W. Qu, L. Song, G. Peng, X. Shao, Y. Wang, P. Du, J. Xiong, Appl. Catal. A: Gen. 693 (2025) 120119, https://doi.org/10.1016/j.apcata.2025.120119. doi: 10.1016/j.apcata.2025.120119

    54. [54]

      V. Blanco-Gutiérrez, P. Li, R. Berzal-Cabetas, A.J.D. santos-García, J. Solid State Chem. 316 (2022) 123509, https://doi.org/10.1016/j.jssc.2022.123509. doi: 10.1016/j.jssc.2022.123509

    55. [55]

      J. Zhang, F. Fan, W. Zhu, W. Yao, F. Zhao, Z. Yang, C. Wang, Y. Wang, J. Mater. Chem. A 12 (2024) 19331, https://doi.org/10.1039/D4TA02737J. doi: 10.1039/D4TA02737J

    56. [56]

      W. Qu, G. Peng, L. Song, W. Guo, Y. Chen, P. Du, J. Xiong, J. Mater. Chem. C 12 (2024) 8837, https://doi.org/10.1039/D4TC01616E. doi: 10.1039/D4TC01616E

    57. [57]

      J.M. Musthafa, B.K. Mandal, Opt. Mater. 154 (2024) 115701, https://doi.org/10.1016/j.optmat.2024.115701. doi: 10.1016/j.optmat.2024.115701

    58. [58]

      F. He, B. Zhu, B. Cheng, J. Yu, W. Ho, W. Macyk, Appl. Catal. B: Environ. Energy 272 (2020) 119006, https://doi.org/10.1016/j.apcatb.2020.119006. doi: 10.1016/j.apcatb.2020.119006

    59. [59]

      X. Lian, S. Chen, F. He, S. Dong, E. Liu, H. Li, K. Xu, Sep. Purif. Technol. 286 (2022) 120449, https://doi.org/10.1016/j.seppur.2022.120449. doi: 10.1016/j.seppur.2022.120449

    60. [60]

      Q. Wang, W. Wang, L. Zhong, D. Liu, X. Cao, F. Cui, Appl. Catal. B: Environ. Energy 220 (2018) 290, http://dx.doi.org/10.1016/j.apcatb.2017.08.049. doi: 10.1016/j.apcatb.2017.08.049

    61. [61]

      J. Shang, W. Hao, X. Lv, T. Wang, X. Wang, Y. Du, S. Dou, T. Xie, D. Wang, J. Wang, ACS Catal. 4 (2014) 954, https://doi.org/10.1021/cs401025u. doi: 10.1021/cs401025u

    62. [62]

      V. K. Sriramadasu, H. Joshi, S. K. Patro, N. Sharma, A. Singh, S. Pakhira, S. Bhattacharyya, Small 21 (2025) 2503321, https://doi.org/10.1002/smll.202503321. doi: 10.1002/smll.202503321

    63. [63]

      Q. Xu, R. He, Y. Li, Acta Phys. -Chim. Sin. 39 (2023) 2211009, http://doi.org/10.3866/PKU.WHXB202211009. doi: 10.3866/PKU.WHXB202211009

    64. [64]

      J. Yan, L. Wei, Acta Phys. -Chim. Sin. 40 (2024) 2312024, http://doi.org/10.3866/PKU.WHXB202312024. doi: 10.3866/PKU.WHXB202312024

    65. [65]

      S. Li, K. Rong, X. Wang, C. Shen, F. Yang, Q. Zhang, Acta Phys. -Chim. Sin. 40 (2024) 2403005, https://doi.org/10.3866/PKU.WHXB202403005. doi: 10.3866/PKU.WHXB202403005

    66. [66]

      M. Sayed, K. Qi, X. Wu, L. Zhang, H. García, J. Yu, Chem. Soc. Rev. 54 (2025) 4874, https://doi.org/10.1039/D4CS01091D. doi: 10.1039/D4CS01091D

    67. [67]

      L. Zhang, J. Zhang, J. Yu, H. García, Nat. Rev. Chem. 9 (2025) 328, https://doi.org/10.1038/s41570-025-00698-3. doi: 10.1038/s41570-025-00698-3

    68. [68]

      S. Cao, B. Zhong, C. Bie, B. Cheng, F. Xu, Acta Phys. -Chim. Sin. 40 (2024) 2307016, https://doi.org/10.3866/PKU.WHXB202307016. doi: 10.3866/PKU.WHXB202307016

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  28
  • HTML全文浏览量:  2
文章相关
  • 发布日期:  2026-01-15
  • 收稿日期:  2025-06-22
  • 接受日期:  2025-07-23
  • 修回日期:  2025-07-19
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章