源自绿萝叶提取物的红光碳点制备和生物成像应用

邵仁义 库拉姆·阿巴斯 弗拉基米尔·尤里耶维奇·奥西波夫 朱海梅 李远 乌萨马 毕红

引用本文: 邵仁义, 库拉姆·阿巴斯, 弗拉基米尔·尤里耶维奇·奥西波夫, 朱海梅, 李远, 乌萨马, 毕红. 源自绿萝叶提取物的红光碳点制备和生物成像应用[J]. 物理化学学报, 2026, 42(2): 100134. doi: 10.1016/j.actphy.2025.100134 shu
Citation:  Renyi Shao, Khurram Abbas, Vladimir Yu. Osipov, Haimei Zhu, Yuan Li, Usama, Hong Bi. Red-emitting carbon dots prepared from Epipremnum Aureum leaves extract for biological imaging[J]. Acta Physico-Chimica Sinica, 2026, 42(2): 100134. doi: 10.1016/j.actphy.2025.100134 shu

源自绿萝叶提取物的红光碳点制备和生物成像应用

    通讯作者: 24743@ahu.edu.cn (乌萨马); Email: bihong@ahu.edu.cn (毕红)
摘要: 荧光碳点(CDs)已经广泛应用于生物体外/体内的荧光成像。然而,荧光CDs作为生物标记的特异性较差、而且在红光发射区域荧光量子产率(QY)较低,仍然是亟待解决的关键问题。本研究以天然植物绿萝叶片的乙醇提取液为前驱体,通过溶剂热“一锅”法合成了一种红色荧光碳点(命名为EA-CDs,λex/λem = 400 nm/660 nm)。EA-CDs具有小尺寸(平均粒径3.9 nm)、高荧光QY (在乙醇中λem = 660 nm,QY = 15.4%)、低毒性(体外/体内)和良好的亲脂性(油水分离系数LogP > 0),因此适用于体外/体内生物荧光成像和标记。实验结果表明该红光CDs不仅可以用于标记植物细胞膜,而且可以作为斑马鱼体内肠道荧光成像工具,有望成为一种通用型具有高荧光量子产率的生物膜红光染料。此外,本工作也为绿萝等观赏性植物的应用开拓了一种新思路。

English

    1. [1]

      W. X. Meng, X. Bai, B. Y. Wang, Z. Y. Liu, S. Y. Lu, B. Yang, Energy Environ. Mater. 2 (2019) 172, https://doi.org/10.1002/eem2.12038. doi: 10.1002/eem2.12038

    2. [2]

      Y. F. Hu, J. F. Li, X. F. Li, Anal. Bioanal. Chem. 411 (2019) 7879, https://doi.org/10.1007/s00216-019-02192-4. doi: 10.1007/s00216-019-02192-4

    3. [3]

      P. Singh, V. Bhankar, S. Kumar, K. Kumar, Adv. Colloid Interface Sci. 328 (2024) 103182, https://doi.org/10.1016/j.cis.2024.103182. doi: 10.1016/j.cis.2024.103182

    4. [4]

      D. Cai, X. Zhong, L. Xu, Y. Xiong, W. Deng, G. Zou, H. Hou, X. Ji, Chem. Sci. 16 (2025) 4937, https://doi.org/10.1039/D4SC08659G. doi: 10.1039/D4SC08659G

    5. [5]

      C. Z. Liang, X. B. Xie, D. D. Zhang, J. Feng, S. Y. Lu, Q. S. Shi, J. Mater. Chem. B 9 (2021) 5670, https://doi.org/10.1039/D0TB02979C. doi: 10.1039/D0TB02979C

    6. [6]

      H. K. Kohli, D. Parab, Next Mater. 8 (2025) 100527, https://doi.org/10.1016/j.nxmate.2025.100527. doi: 10.1016/j.nxmate.2025.100527

    7. [7]

      X. Y. Kou, Y. G. Cong, W. F. Dong, L. Li, Mater. Des. 240 (2024) 112855, https://doi.org/10.1016/j.matdes.2024.112855. doi: 10.1016/j.matdes.2024.112855

    8. [8]

      B. Unnikrishnan, A. Anand, C. J. Lin, C. Y. Lee, A. Nain, P. Srivastava, R. S. Wu, H. W. Chu, C. Y. Wang, R. H. Shi, et al., Coord. Chem. Rev. 534 (2025) 216552, https://doi.org/10.1016/j.ccr.2025.216552. doi: 10.1016/j.ccr.2025.216552

    9. [9]

      F. Qin, J. L. Bai, Y. Q. Zhu, P. Y. He, X. Y. Wang, S. Wu, X. Yu, L. L. Ren, Phys. Chem. Chem. Phys. 25 (2023) 2762, https://doi.org/10.1039/d2cp05130c. doi: 10.1039/d2cp05130c

    10. [10]

      L. J. Yang, Y. B. An, D. Z. Xu, F. Dai, S. L. Shao, Z. X. Lu, G. Liu, Small 20 (2024) 2309293, https://doi.org/10.1002/smll.202309293. doi: 10.1002/smll.202309293

    11. [11]

      M. H. Usman, S. Cheng, Engineering 5 (2024) 2223, https://doi.org/10.3390/eng5030116. doi: 10.3390/eng5030116

    12. [12]

      J. J. Lin, W. Y. Huang, H. R. Zhang, X. J. Zhang, Y. L. Liu, W. Li, B. F. Lei, J. Mater. Chem. C 12 (2024) 5480, https://doi.org/10.1039/d4tc00107a. doi: 10.1039/d4tc00107a

    13. [13]

      F. H. Wang, X. Z. Dong, Y. J. Zuo, Z. Xie, R. F. Guan, Mater. Today Phys. 41 (2024) 101332, https://doi.org/10.1016/j.mtphys.2024.101332. doi: 10.1016/j.mtphys.2024.101332

    14. [14]

      Y. P. Liu, J. H. Lei, G. Wang, Z. M. Zhang, J. Wu, B. H. Zhang, H. Q. Zhang, E. S. Liu, L. M. Wang, T. M. Liu, et al., Adv. Sci. 9 (2022) 2202283, https://doi.org/10.1002/advs.202202283. doi: 10.1002/advs.202202283

    15. [15]

      Y. P. Liu, H. Wang, S. N. Qu, Chin. Chem. Lett. 36 (2025) 110618, https://doi.org/10.1016/j.cclet.2024.110618. doi: 10.1016/j.cclet.2024.110618

    16. [16]

      X. Wu, Y. P. Liu, B. Z. Wang, L. Y. Li, Z. J. Li, Q. C. Wang, Q. S. Cheng, G. C. Xing, S. N. Qu, Acta Phys. -Chim. Sin. 41 (2025) 100109, https://doi.org/10.1016/j.actphy.2025.100109. doi: 10.1016/j.actphy.2025.100109

    17. [17]

      J. J. Liu, Y. J. Geng, D. W. Li, H. Yao, Z. P. Huo, Y. F. Li, K. Zhang, S. J. Zhu, H. T. Wei, W. Q. Xu, J. L. Jiang, B. Yang, Adv. Mater. 32 (2020) 1906641, https://doi.org/10.1002/adma.201906641. doi: 10.1002/adma.201906641

    18. [18]

      H. L. Yang, L. F. Bai, Z. R. Geng, H. Chen, L. T. Xu, Y. C. Xie, D. J. Wang, H. W. Gu, X. M. Wang, Mater. Today Adv. 18 (2023) 100376, https://doi.org/10.1016/j.mtadv.2023.100376. doi: 10.1016/j.mtadv.2023.100376

    19. [19]

      J. Liu, T. Y. Kong, H. M. Xiong, Adv. Mater. 34 (2022) 2200152, https://doi.org/10.1002/adma.202200152. doi: 10.1002/adma.202200152

    20. [20]

      L. Jiang, H. Cai, W. W. Zhou, Z. J. Li, L. Zhang, H. Bi, Adv. Mater. 35 (2023) 2210776, https://doi.org/10.1002/adma.202210776. doi: 10.1002/adma.202210776

    21. [21]

      R. J. Chen, Z. B. Wang, T. Pang, Q. Teng, C. H. Li, N. Z. Jiang, S. Zheng, R. D. Zhang, Y. H. Zheng, D. Q. Chen, F. L. Yuan, Adv. Mater. 35 (2023) 2302275, https://doi.org/10.1002/adma.202302275. doi: 10.1002/adma.202302275

    22. [22]

      Q. Fu, K. L. Zhang, K. Z. Lu, N. Li, S. H. Sun, Z. H. Dong, J. Alloys Compd. 971 (2024) 172688, https://doi.org/10.1016/j.jallcom.2023.172688. doi: 10.1016/j.jallcom.2023.172688

    23. [23]

      W. X. Qin, M. Y. Wang, Y. Li, L. C. Li, K. Abbas, Z. J. Li, A. C. Tedesco, H. Bi, Mater. Chem. Front. 8 (2024) 930, https://doi.org/10.1039/d3qm00968h. doi: 10.1039/d3qm00968h

    24. [24]

      H. Cai, Y. Li, X. Y. Wu, Y. X. Yang, A. C. Tedesco, Z. J Li, H. Bi, Adv. Funct. Mater. 34 (2024) 2406096, https://doi.org/10.1002/adfm.202406096. doi: 10.1002/adfm.202406096

    25. [25]

      J. Chen, T. Li, C. Z. Lin, Y. X. Hou, S. H. Cheng, B. M. Gao, Spectrochim. Acta 328 (2025) 125458, https://doi.org/10.1016/j.saa.2024.125458. doi: 10.1016/j.saa.2024.125458

    26. [26]

      C. Hu, S. Sedghi, A. S. Albero, G. G. Andersson, A. Sharma, P. Pendleton, F. R. Reinoso, K. Kaneko, M. J. Biggs, Carbon 85 (2015) 147, https://doi.org/10.1016/j.carbon.2014.12.098. doi: 10.1016/j.carbon.2014.12.098

    27. [27]

      V. Y. Osipov, A. V. Baranov, V. A. Ermakov, T. L. Makarova, L. F. Chungong, A. I. Shames, K. Takai, T. Enoki, Y. Kaburagi, M. Endo, et al., Diam. Relat. Mater. 20 (2011) 205, https://doi.org/10.1016/j.diamond.2010.12.006. doi: 10.1016/j.diamond.2010.12.006

    28. [28]

      B. Y. Wang, J. Li, Z. Y. Tang, B. Yang, S. Y. Lu, Sci. Bull. 64 (2019) 1285, https://doi.org/10.1016/j.scib.2019.07.021. doi: 10.1016/j.scib.2019.07.021

    29. [29]

      J. L. Pu, C. Liu, B. Wang, P. Liu, Y. Z. Jin, J. C. Chen, Analyst 146 (2021) 1032, https://doi.org/10.1039/d0an02075c. doi: 10.1039/d0an02075c

    30. [30]

      M. L. Liu, B. B. Chen, C. M. Li, C. Z. Huang, Green Chem. 21 (2019) 449, https://doi.org/10.1039/c8gc02736f. doi: 10.1039/c8gc02736f

    31. [31]

      B. Krushna, S. Sharma, A. Srinivasan, S. Sahu, K. Ponnazhagan, A. George, K. Rathla, M. Manjula, V. Shivakumar, S. Devaraja, et al., Colloids Surf. 703 (2024) 135135, https://doi.org/10.1016/j.colsurfa.2024.135135. doi: 10.1016/j.colsurfa.2024.135135

    32. [32]

      J. K Yu, X. Yong, Z. Y. Tang, B. Yang, S. Y. Lu, J. Phys. Chem. Lett. 12 (2021) 7671, https://doi.org/10.1021/acs.jpclett.1c01856. doi: 10.1021/acs.jpclett.1c01856

    33. [33]

      H. Ding, X. X. Zhou, J. S. Wei, X. B. Li, B. T. Qin, X. B. Chen, H. M. Xiong, Carbon 167 (2020) 322, https://doi.org/10.1016/j.carbon.2020.06.024. doi: 10.1016/j.carbon.2020.06.024

    34. [34]

      D. Benner, P. K. Yadav, D. Bhatia, Nanoscale Adv. 5 (2023) 4337, https://doi.org/10.1039/d3na00469d. doi: 10.1039/d3na00469d

    35. [35]

      H. X. Li, D. D. Su, H. Gao, X. Yan, D. S. Kong, R. Jin, X. M. Liu, C. G. Wang, G. Y. Lu, Anal. Chem. 92 (2020) 3198, https://doi.org/10.1021/acs.analchem.9b04917. doi: 10.1021/acs.analchem.9b04917

    36. [36]

      Q. Xu, T. R. Kuang, Y. Liu, L. L. Cai, X. F. Peng, T. S. Sreeprasad, P. Zhao, Z. Q. Yu, N. Li, J. Mater. Chem. B 4 (2016) 7204, https://doi.org/10.1039/c6tb02131j. doi: 10.1039/c6tb02131j

    37. [37]

      K. Abbas, Usama, W. X. Qin, H. M. Zhu, Y. Li, Z. J. Li, M. Imran, H. Bi, CBMI (2025), https://doi.org/10.1021/cbmi.4c00109. doi: 10.1021/cbmi.4c00109

    38. [38]

      A. Maholiya, P. Ranjan, R. Khan, S. Murali, R. C. Nainwal, P. S. Chauhan, N. Sathish, J. P. Chaurasia, A. K. Srivastava, Environ. Sci. Nano 10 (2023) 959, https://doi.org/10.1039/d2en00954d. doi: 10.1039/d2en00954d

    39. [39]

      Y. Liu, W. D. Li, H. Wu, S. Y. Lu, Acta Phys. -Chim. Sin. 37 (2021) 2009082, https://doi.org/10.3866/PKU.WHXB202009082. doi: 10.3866/PKU.WHXB202009082

    40. [40]

      Z. Q. Zhang, H. M. Zhu, N. N. Peng, J. Song, R. J. Sun, J. M. Wang, F. F. Zhu, Y. Z. Wang, Mater. Lett. 341 (2023) 134233, https://doi.org/10.1016/j.matlet.2023.134233. doi: 10.1016/j.matlet.2023.134233

    41. [41]

      J. Q. Chang, H. M. Xu, W. J. Xie, Y. Zhang, L. Qi, L. Z. Fan, Y. Li, Acta Phys. -Chim. Sin. 39 (2023) 2301034, https://doi.org/10.3866/PKU.WHXB202301034. doi: 10.3866/PKU.WHXB202301034

    42. [42]

      N. K. Dal, M. Speth, K. Johann, M. Barz, C. Beauvineau, J. Wohlmann, F. Fenaroli, B. Gicquel, G. Griffiths, N. A. Rodriguez, Dis. Model. Mech. 15 (2022) dmm049147, https://doi.org/10.1242/dmm.049147. doi: 10.1242/dmm.049147

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  20
  • HTML全文浏览量:  3
文章相关
  • 发布日期:  2026-02-15
  • 收稿日期:  2025-06-06
  • 接受日期:  2025-07-22
  • 修回日期:  2025-07-17
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章