Citation: Qinhui Guan, Yuhao Guo, Na Li, Jing Li, Tingjiang Yan. Molecular sieve-mediated indium oxide catalysts for enhancing photocatalytic CO2 hydrogenation[J]. Acta Physico-Chimica Sinica, ;2025, 41(11): 100133. doi: 10.1016/j.actphy.2025.100133 shu

Molecular sieve-mediated indium oxide catalysts for enhancing photocatalytic CO2 hydrogenation

  • Corresponding author: Na Li, lina20201130@163.com Tingjiang Yan, tingjiangn@163.com
  • Received Date: 16 June 2025
    Revised Date: 18 July 2025
    Accepted Date: 20 July 2025

    Fund Project: the National Natural Science Foundation of China 22172086the National Natural Science Foundation of China 22105117the Taishan Scholars Program of Shandong Province tsqn202103064the Major Basic Research Project of Shandong Province ZR2021ZD06

  • In the realm of photocatalytic CO2 hydrogenation, the adsorption-desorption behaviors and dynamics of photogenerated carriers are pivotal determinants of the kinetic processes and overall efficiency of photocatalytic reactions. Herein, 5A molecular sieve-functionalized In2O3 composites (denoted as IO@5A-xwt%) were fabricated through a facile impregnation-calcination method. Among them, the IO@5A-5wt% composite, with the optimized loading amount of 5A molecular sieves, showcases outstanding performance in photocatalytic conversion of CO2 to CO, achieving a CO production rate of 2610.55 μmol·g−1·h−1, which is 19 times higher than that of pristine In2O3. Moreover, the IO@5A-5wt% composite maintains acceptable catalytic stability after a prolonged experiment lasting 45 h and total of 108 cycles. A comprehensive series of characterization techniques and performance evaluations reveal that the incorporation of 5A molecular sieves significantly modulates the adsorption-desorption behavior and hole dynamics during photocatalytic reactions. The multi-channel architecture of 5A molecular sieves, featuring suitable pore sizes, effectively enhances CO2 adsorption. Meanwhile, the surface hydroxyl groups of 5A molecular sieves facilitate the transfer of photogenerated holes, thereby suppressing the recombination of photogenerated carriers. Additionally, the reaction product H2O desorbs more readily from the catalyst surface. These synergistic effects collectively constitute the key mechanism underlying the enhanced photocatalytic performance of the IO@5A-5wt% composite.
  • 加载中
    1. [1]

      Q. H. Guan, W. G. Ran, D. P. Zhang, W. J. Li, N. Li, B. B. Huang, T. J. Yan, Adv. Sci. 11 (2024) 2401990, https://doi.org/10.1002/advs.202401990.  doi: 10.1002/advs.202401990

    2. [2]

      T. T. Kong, Y. W. Jiang, Y. J. Xiong, Chem. Soc. Rev. 49 (2020) 6579, https://doi.org/10.1039/c9cs00920e.  doi: 10.1039/c9cs00920e

    3. [3]

      H. Y. Xu, Z. L. Wang, H. H. Liao, D. M. Li, J. N. Shen, J. L. Long, W. X. Dai, X. X. Wang, Z. Z. Zhang, Appl. Catal. B 336 (2023) 122935, https://doi.org/10.1016/j.apcatb.2023.122935.  doi: 10.1016/j.apcatb.2023.122935

    4. [4]

      L. O. Paulista, A. F. P. Ferreira, A. E. Rodrigues, R. J. E. Martins, R. A. R. Boaventura, V. J. P. Vilar, T. F. C. V. Silva, J. Environ. Chem. Eng. 12 (2024) 112418, https://doi.org/10.1016/j.jece.2024.112418.  doi: 10.1016/j.jece.2024.112418

    5. [5]

      Y. J. An, W. X. Liu, Y. F. Zhang, J. J. Zhang, Z. S. Lu, Acta Phys. -Chim. Sin. 40 (2024) 2407021, https://doi.org/10.3866/pku.whxb202407021.  doi: 10.3866/pku.whxb202407021

    6. [6]

      J. Y. Qin, Y. J. An, Y. F. Zhang, Acta Phys. -Chim. Sin. 40 (2024) 2408002, https://doi.org/10.3866/pku.Whxb202408002.  doi: 10.3866/pku.Whxb202408002

    7. [7]

      X. Y. Miao, H. Yang, J. He, J. Wang, Z. L. Jin, Acta Phys. -Chim. Sin. 41 (2025) 100051, https://doi.org/10.1016/j.actphy.2025.100051.  doi: 10.1016/j.actphy.2025.100051

    8. [8]

      H. X. Mai, T. C. Le, D. H. Chen, D. A. Winkler, R. A. Caruso, Chem. Rev. 122 (2022) 13478, https://doi.org/10.1021/acs.chemrev.2c00061.  doi: 10.1021/acs.chemrev.2c00061

    9. [9]

      P. Wang, H. T. Li, Y. J. Cao, H. G. Yu, Acta Phys. -Chim. Sin. 37 (2020) 2008047, https://doi.org/10.3866/pku.whxb202008047.  doi: 10.3866/pku.whxb202008047

    10. [10]

      Q. L. Xu, Z. H. Xia, J. M. Zhang, Z. Y. Wei, Q. Guo, H. L. Jin, H. Tang, S. Z. Li, X. C. Pan, Z. Su, et al., Carbon Energy 5 (2022) e205, https://doi.org/10.1002/cey2.205.  doi: 10.1002/cey2.205

    11. [11]

      H. L. Ran, X. Liu, L. H. Ye, J. J. Fan, B. C. Zhu, Q. L. Xu, Y. C. Wei, J. Mater. Sci. Technol. 234 (2025) 24, https://doi.org/10.1016/j.jmst.2024.12.089.  doi: 10.1016/j.jmst.2024.12.089

    12. [12]

      G. R. Yu, N. Li, X. Li, Y. H. Guo, T. J. Yan, J. Mater. Chem. A (2025)https://doi.org/10.1039/d5ta01792k.  doi: 10.1039/d5ta01792k

    13. [13]

      X. Y. Meng, C. Peng, J. P. Jia, P. Liu, Y. L. Men, Y. X. Pan, J. CO2 Util. 55 (2022) 101844, https://doi.org/10.1016/j.jcou.2021.101844.  doi: 10.1016/j.jcou.2021.101844

    14. [14]

      X. D. Li, Y. F. Sun, J. Q. Xu, Y. J. Shao, J. Wu, X. L. Xu, Y. Pan, H. X. Ju, J. F. Zhu, Y. Xie, Nat. Energy 4 (2019) 690, https://doi.org/10.1038/s41560-019-0431-1.  doi: 10.1038/s41560-019-0431-1

    15. [15]

      K. C. Wang, Y. M. Zhu, M. Gu, Z. W. Hu, Y. C. Chang, C. W. Pao, Y. Xu, X. Q. Huang, Adv. Funct. Mater. 33 (2023) 2215148, https://doi.org/10.1002/adfm.202215148.  doi: 10.1002/adfm.202215148

    16. [16]

      W. J. Li, Y. P. Zhang, Y. H. Wang, W. G. Ran, Q. H. Guan, W. C. Yi, L. L. Zhang, D. P. Zhang, N. Li, T. J. Yan, Appl. Catal. B 340 (2024) 123267, https://doi.org/10.1016/j.apcatb.2023.123267.  doi: 10.1016/j.apcatb.2023.123267

    17. [17]

      Y. P. Zhang, W. J. Li, F. Tian, N. Cai, Q. H. Guan, D. P. Zhang, W. G. Ran, N. Li, T. J. Yan, Chem. Eng. J. 477 (2023) 147129, https://doi.org/10.1016/j.cej.2023.147129.  doi: 10.1016/j.cej.2023.147129

    18. [18]

      J. D. Li, Y. Qu, Y. D. Liu, L. Q. Jiang, Sep. Purif. Technol. 354 (2025) 128761, https://doi.org/10.1016/j.seppur.2024.128761.  doi: 10.1016/j.seppur.2024.128761

    19. [19]

      B. W. Deng, H. Song, Q. Wang, J. N. Hong, S. Song, Y. W. Zhang, K. Peng, H. W. Zhang, T. Kako, J. H. Ye, Appl. Catal. B 327 (2023) 122471, https://doi.org/10.1016/j.apcatb.2023.122471.  doi: 10.1016/j.apcatb.2023.122471

    20. [20]

      Y. H. Guo, Q. H. Guan, X. J. Li, M. J. Zhao, N. Li, Z. Z. Zhang, G. Q. Fei, T. J. Yan, Energy Environ. Sci. (2025) 5539, https://doi.org/10.1039/d5ee00605h.  doi: 10.1039/d5ee00605h

    21. [21]

      X. J. Li, Y. H. Guo, Q. H. Guan, X. Li, L. L Zhang, W. G. Ran, N. Li, T. J. Yan, Chinese J. Catal. 69 (2025) 303, https://doi.org/10.1016/s1872-2067(24)60205-6.  doi: 10.1016/s1872-2067(24)60205-6

    22. [22]

      S. Tang, Z. D. Feng, Z. Han, F. Sha, C. Z. Tang, Y. Zhang, J. J. Wang, C. Li, J. Catal. 417 (2023) 462, https://doi.org/10.1016/j.jcat.2022.12.026.  doi: 10.1016/j.jcat.2022.12.026

    23. [23]

      Y. X. Yang, C. Y. Shen, K. H. Sun, D. H. Mei, C. J. Liu, ACS Catal. 13 (2023) 6154, https://doi.org/10.1021/acscatal.2c06299.  doi: 10.1021/acscatal.2c06299

    24. [24]

      T. J. Yan, N. Li, L. L. Wang, W. G. Ran, P. N. Duchesne, L. L. Wan, N. T. Nguyen, L. Wang, M. K. Xia, G. A. Ozin, Nat. Commun. 11 (2020) 6095, https://doi.org/10.1038/s41467-020-19997-y.  doi: 10.1038/s41467-020-19997-y

    25. [25]

      T. J. Yan, N. Li, L. L. Wang, Q. Liu, F. M. Ali, L. Wang, Y. F. Xu, Y. Liang, Y. Dai, B. B. Huang, et al., Energy Environ. Sci. 13 (2020) 3054, https://doi.org/10.1039/d0ee01124j.  doi: 10.1039/d0ee01124j

    26. [26]

      Y. C. Shi, W. G. Su, X. Y. Wei, X. D. Song, Y. H. Bai, J. F. Wang, P. Lv, G. S. Yu, Fuel 334 (2023) 126811, https://doi.org/10.1016/j.fuel.2022.126811.  doi: 10.1016/j.fuel.2022.126811

    27. [27]

      R. P. Ye, J. Ding, T. R. Reina, M. S. Duyar, H. T. Li, W. H. Luo, R. B. Zhang, M. H. Fan, G. Feng, J. Sun, et al., Nat. Synth. 4 (2025) 288, https://doi.org/10.1038/s44160-025-00747-1.  doi: 10.1038/s44160-025-00747-1

    28. [28]

      Y. R. Wang, R. T. Yang, ACS Sustain. Chem. Eng. 7 (2019) 3301, https://doi.org/10.1021/acssuschemeng.8b05339.  doi: 10.1021/acssuschemeng.8b05339

    29. [29]

      T. Boonamnuay, N. Laosiripojana, S. Assabumrungrat, P. Kim-Lohsoontorn, Int. J. Hydrogen Energy 46 (2021) 30948, https://doi.org/10.1016/j.ijhydene.2021.04.161.  doi: 10.1016/j.ijhydene.2021.04.161

    30. [30]

      D. G. Boer, J. Langerak, P. P. Pescarmona, ACS Appl. Energy Mater. 6 (2023) 2634, https://doi.org/10.1021/acsaem.2c03605.  doi: 10.1021/acsaem.2c03605

    31. [31]

      Y. S. González, C. Costa, M. C. Márquez, P. Ramos, J. Hazard. Mater. 187 (2011) 101, https://doi.org/10.1016/j.jhazmat.2010.12.121.  doi: 10.1016/j.jhazmat.2010.12.121

    32. [32]

      Z. H. Cui, P. Wang, Y. Q. Wu, X. L. Liu, G. Q. Chen, P. Gao, Q. Q. Zhang, Z. Y. Wang, Z. K. Zheng, H. F. Cheng, et al., Appl. Catal. B 310 (2022) 121375, https://doi.org/10.1016/j.apcatb.2022.121375.  doi: 10.1016/j.apcatb.2022.121375

    33. [33]

      X. H. Yang, X. B. Bian, P. X. Wang, H. Y. Wang, Q. J. Qi, J. Environ. Chem. Eng. 13 (2025) 115004, https://doi.org/10.1016/j.jece.2024.115004.  doi: 10.1016/j.jece.2024.115004

    34. [34]

      W. L. Yu, X. You, Y. C. Wu, C. P. Li, Q. Y. Wang, X. H. Yang, X. B. Bian, Y. Lu, J. Environ. Chem. Eng. 13 (2025) 116271, https://doi.org/10.1016/j.jece.2025.116271.  doi: 10.1016/j.jece.2025.116271

    35. [35]

      J. A. D. Dobladez, V. I. Á. Maté, S. Á. Torrellas, M. Larriba, G. P. Muñoz, R. A. Sánchez, Sep. Purif. Technol. 262 (2021) 118292, https://doi.org/10.1016/j.seppur.2020.118292.  doi: 10.1016/j.seppur.2020.118292

    36. [36]

      B. Srinivas, B. Shubhamangala, K. Lalitha, P. A. K. Reddy, V. D. Kumari, M. Subrahmanyam, B. R. De, Photochem. Photobiol. 87 (2011) 995, https://doi.org/10.1111/j.1751-1097.2011.00946.x.  doi: 10.1111/j.1751-1097.2011.00946.x

    37. [37]

      R. Ahlawat, N. Rani, B. Goswami, N. Jangra, G. Rani, J. Alloys Compd. 995 (2024) 174858, https://doi.org/10.1016/j.jallcom.2024.174858.  doi: 10.1016/j.jallcom.2024.174858

    38. [38]

      X. P. Liu, R. Wang, J. Hazard. Mater. 362 (2017) 157, https://doi.org/10.1016/j.jhazmat.2016.12.030.  doi: 10.1016/j.jhazmat.2016.12.030

    39. [39]

      Q. H. Guan, Y. H. Guo, S. T. Li, X. J. Li, X. Li, X. Liu, N. Li, T. J. Yan, Sci. China Chem. (2025)https://doi.org/10.1007/s11426-025-2860-7.  doi: 10.1007/s11426-025-2860-7

    40. [40]

      Z. Lu, Y. F. Xu, Z. S. Zhang, J. C. Sun, X. Ding, W. Sun, W. G. Tu, Y. Zhou, Y. F. Yao, G. A. Ozin, et al., J. Am. Chem. Soc. 145 (2023) 26052, https://doi.org/10.1021/jacs.3c07349.  doi: 10.1021/jacs.3c07349

    41. [41]

      A. Desgagnés, M. C. Iliuta, Chem. Eng. J. 454 (2023) 140214, https://doi.org/10.1016/j.cej.2022.140214.  doi: 10.1016/j.cej.2022.140214

    42. [42]

      X. Chen, Q. Geng, J. F. Liu, Z. X. Ding, W. X. Dai, X. X. Wang, Acta Phys. -Chim. Sin. 25 (2009) 2237, https://doi.org/10.3866/pku.Whxb20091036.  doi: 10.3866/pku.Whxb20091036

    43. [43]

      L. Wang, M. Ghoussoub, H. Wang, Y. Shao, W. Sun, A. A. Tountas, T. E. Wood, H. Li, J. Y. Y. Loh, Y. C. Dong, et al., Joule 2 (2018) 1369, https://doi.org/10.1016/j.joule.2018.03.007.  doi: 10.1016/j.joule.2018.03.007

    44. [44]

      K. K. Ghuman, L. B. Hoch, P. Szymanski, J. Y. Y. Loh, N. P. Kherani, M. A. El-Sayed, G. A. Ozin, C. V. Singh, J. Am. Chem. Soc. 138 (2016) 1206, https://doi.org/10.1021/jacs.5b10179.  doi: 10.1021/jacs.5b10179

    45. [45]

      K. K. Ghuman, L. B. Hoch, T. E. Wood, C. Mims, C. V. Singh, G. A. Ozin. ACS Catal. 6 (2016) 5764, https://doi.org/10.1021/acscatal.6b01015.  doi: 10.1021/acscatal.6b01015

    46. [46]

      Q. H. Guan, C. Z. Ni, T. J. Yan, N. Li, L. Wang, Z. Lu, W. G. Ran, Y. P. Zhang, W. J. Li, L. L. Zhang, et al., EES Catal. 2 (2024) 573, https://doi.org/10.1039/d3ey00261f.  doi: 10.1039/d3ey00261f

    47. [47]

      W. X. Yang, J. F. Zhang, Q. L. Xu, Y. Yang, L. J. Zhang, Acta Phys. -Chim. Sin. 40 (2024) 2312014, https://doi.org/10.3866/pku.Whxb202312014.  doi: 10.3866/pku.Whxb202312014

    48. [48]

      X. T. Xu, C. F. Shao, J. F. Zhang, Z. L. Wang, K. Dai, Acta Phys. -Chim. Sin. 40 (2024) 2309031, https://doi.org/10.3866/pku.Whxb202309031.  doi: 10.3866/pku.Whxb202309031

    49. [49]

      J. X. Cai, W. D. Xu, H. Q. Chi, Q. Liu, W. Gao, L. Shi, J. X. Low, Z. G. Zou, Y. Zhou, Acta Phys. -Chim. Sin. 40 (2024) 2407002, https://doi.org/10.3866/pku.Whxb202407002.  doi: 10.3866/pku.Whxb202407002

    50. [50]

      W. J. Li, Y. J. Wang, Y. P. Zhang, Y. N. Pan, M. L. Xu, Y. Song, N. Li, T. J. Yan, Langmuir 39 (2023) 4140, https://doi.org/10.1021/acs.langmuir.3c00042.  doi: 10.1021/acs.langmuir.3c00042

    51. [51]

      L. Y. Zhang, J. J Zhang, J. G. Yu, H. García, Nat. Rev. Chem. 9 (2025) 328, https://doi.org/10.1038/s41570-025-00698-3.  doi: 10.1038/s41570-025-00698-3

    52. [52]

      J. T. Yan, J. J. Zhang, J. Mater. Sci. Technol. 193 (2024) 18, https://doi.org/10.1016/j.jmst.2023.12.054.  doi: 10.1016/j.jmst.2023.12.054

    53. [53]

      Y. Wu, C. Cheng, K. Z. Qi, B. Cheng, J. J. Zhang, J. G. Yu, L. Y. Zhang, Acta Phys. -Chim. Sin. 40 (2024) 2406027, https://doi.org/10.3866/pku.Whxb202406027.  doi: 10.3866/pku.Whxb202406027

    54. [54]

      J. Tang, X. H. Li, Y. F. Ma, K. Q. Wang, Z. L. Liu, Q. T. Zhang, Appl. Catal. B 327 (2023) 122417, https://doi.org/10.1016/j.apcatb.2023.122417.  doi: 10.1016/j.apcatb.2023.122417

  • 加载中
    1. [1]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    2. [2]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    3. [3]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    4. [4]

      Yongqing XuYuyao YangMengna WuXiaoxiao YangXuan BieShiyu ZhangQinghai LiYanguo ZhangChenwei ZhangRobert E. PrzekopBogna SztorchDariusz BrzakalskiHui Zhou . Review on Using Molybdenum Carbides for the Thermal Catalysis of CO2 Hydrogenation to Produce High-Value-Added Chemicals and Fuels. Acta Physico-Chimica Sinica, 2024, 40(4): 2304003-0. doi: 10.3866/PKU.WHXB202304003

    5. [5]

      Pei LiYuenan ZhengZhankai LiuAn-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 2406012-0. doi: 10.3866/PKU.WHXB202406012

    6. [6]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    7. [7]

      Xiaorui ChenXuan LuoTongming SuXinling XieLiuyun ChenYuejing BinZuzeng QinHongbing Ji . Ga-doped Cu/γ-Al2O3 bifunctional interface sites promote the direct hydrogenation of CO2 to DME. Acta Physico-Chimica Sinica, 2025, 41(10): 100126-0. doi: 10.1016/j.actphy.2025.100126

    8. [8]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . 具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    9. [9]

      Xinyu XuJiale LuBo SuJiayi ChenXiong ChenSibo Wang . Steering charge dynamics and surface reactivity for photocatalytic selective methane oxidation to ethane over Au/Ti-CeO2. Acta Physico-Chimica Sinica, 2025, 41(11): 100153-0. doi: 10.1016/j.actphy.2025.100153

    10. [10]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    11. [11]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

    12. [12]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    13. [13]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    14. [14]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    15. [15]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    16. [16]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    17. [17]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

    18. [18]

      Tong ZhouXue LiuLiang ZhaoMingtao QiaoWanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020

    19. [19]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

    20. [20]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

Metrics
  • PDF Downloads(1)
  • Abstract views(13)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return