Citation: Haotong Ma, Mingyu Heng, Yang Xu, Wei Bi, Yingchun Miao, Shuning Xiao. Synergistic carbon doping and Cu loading on boron nitride via microwave synthesis for enhanced atmospheric CO2 photoreduction[J]. Acta Physico-Chimica Sinica, ;2025, 41(11): 100132. doi: 10.1016/j.actphy.2025.100132 shu

Synergistic carbon doping and Cu loading on boron nitride via microwave synthesis for enhanced atmospheric CO2 photoreduction

  • Corresponding author: Yingchun Miao,  Shuning Xiao, 
  • Received Date: 25 June 2025
    Revised Date: 16 July 2025
    Accepted Date: 18 July 2025

    Fund Project: the National Natural Science Foundation of China 22106105the National Natural Science Foundation of China 22406130the National Natural Science Foundation of China 22408229Shanghai Science and Technology Innovation Program 22YF1430400Shanghai Science and Technology Innovation Program 21DZ1206300Yunnan Provincial Science and Technology Department Science Talent and Platform Program (Yunnan Province Li Hexing Expert Workstation) 202305AF150088Yunnan Provincial Science and Technology Department Science Talent and Platform Program Project (Yunnan Province Shi Zhengrong Academician Workstation) 202405AF140016

  • Photocatalytic CO2 reduction under atmospheric concentrations remains highly challenging yet critical for practical carbon-neutral applications. In this study, a Cu-loaded, carbon-doped boron nitride (Cu/BCN) photocatalyst was synthesized by a microwave-assisted molten salt method. This approach enables simultaneous carbon incorporation into the BN lattice and selective deposition of Cu nanoparticles, forming an efficient heterostructure. The synergy between C doping and Cu loading modulates the band structure, enhances visible-light absorption, promotes charge separation, and improves CO2 adsorption. The optimized Cu/BCN photocatalyst achieved a CO production rate of 30.62 μmol·g−1·h−1 with 95.8% selectivity under ambient CO2 conditions. Combined experimental and DFT analyses confirm that the Cu/BCN interface facilitates charge transfer and lowers the energy barrier for *COOH formation. This work demonstrates a promising route toward efficient CO2 utilization directly from air, offering a scalable strategy for atmospheric carbon conversion.
  • 加载中
    1. [1]

      X. Deng, J. Zhang, K. Qi, G. Liang, F. Xu, J. Yu, Nat. Commun. 15 (2024) 4807, https://doi.org/10.1038/s41467-024-49004-7  doi: 10.1038/s41467-024-49004-7

    2. [2]

      L. Zhang, J. Zhang, J. Yu, H. García, Nat. Rev. Chem. 9 (2025) 328, https://doi.org/10.1038/s41570-025-00698-3  doi: 10.1038/s41570-025-00698-3

    3. [3]

      K. Wang, Y. Hu, X. Liu, J. Li, B. Liu, Nat. Commun. 16 (2025) 2094, https://doi.org/10.1038/s41467-025-57140-x  doi: 10.1038/s41467-025-57140-x

    4. [4]

      F. Xu, Y. He, J. Zhang, G. Liang, C. Liu, J. Yu, Angew. Chem. Int. Ed. 64 (2025) e202414672, https://doi.org/10.1002/anie.202414672  doi: 10.1002/anie.202414672

    5. [5]

      P. Hu, G. Liang, B. Zhu, W. Macyk, J. Yu, F. Xu, ACS Catal. 13 (2023) 12623, https://doi.org/10.1021/acscatal.3c03095  doi: 10.1021/acscatal.3c03095

    6. [6]

      W. Hou, H. Guo, M. Wu, L. Wang, ACS Nano 17 (2023) 20560-20569, https://doi.org/10.1021/acsnano.3c07411  doi: 10.1021/acsnano.3c07411

    7. [7]

      J. Fu, K. Jiang, X. Qiu, J. Yu, M. Liu, Mater. Today 32 (2020) 222, https://doi.org/10.1016/j.mattod.2019.06.009  doi: 10.1016/j.mattod.2019.06.009

    8. [8]

      M. Heng, H. Shao, J. Sun, Q. Huang, S. Shen, G. Yang, Y. Xue, S. Xiao, Rare Met. 44 (2024) 1108, https://doi.org/10.1007/s12598-024-03000-4  doi: 10.1007/s12598-024-03000-4

    9. [9]

      Y. Chai, Y. Kong, M. Lin, W. Lin, J. Shen, J. Long, R. Yuan, W. Dai, X. Wang, Z. Zhang, Nat. Commun. 14 (2023) 6168, https://doi.org/10.1038/s41467-023-41943-x  doi: 10.1038/s41467-023-41943-x

    10. [10]

      J. Guo, H. Ma, H. Shang, W. Wang, R. Yang, S. Wang, Y. Miao, D. Phillips, G. Li, S. Xiao, J. Hazard. Mater. 492 (2025) 138060, https://doi.org/10.1016/j.jhazmat.2025.138060  doi: 10.1016/j.jhazmat.2025.138060

    11. [11]

      H. He, W. Zhai, P. Liu, J. Wang, Mater. Today 83 (2025) 382, https://doi.org/10.1016/j.mattod.2024.12.019  doi: 10.1016/j.mattod.2024.12.019

    12. [12]

      J. Pu, K. Zhang, Z. Wang, C. Li, K. Zhu, Y. Yao, G. Hong, Adv. Funct. Mater. 31 (2021) 2106315, https://doi.org/10.1002/adfm.202106315  doi: 10.1002/adfm.202106315

    13. [13]

      Y. Wang, S. Xia, K. Chen, J. Zhang, H. Tan, C. Yu, J. Cui, J. Zeng, J. Wu, P. Wang, et al., ACS Nano. 18 (2024) 34403, https://doi.org/10.1021/acsnano.4c14039  doi: 10.1021/acsnano.4c14039

    14. [14]

      T. Yuan, Z. Wu, S. Zhai, R. Wang, S. Wu, J. Cheng, M. Zheng, X. Wang, T. Yuan, Z. Wu, et al., Angew. Chem. Int. Ed. 62 (2023) e202304861, https://doi.org/10.1002/anie.202304861  doi: 10.1002/anie.202304861

    15. [15]

      J. Ji, S. Yan, Z. Zhou, Y. Gu, C. Liu, S. Yang, D. Wang, Y. Xue, C. Tang, J. Mater. Sci. Technol. 218 (2025) 170, https://doi.org/10.1016/j.jmst.2024.07.051  doi: 10.1016/j.jmst.2024.07.051

    16. [16]

      H. Chen, C. Xiong, J. Moon, A. Ivanov, W. Lin, T. Wang, J. Fu, D. Jiang, Z. Wu, Z. Yang, et al., J. Am. Chem. Soc. 144 (2022) 10688, https://doi.org/10.1021/jacs.2c00343  doi: 10.1021/jacs.2c00343

    17. [17]

      C. Sathish, G. Kothandam, P. Selvarajan, Z. Lei, J. Lee, J. Qu, A. Al Muhtaseb, X. Yu, M. Breese, R. Zheng, et al., Adv. Sci. 9 (2022) 2105603, https://doi.org/10.1002/advs.202105603  doi: 10.1002/advs.202105603

    18. [18]

      H. Ou, Y. Jin, B. Chong, J. Bao, S. Kou, H. Li, Y. Li, X. Yan, B. Lin, G. Yang, Adv. Mater. 36 (2024) 2404851, https://doi.org/10.1002/adma.202404851  doi: 10.1002/adma.202404851

    19. [19]

      L. Duan, B. Wang, K. Heck, C. Clark, J. Wei, M. Wang, J. Metz, G. Wu, A. Tsai, S. Guo, et al., Chem. Eng. J. 448 (2022) 137735, https://doi.org/10.1016/j.cej.2022.137735  doi: 10.1016/j.cej.2022.137735

    20. [20]

      J. Liang, W. Zhang, Z. Liu, Q. Song, Z. Zhu, Z. Guan, H. Wang, P. Zhang, J. Li, M. Zhou, et al., ACS Catal. 12 (2022) 12217, https://doi.org/10.1021/acscatal.2c03970  doi: 10.1021/acscatal.2c03970

    21. [21]

      C. Zhou, C. Lai, C. Zhang, G. Zeng, D. Huang, M. Cheng, L. Hu, W. Xiong, M. Chen, J. Wang, et al., Appl. Catal. B Environ. 238 (2018) 6, https://doi.org/10.1016/j.apcatb.2018.07.011  doi: 10.1016/j.apcatb.2018.07.011

    22. [22]

      S. Chen, P. Li, S. Xu, X. Pan, Q. Fu, X. Bao, J, Mater. Sci. Technol. 6 (2018) 1832, https://doi.org/10.1039/C7TA08515J  doi: 10.1039/C7TA08515J

    23. [23]

      W. Xie, K. Li, X. Liu, X. Zhang, H. Huang, Adv. Mater. 35 (2023) 2208132, https://doi.org/10.1002/adma.202208132  doi: 10.1002/adma.202208132

    24. [24]

      J. Jiang, Q. Song, H. Zhang, Z. Liu, Y. Li, Z. Jiang, X. Lou, C. Lee, Angew. Chem. Int. Ed. 63 (2024) e202318236, https://doi.org/10.1002/anie.202318236  doi: 10.1002/anie.202318236

    25. [25]

      S. Chen, P. Li, S. Xu, X. Pan, Q. Fu, X. Bao, J. Mater. Chem. A. 6 (2018) 1832, https://doi.org/10.1039/C7TA08515J  doi: 10.1039/C7TA08515J

    26. [26]

      S. Hu, P. Qiao, X. Yi, Y. Lei, H. Hu, J. Ye, D. Wang, Angew. Chem. Int. Ed. 62 (2023) e202304585, https://doi.org/10.1002/anie.202304585  doi: 10.1002/anie.202304585

    27. [27]

      J. Guo, Y. Duan, T. Wu, W. Zhang, L. Wang, Y. Zhang, Q. Luo, Q. Lu, Y. Zhang, H. Mu, et al., Appl. Catal. B Environ. 324 (2023) 122235, https://doi.org/10.1016/j.apcatb.2022.122235  doi: 10.1016/j.apcatb.2022.122235

    28. [28]

      D. Chen, S. Mu, Adv. Mater. 36 (2024) 2408285, https://doi.org/10.1002/adma.202408285  doi: 10.1002/adma.202408285

    29. [29]

      M. Xiao, L. Zhang, B. Luo, M. Lyu, Z. Wang, H. Huang, S. Wang, A. J. Du, L. Wang, Angew. Chem. Int. Ed. 132 (2020) 7297, https://doi.org/10.1002/ange.202001148  doi: 10.1002/ange.202001148

    30. [30]

      S. Gupta, Y. Mao, Prog. Mater. Sci. 117 (2021) 100734, https://doi.org/10.1016/j.pmatsci.2020.100734  doi: 10.1016/j.pmatsci.2020.100734

    31. [31]

      Z. Pang, G. Li, X. Xiong, L. Ji, Q. Xu, X. Zou, X. Lu, J. Energy Chem. 61 (2021) 622, https://doi.org/10.1016/j.jechem.2021.02.020  doi: 10.1016/j.jechem.2021.02.020

    32. [32]

      N. Díez, A. Fuertes, M. Sevilla, Energy Storage Mater. 38 (2021) 50, https://doi.org/10.1016/j.ensm.2021.02.048  doi: 10.1016/j.ensm.2021.02.048

    33. [33]

      Z. Zhao, H. Li, X. Gao, Chem. Rev. 124 (2023) 2651, https://doi.org/10.1021/acs.chemrev.3c00794  doi: 10.1021/acs.chemrev.3c00794

    34. [34]

      C. Xie, L. Xu, J. Peng, L. Zhang, X. Wang, J. Deng, M. Capron, V. Ordomsky, Adv. Funct. Mater. 33 (2023) 2213782, https://doi.org/10.1002/adfm.202213782  doi: 10.1002/adfm.202213782

    35. [35]

      Z. Bundhoo, Renew. Sustain. Energy Rev. 82 (2018) 1149, https://doi.org/10.1016/j.rser.2017.09.066  doi: 10.1016/j.rser.2017.09.066

    36. [36]

      S. Qiu, H. Shao, C. He, X. Song, J. Fan, Y. Xue, G. Li, H. Xiao, Appl. Catal. B Environ. Energy 344 (2024) 123615, https://doi.org/10.1016/j.apcatb.2023.123615  doi: 10.1016/j.apcatb.2023.123615

    37. [37]

      H. Liu, D. Chen, Z. Wang, H. Jing, R. Zhang, Appl. Catal. B Environ. 203 (2017) 300, https://doi.org/10.1016/j.apcatb.2016.10.014  doi: 10.1016/j.apcatb.2016.10.014

    38. [38]

      F. Kishimoto, T. Yoshioka, R. Ishibashi, H. Yamada, K. Muraoka, H. Taniguchi, T. Wakihara, K. Takanabe, Sci. Adv. 9 (2023) eadi1744, doi: 10.1126/sciadv.adi1744  doi: 10.1126/sciadv.adi1744

    39. [39]

      X. Zhang, B. Ren, Z. Yang, H. Chen, S. Dai, ACS Catal. 15 (2025) 9290, https://doi.org/10.1021/acscatal.5c01353  doi: 10.1021/acscatal.5c01353

    40. [40]

      J. Lin, L. Duan, J. Zhang, X. Quan, R. Du, G. Chen, X. Liu, R. Ma, N. Zhang, Appl. Catal. B Environ. 2025, 371 (2025) 125268, https://doi.org/10.1016/j.apcatb.2025.125268  doi: 10.1016/j.apcatb.2025.125268

    41. [41]

      L. Jiang, W. Li, H. Wang, J. Yang, H. Chen, X. Wang, X. Yang, H. Wang, J. Hazard. Mater. 469 (2024) 133806, https://doi.org/10.1016/j.jhazmat.2024.133806  doi: 10.1016/j.jhazmat.2024.133806

    42. [42]

      X. Zhang, J. Deng, T. Lan, Y. Shen, Q. Zhong, W. Ren, D. Zhang, ACS Catal. 12 (2022) 14152, https://doi.org/10.1021/acscatal.2c04800  doi: 10.1021/acscatal.2c04800

    43. [43]

      C. Ma, Y. Zhang, S. Yan, B. Liu, Appl. Catal. B Environ. 315 (2022) 121574, https://doi.org/10.1016/j.apcatb.2022.121574  doi: 10.1016/j.apcatb.2022.121574

    44. [44]

      J. Liang, H. Zhang, Q. Song, Z. Liu, J. Xia, B. Yan, X. Meng, Z. Jiang, X. Lou, C. Lee, Adv. Mater. 36 (2024) 2303287, https://doi.org/10.1002/adma.202303287  doi: 10.1002/adma.202303287

    45. [45]

      Q. Shentu, Z. Wu, W. Song, S. Pang, Z. Zhou, W. Lv, C. Song, Y. Yao, Chem. Eng. J. 446 (2022) 137274, https://doi.org/10.1016/j.cej.2022.137274  doi: 10.1016/j.cej.2022.137274

    46. [46]

      Y. Tang, C. Fan, Z. Zang, Y. Cheng, L. Li, X. Yu, X. Yang, Z. Lu, X. Zhang, H. Liu, J. Colloid Interface Sci. 683 (2025) 312, https://doi.org/10.1016/j.jcis.2024.12.078  doi: 10.1016/j.jcis.2024.12.078

    47. [47]

      H. Zhang, Y. Liu, H. Wei, C. Wang, T. Liu, X. Wu, S. Ashraf, S. Mehdi, S. Guan, Y. Fan, et al., Appl. Catal. B Environ. 314 (2022) 121495, https://doi.org/10.1016/j.apcatb.2022.121495  doi: 10.1016/j.apcatb.2022.121495

    48. [48]

      L. Chen, M. Zhou, Z. Luo, M. Wakeel, A. Asiri, X. Wang, Appl. Catal. B Environ. 241 (2019) 246, https://doi.org/10.1016/j.apcatb.2018.09.034  doi: 10.1016/j.apcatb.2018.09.034

    49. [49]

      H. Wu, X. Chen, H. Xu, R. Yang, X. Wang, J. Chen, Z. Xie, L. Wu, Y. Mai, Nano Res. 17 (2024) 7991, https://doi.org/10.1007/s12274-024-6816-x  doi: 10.1007/s12274-024-6816-x

    50. [50]

      W. Zhang, H. Bai, B. Ma, L. Wang, Y. Zhang, Q. Luo, J. An, H. Mu, Y. Zhang, D. Wang, Appl. Catal. B Environ. 356 (2024) 124241, https://doi.org/10.1016/j.apcatb.2024.124241  doi: 10.1016/j.apcatb.2024.124241

    51. [51]

      Y. Wang, G. Chen, H. Weng, L. Wang, J. Chen, S. Cheng, P. Zhang, M. Wang, X. Ge, H. Chen, et al., Chem. Eng. J. 410 (2021) 128280, https://doi.org/10.1016/j.cej.2020.128280  doi: 10.1016/j.cej.2020.128280

    52. [52]

      B. Feng, Y. Liu, K. Wan, S. Zu, Y. Pei, X. Zhang, M. Qiao, H. Li, B. Zong, Angew. Chem. Int. Ed. 63 (2024) e202401884, https://doi.org/10.1002/anie.202401884  doi: 10.1002/anie.202401884

    53. [53]

      J. Sun, Y. Guan, G. Yang, S. Qiu, H. Shao, Y. Wang, G. Li, S. Xiao, ACS Sustain. Chem. Eng. 11 (2023) 14827, https://doi.org/10.1021/acssuschemeng.3c05228  doi: 10.1021/acssuschemeng.3c05228

    54. [54]

      Y. Ji, H. Ma, H. Shao, Z. Tao, W. Wang, Y. Miao, S. Xiao, Environ. Res. 276 (2025) 121501, https://doi.org/10.1016/j.envres.2025.121501  doi: 10.1016/j.envres.2025.121501

    55. [55]

      H. Shao, M. Heng, J. Guo, R. Yang, H. Zhang, J. Fan, G. Li, Y. Miao, S. Xiao, Langmuir. 41 (2024) 1115, https://doi.org/10.1021/acs.langmuir.4c04436  doi: 10.1021/acs.langmuir.4c04436

    56. [56]

      Y. Xu, Y. Ren, X. Liu, H. Li, Z. Lu, Acta Phys.-Chim. Sin. 40 (2024) 2403032, https://doi.org/10.1016/j.actphy.2025.100063  doi: 10.1016/j.actphy.2025.100063

    57. [57]

      J. Qi, Y. An, Y. Zhang, Acta Phys.-Chim. Sin. 40 (2024) 2408002, https://doi.org/10.3866/PKU.WHXB202408002  doi: 10.3866/PKU.WHXB202408002

    58. [58]

      X. Wang, S. Dong, K. Qi K, V. Popkov, X. Xiang, Acta Phys.-Chim. Sin. 40 (2024) 2408005, https://doi.org/10.3866/PKU.WHXB202408005  doi: 10.3866/PKU.WHXB202408005

    59. [59]

      J. Cai, W. Xu, H. Chi, Q. Liu, W. Gao, L. Shi, J. Low, Z. Zou, Y. Zhou, Acta Phys.-Chim. Sin. 40 (2024) 2407002, https://doi.org/10.3866/PKU.WHXB202407002  doi: 10.3866/PKU.WHXB202407002

    60. [60]

      Y. Zhang, M. Gao, S. Chen, H. Wang, P. Huo, Acta Phys.-Chim. Sin. 39 (2023) 103866, https://doi.org/10.3866/PKU.WHXB202211051  doi: 10.3866/PKU.WHXB202211051

    61. [61]

      L. Yang, Z. Li, X. Wang, L. Li, Z. Chen, Chin. J. Catal. 59 (2024) 237, https://doi.org/10.1016/S1872-2067(23)64566-8  doi: 10.1016/S1872-2067(23)64566-8

    62. [62]

      F. Wang, X. Li, K. Lu, M. Zhou, C. Yu, K. Yang, Chen. Chin. J. Catal. 63 (2024) 190, https://doi.org/10.1016/S1872-2067(24)60066-5  doi: 10.1016/S1872-2067(24)60066-5

    63. [63]

      X. Shao, K. Li, J. Li, Q. Cheng, G. Wang, K. Wang, Chen. Chin. J. Catal. 51 (2023) 193, https://doi.org/10.1016/S1872-2067(23)64478-X  doi: 10.1016/S1872-2067(23)64478-X

    64. [64]

      M. Lin, M. Luo, Y. Liu Y, J. Shen, J. Long, Z. Zhang, Chen. Chin. J. Catal. 50 (2023) 239, https://doi.org/10.1016/S1872-2067(23)64477-8  doi: 10.1016/S1872-2067(23)64477-8

    65. [65]

      M. Song, X. Song, X. Liu, W. Zhou, P. Huo, Chen. Chin. J. Catal. 51 (2023) 180, https://doi.org/10.1016/S1872-2067(23)64480-8  doi: 10.1016/S1872-2067(23)64480-8

    66. [66]

      Z. Zhang, X Wang, H. Tang, D. Li, J. Xu, Chen. Chin. J. Catal. 55 (2023) 227, https://doi.org/10.1016/S1872-2067(23)64549-8  doi: 10.1016/S1872-2067(23)64549-8

    67. [67]

      H. He, Z. Wang, K. Dai, S. Li, J. Zhang, Chin. J. Catal. 48 (2023) 267, https://doi.org/10.1016/S1872-2067(23)64420-1  doi: 10.1016/S1872-2067(23)64420-1

    68. [68]

      L. Wang, S. Zhang, L. Zhang, J. Yu, Appl. Catal. B Environ. 355 (2024) 124167, https://doi.org/10.1016/j.apcatb.2024.124167  doi: 10.1016/j.apcatb.2024.124167

    69. [69]

      P. Hu, J. Zhang, G. Liang, J. Yu, F. Xu, ACS Catal. 14 (2024) 15025, https://doi.org/10.1021/acscatal.4c04644  doi: 10.1021/acscatal.4c04644

    70. [70]

      M. Sayed, K. Qi, X. Wu, L. Zhang, H. García, J. Yu, Chem. Soc. Rev. 54 (2025) 4874, https://doi.org/10.1039/D4CS01091D  doi: 10.1039/D4CS01091D

    71. [71]

      H. Qin, Y. Huang, Q. Cheng, S. Yan, K. Wang, Chin. J. Catal. 72 (2025) 106, https://doi.org/10.1016/S1872-2067(24)60265-2  doi: 10.1016/S1872-2067(24)60265-2

    72. [72]

      K. Li, J. Mei, J. Li, Y. Liu, G. Wang, D. Hu, S. Yan, K. Wang, Chin. J. Catal. 67 (2024) 484, https://doi.org/10.1007/s40843-023-2717-0  doi: 10.1007/s40843-023-2717-0

    73. [73]

      K. Wang, C. Liu, J. Li, Q. Cheng, B. Liu, J. Li, Appl. Catal. B Environ. 361 (2025) 124560, https://doi.org/10.1016/j.apcatb.2024.124560  doi: 10.1016/j.apcatb.2024.124560

    74. [74]

      Q. Cheng, J. Li, Y. Huang, X. Liu, B. Zhou, Q. Xiong, K. Wang, Adv. Sci. 12 (2025) 2500218, https://doi.org/10.1002/advs.202500218  doi: 10.1002/advs.202500218

  • 加载中
    1. [1]

      Yuena Yu Fang Fang . Microwave-Assisted Synthesis of Safinamide Methanesulfonate. University Chemistry, 2024, 39(11): 210-216. doi: 10.3866/PKU.DXHX202401076

    2. [2]

      Jianyu QinYuejiao AnYanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-0. doi: 10.3866/PKU.WHXB202408002

    3. [3]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    4. [4]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

    5. [5]

      Xiaorui ChenXuan LuoTongming SuXinling XieLiuyun ChenYuejing BinZuzeng QinHongbing Ji . Ga-doped Cu/γ-Al2O3 bifunctional interface sites promote the direct hydrogenation of CO2 to DME. Acta Physico-Chimica Sinica, 2025, 41(10): 100126-0. doi: 10.1016/j.actphy.2025.100126

    6. [6]

      Jia WangQing QinZhe WangXuhao ZhaoYunfei ChenLiqiang HouShangguo LiuXien Liu . P-Doped Carbon-Supported ZnxPyOz for Efficient Ammonia Electrosynthesis under Ambient Conditions. Acta Physico-Chimica Sinica, 2024, 40(3): 2304044-0. doi: 10.3866/PKU.WHXB202304044

    7. [7]

      Weikang WangYadong WuJianjun ZhangKai MengJinhe LiLele WangQinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093

    8. [8]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    9. [9]

      Gaopeng LiuLina LiBin WangNingjie ShanJintao DongMengxia JiWenshuai ZhuPaul K. ChuJiexiang XiaHuaming Li . Construction of Bi Nanoparticles Loaded BiOCl Nanosheets Ohmic Junction for Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(7): 2306041-0. doi: 10.3866/PKU.WHXB202306041

    10. [10]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    11. [11]

      Xianghai SongXiaoying LiuZhixiang RenXiang LiuMei WangYuanfeng WuWeiqiang ZhouZhi ZhuPengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-0. doi: 10.1016/j.actphy.2025.100055

    12. [12]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    13. [13]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    14. [14]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

    15. [15]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    16. [16]

      Yangrui XuYewei RenXinlin LiuHongping LiZiyang Lu . NH2-UIO-66 Based Hydrophobic Porous Liquid with High Mass Transfer and Affinity Surface for Enhancing CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-0. doi: 10.3866/PKU.WHXB202403032

    17. [17]

      Peng LiYuanying CuiZhongliao WangGraham DawsonChunfeng ShaoKai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-0. doi: 10.1016/j.actphy.2025.100065

    18. [18]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    19. [19]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    20. [20]

      Chao LiuHuan YuJiaming LiXi YuZhuangzhi YuYuxi SongFeng ZhangQinfang ZhangZhigang Zou . 具有光热效应的多级Ti3C2/Bi12O17Br2肖特基异质结简单合成及其太阳能驱动抗生素光降解的研究. Acta Physico-Chimica Sinica, 2025, 41(7): 100075-0. doi: 10.1016/j.actphy.2025.100075

Metrics
  • PDF Downloads(0)
  • Abstract views(16)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return