Citation:
Haotong Ma, Mingyu Heng, Yang Xu, Wei Bi, Yingchun Miao, Shuning Xiao. Synergistic carbon doping and Cu loading on boron nitride via microwave synthesis for enhanced atmospheric CO2 photoreduction[J]. Acta Physico-Chimica Sinica,
;2025, 41(11): 100132.
doi:
10.1016/j.actphy.2025.100132
-
Photocatalytic CO2 reduction under atmospheric concentrations remains highly challenging yet critical for practical carbon-neutral applications. In this study, a Cu-loaded, carbon-doped boron nitride (Cu/BCN) photocatalyst was synthesized by a microwave-assisted molten salt method. This approach enables simultaneous carbon incorporation into the BN lattice and selective deposition of Cu nanoparticles, forming an efficient heterostructure. The synergy between C doping and Cu loading modulates the band structure, enhances visible-light absorption, promotes charge separation, and improves CO2 adsorption. The optimized Cu/BCN photocatalyst achieved a CO production rate of 30.62 μmol·g−1·h−1 with 95.8% selectivity under ambient CO2 conditions. Combined experimental and DFT analyses confirm that the Cu/BCN interface facilitates charge transfer and lowers the energy barrier for *COOH formation. This work demonstrates a promising route toward efficient CO2 utilization directly from air, offering a scalable strategy for atmospheric carbon conversion.
-
-
-
[1]
X. Deng, J. Zhang, K. Qi, G. Liang, F. Xu, J. Yu, Nat. Commun. 15 (2024) 4807, https://doi.org/10.1038/s41467-024-49004-7 doi: 10.1038/s41467-024-49004-7
-
[2]
L. Zhang, J. Zhang, J. Yu, H. García, Nat. Rev. Chem. 9 (2025) 328, https://doi.org/10.1038/s41570-025-00698-3 doi: 10.1038/s41570-025-00698-3
-
[3]
K. Wang, Y. Hu, X. Liu, J. Li, B. Liu, Nat. Commun. 16 (2025) 2094, https://doi.org/10.1038/s41467-025-57140-x doi: 10.1038/s41467-025-57140-x
-
[4]
F. Xu, Y. He, J. Zhang, G. Liang, C. Liu, J. Yu, Angew. Chem. Int. Ed. 64 (2025) e202414672, https://doi.org/10.1002/anie.202414672 doi: 10.1002/anie.202414672
-
[5]
P. Hu, G. Liang, B. Zhu, W. Macyk, J. Yu, F. Xu, ACS Catal. 13 (2023) 12623, https://doi.org/10.1021/acscatal.3c03095 doi: 10.1021/acscatal.3c03095
-
[6]
W. Hou, H. Guo, M. Wu, L. Wang, ACS Nano 17 (2023) 20560-20569, https://doi.org/10.1021/acsnano.3c07411 doi: 10.1021/acsnano.3c07411
-
[7]
J. Fu, K. Jiang, X. Qiu, J. Yu, M. Liu, Mater. Today 32 (2020) 222, https://doi.org/10.1016/j.mattod.2019.06.009 doi: 10.1016/j.mattod.2019.06.009
-
[8]
M. Heng, H. Shao, J. Sun, Q. Huang, S. Shen, G. Yang, Y. Xue, S. Xiao, Rare Met. 44 (2024) 1108, https://doi.org/10.1007/s12598-024-03000-4 doi: 10.1007/s12598-024-03000-4
-
[9]
Y. Chai, Y. Kong, M. Lin, W. Lin, J. Shen, J. Long, R. Yuan, W. Dai, X. Wang, Z. Zhang, Nat. Commun. 14 (2023) 6168, https://doi.org/10.1038/s41467-023-41943-x doi: 10.1038/s41467-023-41943-x
-
[10]
J. Guo, H. Ma, H. Shang, W. Wang, R. Yang, S. Wang, Y. Miao, D. Phillips, G. Li, S. Xiao, J. Hazard. Mater. 492 (2025) 138060, https://doi.org/10.1016/j.jhazmat.2025.138060 doi: 10.1016/j.jhazmat.2025.138060
-
[11]
H. He, W. Zhai, P. Liu, J. Wang, Mater. Today 83 (2025) 382, https://doi.org/10.1016/j.mattod.2024.12.019 doi: 10.1016/j.mattod.2024.12.019
-
[12]
J. Pu, K. Zhang, Z. Wang, C. Li, K. Zhu, Y. Yao, G. Hong, Adv. Funct. Mater. 31 (2021) 2106315, https://doi.org/10.1002/adfm.202106315 doi: 10.1002/adfm.202106315
-
[13]
Y. Wang, S. Xia, K. Chen, J. Zhang, H. Tan, C. Yu, J. Cui, J. Zeng, J. Wu, P. Wang, et al., ACS Nano. 18 (2024) 34403, https://doi.org/10.1021/acsnano.4c14039 doi: 10.1021/acsnano.4c14039
-
[14]
T. Yuan, Z. Wu, S. Zhai, R. Wang, S. Wu, J. Cheng, M. Zheng, X. Wang, T. Yuan, Z. Wu, et al., Angew. Chem. Int. Ed. 62 (2023) e202304861, https://doi.org/10.1002/anie.202304861 doi: 10.1002/anie.202304861
-
[15]
J. Ji, S. Yan, Z. Zhou, Y. Gu, C. Liu, S. Yang, D. Wang, Y. Xue, C. Tang, J. Mater. Sci. Technol. 218 (2025) 170, https://doi.org/10.1016/j.jmst.2024.07.051 doi: 10.1016/j.jmst.2024.07.051
-
[16]
H. Chen, C. Xiong, J. Moon, A. Ivanov, W. Lin, T. Wang, J. Fu, D. Jiang, Z. Wu, Z. Yang, et al., J. Am. Chem. Soc. 144 (2022) 10688, https://doi.org/10.1021/jacs.2c00343 doi: 10.1021/jacs.2c00343
-
[17]
C. Sathish, G. Kothandam, P. Selvarajan, Z. Lei, J. Lee, J. Qu, A. Al Muhtaseb, X. Yu, M. Breese, R. Zheng, et al., Adv. Sci. 9 (2022) 2105603, https://doi.org/10.1002/advs.202105603 doi: 10.1002/advs.202105603
-
[18]
H. Ou, Y. Jin, B. Chong, J. Bao, S. Kou, H. Li, Y. Li, X. Yan, B. Lin, G. Yang, Adv. Mater. 36 (2024) 2404851, https://doi.org/10.1002/adma.202404851 doi: 10.1002/adma.202404851
-
[19]
L. Duan, B. Wang, K. Heck, C. Clark, J. Wei, M. Wang, J. Metz, G. Wu, A. Tsai, S. Guo, et al., Chem. Eng. J. 448 (2022) 137735, https://doi.org/10.1016/j.cej.2022.137735 doi: 10.1016/j.cej.2022.137735
-
[20]
J. Liang, W. Zhang, Z. Liu, Q. Song, Z. Zhu, Z. Guan, H. Wang, P. Zhang, J. Li, M. Zhou, et al., ACS Catal. 12 (2022) 12217, https://doi.org/10.1021/acscatal.2c03970 doi: 10.1021/acscatal.2c03970
-
[21]
C. Zhou, C. Lai, C. Zhang, G. Zeng, D. Huang, M. Cheng, L. Hu, W. Xiong, M. Chen, J. Wang, et al., Appl. Catal. B Environ. 238 (2018) 6, https://doi.org/10.1016/j.apcatb.2018.07.011 doi: 10.1016/j.apcatb.2018.07.011
-
[22]
S. Chen, P. Li, S. Xu, X. Pan, Q. Fu, X. Bao, J, Mater. Sci. Technol. 6 (2018) 1832, https://doi.org/10.1039/C7TA08515J doi: 10.1039/C7TA08515J
-
[23]
W. Xie, K. Li, X. Liu, X. Zhang, H. Huang, Adv. Mater. 35 (2023) 2208132, https://doi.org/10.1002/adma.202208132 doi: 10.1002/adma.202208132
-
[24]
J. Jiang, Q. Song, H. Zhang, Z. Liu, Y. Li, Z. Jiang, X. Lou, C. Lee, Angew. Chem. Int. Ed. 63 (2024) e202318236, https://doi.org/10.1002/anie.202318236 doi: 10.1002/anie.202318236
-
[25]
S. Chen, P. Li, S. Xu, X. Pan, Q. Fu, X. Bao, J. Mater. Chem. A. 6 (2018) 1832, https://doi.org/10.1039/C7TA08515J doi: 10.1039/C7TA08515J
-
[26]
S. Hu, P. Qiao, X. Yi, Y. Lei, H. Hu, J. Ye, D. Wang, Angew. Chem. Int. Ed. 62 (2023) e202304585, https://doi.org/10.1002/anie.202304585 doi: 10.1002/anie.202304585
-
[27]
J. Guo, Y. Duan, T. Wu, W. Zhang, L. Wang, Y. Zhang, Q. Luo, Q. Lu, Y. Zhang, H. Mu, et al., Appl. Catal. B Environ. 324 (2023) 122235, https://doi.org/10.1016/j.apcatb.2022.122235 doi: 10.1016/j.apcatb.2022.122235
-
[28]
D. Chen, S. Mu, Adv. Mater. 36 (2024) 2408285, https://doi.org/10.1002/adma.202408285 doi: 10.1002/adma.202408285
-
[29]
M. Xiao, L. Zhang, B. Luo, M. Lyu, Z. Wang, H. Huang, S. Wang, A. J. Du, L. Wang, Angew. Chem. Int. Ed. 132 (2020) 7297, https://doi.org/10.1002/ange.202001148 doi: 10.1002/ange.202001148
-
[30]
S. Gupta, Y. Mao, Prog. Mater. Sci. 117 (2021) 100734, https://doi.org/10.1016/j.pmatsci.2020.100734 doi: 10.1016/j.pmatsci.2020.100734
-
[31]
Z. Pang, G. Li, X. Xiong, L. Ji, Q. Xu, X. Zou, X. Lu, J. Energy Chem. 61 (2021) 622, https://doi.org/10.1016/j.jechem.2021.02.020 doi: 10.1016/j.jechem.2021.02.020
-
[32]
N. Díez, A. Fuertes, M. Sevilla, Energy Storage Mater. 38 (2021) 50, https://doi.org/10.1016/j.ensm.2021.02.048 doi: 10.1016/j.ensm.2021.02.048
-
[33]
Z. Zhao, H. Li, X. Gao, Chem. Rev. 124 (2023) 2651, https://doi.org/10.1021/acs.chemrev.3c00794 doi: 10.1021/acs.chemrev.3c00794
-
[34]
C. Xie, L. Xu, J. Peng, L. Zhang, X. Wang, J. Deng, M. Capron, V. Ordomsky, Adv. Funct. Mater. 33 (2023) 2213782, https://doi.org/10.1002/adfm.202213782 doi: 10.1002/adfm.202213782
-
[35]
Z. Bundhoo, Renew. Sustain. Energy Rev. 82 (2018) 1149, https://doi.org/10.1016/j.rser.2017.09.066 doi: 10.1016/j.rser.2017.09.066
-
[36]
S. Qiu, H. Shao, C. He, X. Song, J. Fan, Y. Xue, G. Li, H. Xiao, Appl. Catal. B Environ. Energy 344 (2024) 123615, https://doi.org/10.1016/j.apcatb.2023.123615 doi: 10.1016/j.apcatb.2023.123615
-
[37]
H. Liu, D. Chen, Z. Wang, H. Jing, R. Zhang, Appl. Catal. B Environ. 203 (2017) 300, https://doi.org/10.1016/j.apcatb.2016.10.014 doi: 10.1016/j.apcatb.2016.10.014
-
[38]
F. Kishimoto, T. Yoshioka, R. Ishibashi, H. Yamada, K. Muraoka, H. Taniguchi, T. Wakihara, K. Takanabe, Sci. Adv. 9 (2023) eadi1744, doi: 10.1126/sciadv.adi1744 doi: 10.1126/sciadv.adi1744
-
[39]
X. Zhang, B. Ren, Z. Yang, H. Chen, S. Dai, ACS Catal. 15 (2025) 9290, https://doi.org/10.1021/acscatal.5c01353 doi: 10.1021/acscatal.5c01353
-
[40]
J. Lin, L. Duan, J. Zhang, X. Quan, R. Du, G. Chen, X. Liu, R. Ma, N. Zhang, Appl. Catal. B Environ. 2025, 371 (2025) 125268, https://doi.org/10.1016/j.apcatb.2025.125268 doi: 10.1016/j.apcatb.2025.125268
-
[41]
L. Jiang, W. Li, H. Wang, J. Yang, H. Chen, X. Wang, X. Yang, H. Wang, J. Hazard. Mater. 469 (2024) 133806, https://doi.org/10.1016/j.jhazmat.2024.133806 doi: 10.1016/j.jhazmat.2024.133806
-
[42]
X. Zhang, J. Deng, T. Lan, Y. Shen, Q. Zhong, W. Ren, D. Zhang, ACS Catal. 12 (2022) 14152, https://doi.org/10.1021/acscatal.2c04800 doi: 10.1021/acscatal.2c04800
-
[43]
C. Ma, Y. Zhang, S. Yan, B. Liu, Appl. Catal. B Environ. 315 (2022) 121574, https://doi.org/10.1016/j.apcatb.2022.121574 doi: 10.1016/j.apcatb.2022.121574
-
[44]
J. Liang, H. Zhang, Q. Song, Z. Liu, J. Xia, B. Yan, X. Meng, Z. Jiang, X. Lou, C. Lee, Adv. Mater. 36 (2024) 2303287, https://doi.org/10.1002/adma.202303287 doi: 10.1002/adma.202303287
-
[45]
Q. Shentu, Z. Wu, W. Song, S. Pang, Z. Zhou, W. Lv, C. Song, Y. Yao, Chem. Eng. J. 446 (2022) 137274, https://doi.org/10.1016/j.cej.2022.137274 doi: 10.1016/j.cej.2022.137274
-
[46]
Y. Tang, C. Fan, Z. Zang, Y. Cheng, L. Li, X. Yu, X. Yang, Z. Lu, X. Zhang, H. Liu, J. Colloid Interface Sci. 683 (2025) 312, https://doi.org/10.1016/j.jcis.2024.12.078 doi: 10.1016/j.jcis.2024.12.078
-
[47]
H. Zhang, Y. Liu, H. Wei, C. Wang, T. Liu, X. Wu, S. Ashraf, S. Mehdi, S. Guan, Y. Fan, et al., Appl. Catal. B Environ. 314 (2022) 121495, https://doi.org/10.1016/j.apcatb.2022.121495 doi: 10.1016/j.apcatb.2022.121495
-
[48]
L. Chen, M. Zhou, Z. Luo, M. Wakeel, A. Asiri, X. Wang, Appl. Catal. B Environ. 241 (2019) 246, https://doi.org/10.1016/j.apcatb.2018.09.034 doi: 10.1016/j.apcatb.2018.09.034
-
[49]
H. Wu, X. Chen, H. Xu, R. Yang, X. Wang, J. Chen, Z. Xie, L. Wu, Y. Mai, Nano Res. 17 (2024) 7991, https://doi.org/10.1007/s12274-024-6816-x doi: 10.1007/s12274-024-6816-x
-
[50]
W. Zhang, H. Bai, B. Ma, L. Wang, Y. Zhang, Q. Luo, J. An, H. Mu, Y. Zhang, D. Wang, Appl. Catal. B Environ. 356 (2024) 124241, https://doi.org/10.1016/j.apcatb.2024.124241 doi: 10.1016/j.apcatb.2024.124241
-
[51]
Y. Wang, G. Chen, H. Weng, L. Wang, J. Chen, S. Cheng, P. Zhang, M. Wang, X. Ge, H. Chen, et al., Chem. Eng. J. 410 (2021) 128280, https://doi.org/10.1016/j.cej.2020.128280 doi: 10.1016/j.cej.2020.128280
-
[52]
B. Feng, Y. Liu, K. Wan, S. Zu, Y. Pei, X. Zhang, M. Qiao, H. Li, B. Zong, Angew. Chem. Int. Ed. 63 (2024) e202401884, https://doi.org/10.1002/anie.202401884 doi: 10.1002/anie.202401884
-
[53]
J. Sun, Y. Guan, G. Yang, S. Qiu, H. Shao, Y. Wang, G. Li, S. Xiao, ACS Sustain. Chem. Eng. 11 (2023) 14827, https://doi.org/10.1021/acssuschemeng.3c05228 doi: 10.1021/acssuschemeng.3c05228
-
[54]
Y. Ji, H. Ma, H. Shao, Z. Tao, W. Wang, Y. Miao, S. Xiao, Environ. Res. 276 (2025) 121501, https://doi.org/10.1016/j.envres.2025.121501 doi: 10.1016/j.envres.2025.121501
-
[55]
H. Shao, M. Heng, J. Guo, R. Yang, H. Zhang, J. Fan, G. Li, Y. Miao, S. Xiao, Langmuir. 41 (2024) 1115, https://doi.org/10.1021/acs.langmuir.4c04436 doi: 10.1021/acs.langmuir.4c04436
-
[56]
Y. Xu, Y. Ren, X. Liu, H. Li, Z. Lu, Acta Phys.-Chim. Sin. 40 (2024) 2403032, https://doi.org/10.1016/j.actphy.2025.100063 doi: 10.1016/j.actphy.2025.100063
-
[57]
J. Qi, Y. An, Y. Zhang, Acta Phys.-Chim. Sin. 40 (2024) 2408002, https://doi.org/10.3866/PKU.WHXB202408002 doi: 10.3866/PKU.WHXB202408002
-
[58]
X. Wang, S. Dong, K. Qi K, V. Popkov, X. Xiang, Acta Phys.-Chim. Sin. 40 (2024) 2408005, https://doi.org/10.3866/PKU.WHXB202408005 doi: 10.3866/PKU.WHXB202408005
-
[59]
J. Cai, W. Xu, H. Chi, Q. Liu, W. Gao, L. Shi, J. Low, Z. Zou, Y. Zhou, Acta Phys.-Chim. Sin. 40 (2024) 2407002, https://doi.org/10.3866/PKU.WHXB202407002 doi: 10.3866/PKU.WHXB202407002
-
[60]
Y. Zhang, M. Gao, S. Chen, H. Wang, P. Huo, Acta Phys.-Chim. Sin. 39 (2023) 103866, https://doi.org/10.3866/PKU.WHXB202211051 doi: 10.3866/PKU.WHXB202211051
-
[61]
L. Yang, Z. Li, X. Wang, L. Li, Z. Chen, Chin. J. Catal. 59 (2024) 237, https://doi.org/10.1016/S1872-2067(23)64566-8 doi: 10.1016/S1872-2067(23)64566-8
-
[62]
F. Wang, X. Li, K. Lu, M. Zhou, C. Yu, K. Yang, Chen. Chin. J. Catal. 63 (2024) 190, https://doi.org/10.1016/S1872-2067(24)60066-5 doi: 10.1016/S1872-2067(24)60066-5
-
[63]
X. Shao, K. Li, J. Li, Q. Cheng, G. Wang, K. Wang, Chen. Chin. J. Catal. 51 (2023) 193, https://doi.org/10.1016/S1872-2067(23)64478-X doi: 10.1016/S1872-2067(23)64478-X
-
[64]
M. Lin, M. Luo, Y. Liu Y, J. Shen, J. Long, Z. Zhang, Chen. Chin. J. Catal. 50 (2023) 239, https://doi.org/10.1016/S1872-2067(23)64477-8 doi: 10.1016/S1872-2067(23)64477-8
-
[65]
M. Song, X. Song, X. Liu, W. Zhou, P. Huo, Chen. Chin. J. Catal. 51 (2023) 180, https://doi.org/10.1016/S1872-2067(23)64480-8 doi: 10.1016/S1872-2067(23)64480-8
-
[66]
Z. Zhang, X Wang, H. Tang, D. Li, J. Xu, Chen. Chin. J. Catal. 55 (2023) 227, https://doi.org/10.1016/S1872-2067(23)64549-8 doi: 10.1016/S1872-2067(23)64549-8
-
[67]
H. He, Z. Wang, K. Dai, S. Li, J. Zhang, Chin. J. Catal. 48 (2023) 267, https://doi.org/10.1016/S1872-2067(23)64420-1 doi: 10.1016/S1872-2067(23)64420-1
-
[68]
L. Wang, S. Zhang, L. Zhang, J. Yu, Appl. Catal. B Environ. 355 (2024) 124167, https://doi.org/10.1016/j.apcatb.2024.124167 doi: 10.1016/j.apcatb.2024.124167
-
[69]
P. Hu, J. Zhang, G. Liang, J. Yu, F. Xu, ACS Catal. 14 (2024) 15025, https://doi.org/10.1021/acscatal.4c04644 doi: 10.1021/acscatal.4c04644
-
[70]
M. Sayed, K. Qi, X. Wu, L. Zhang, H. García, J. Yu, Chem. Soc. Rev. 54 (2025) 4874, https://doi.org/10.1039/D4CS01091D doi: 10.1039/D4CS01091D
-
[71]
H. Qin, Y. Huang, Q. Cheng, S. Yan, K. Wang, Chin. J. Catal. 72 (2025) 106, https://doi.org/10.1016/S1872-2067(24)60265-2 doi: 10.1016/S1872-2067(24)60265-2
-
[72]
K. Li, J. Mei, J. Li, Y. Liu, G. Wang, D. Hu, S. Yan, K. Wang, Chin. J. Catal. 67 (2024) 484, https://doi.org/10.1007/s40843-023-2717-0 doi: 10.1007/s40843-023-2717-0
-
[73]
K. Wang, C. Liu, J. Li, Q. Cheng, B. Liu, J. Li, Appl. Catal. B Environ. 361 (2025) 124560, https://doi.org/10.1016/j.apcatb.2024.124560 doi: 10.1016/j.apcatb.2024.124560
-
[74]
Q. Cheng, J. Li, Y. Huang, X. Liu, B. Zhou, Q. Xiong, K. Wang, Adv. Sci. 12 (2025) 2500218, https://doi.org/10.1002/advs.202500218 doi: 10.1002/advs.202500218
-
[1]
-
-
-
[1]
Yuena Yu , Fang Fang . Microwave-Assisted Synthesis of Safinamide Methanesulfonate. University Chemistry, 2024, 39(11): 210-216. doi: 10.3866/PKU.DXHX202401076
-
[2]
Jianyu Qin , Yuejiao An , Yanfeng Zhang . In Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-0. doi: 10.3866/PKU.WHXB202408002
-
[3]
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
-
[4]
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012
-
[5]
Xiaorui Chen , Xuan Luo , Tongming Su , Xinling Xie , Liuyun Chen , Yuejing Bin , Zuzeng Qin , Hongbing Ji . Ga-doped Cu/γ-Al2O3 bifunctional interface sites promote the direct hydrogenation of CO2 to DME. Acta Physico-Chimica Sinica, 2025, 41(10): 100126-0. doi: 10.1016/j.actphy.2025.100126
-
[6]
Jia Wang , Qing Qin , Zhe Wang , Xuhao Zhao , Yunfei Chen , Liqiang Hou , Shangguo Liu , Xien Liu . P-Doped Carbon-Supported ZnxPyOz for Efficient Ammonia Electrosynthesis under Ambient Conditions. Acta Physico-Chimica Sinica, 2024, 40(3): 2304044-0. doi: 10.3866/PKU.WHXB202304044
-
[7]
Weikang Wang , Yadong Wu , Jianjun Zhang , Kai Meng , Jinhe Li , Lele Wang , Qinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093
-
[8]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[9]
Gaopeng Liu , Lina Li , Bin Wang , Ningjie Shan , Jintao Dong , Mengxia Ji , Wenshuai Zhu , Paul K. Chu , Jiexiang Xia , Huaming Li . Construction of Bi Nanoparticles Loaded BiOCl Nanosheets Ohmic Junction for Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(7): 2306041-0. doi: 10.3866/PKU.WHXB202306041
-
[10]
Chen LU , Qinlong HONG , Haixia ZHANG , Jian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407
-
[11]
Xianghai Song , Xiaoying Liu , Zhixiang Ren , Xiang Liu , Mei Wang , Yuanfeng Wu , Weiqiang Zhou , Zhi Zhu , Pengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-0. doi: 10.1016/j.actphy.2025.100055
-
[12]
Haoyu Sun , Dun Li , Yuanyuan Min , Yingying Wang , Yanyun Ma , Yiqun Zheng , Hongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007
-
[13]
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
-
[14]
Dong Xiang , Kunzhen Li , Kanghua Miao , Ran Long , Yujie Xiong , Xiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027
-
[15]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[16]
Yangrui Xu , Yewei Ren , Xinlin Liu , Hongping Li , Ziyang Lu . NH2-UIO-66 Based Hydrophobic Porous Liquid with High Mass Transfer and Affinity Surface for Enhancing CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-0. doi: 10.3866/PKU.WHXB202403032
-
[17]
Peng Li , Yuanying Cui , Zhongliao Wang , Graham Dawson , Chunfeng Shao , Kai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-0. doi: 10.1016/j.actphy.2025.100065
-
[18]
Xiting Zhou , Zhipeng Han , Xinlei Zhang , Shixuan Zhu , Cheng Che , Liang Xu , Zhenyu Sun , Leiduan Hao , Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070
-
[19]
Xi YANG , Chunxiang CHANG , Yingpeng XIE , Yang LI , Yuhui CHEN , Borao WANG , Ludong YI , Zhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371
-
[20]
Chao Liu , Huan Yu , Jiaming Li , Xi Yu , Zhuangzhi Yu , Yuxi Song , Feng Zhang , Qinfang Zhang , Zhigang Zou . 具有光热效应的多级Ti3C2/Bi12O17Br2肖特基异质结简单合成及其太阳能驱动抗生素光降解的研究. Acta Physico-Chimica Sinica, 2025, 41(7): 100075-0. doi: 10.1016/j.actphy.2025.100075
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(16)
- HTML views(2)