高熵P2/O3双相正极的协同设计助力高性能钠离子电池

赵珊 刘旭 郭昊天 柳宗琳 王鹏飞 舒杰 伊廷锋

引用本文: 赵珊, 刘旭, 郭昊天, 柳宗琳, 王鹏飞, 舒杰, 伊廷锋. 高熵P2/O3双相正极的协同设计助力高性能钠离子电池[J]. 物理化学学报, 2026, 42(1): 100129. doi: 10.1016/j.actphy.2025.100129 shu
Citation:  Shan Zhao,  Xu Liu,  Haotian Guo,  Zonglin Liu,  Pengfei Wang,  Jie Shu,  Tingfeng Yi. Synergistic design of high-entropy P2/O3 biphasic cathodes for high-performance sodium-ion batteries[J]. Acta Physico-Chimica Sinica, 2026, 42(1): 100129. doi: 10.1016/j.actphy.2025.100129 shu

高熵P2/O3双相正极的协同设计助力高性能钠离子电池

    通讯作者: 柳宗琳,Emails:liuzonglin_yoo@163.com; 伊廷锋,Emails:tfyihit@163.com
  • 基金项目:

    国家自然科学基金(52374301);河北省自然科学基金(E2024501010);石家庄市基础研究计划项目(241790667A);中央高校基本科研业务费专项基金(N2423013);河北省自然科学基金(B2024501004);东北大学秦皇岛分校河北省电介质与电解质功能材料重点实验室绩效补助经费(22567627H);2025年河北省研究生创新能力培养项目(CXZZSS2025163)资助

摘要: P2型层状过渡金属氧化物(P2-NaxTMO2)因其优异的循环稳定性和倍率性能,成为钠离子电池正极材料的有力候选者。然而,其在高电压下的不可逆相变和固有低理论容量问题,阻碍了实际应用。本研究工作提出高熵策略与双相结构的协同设计来克服这些挑战。通过在P2相高熵基体中引入O3相,构建新型P2/O3双相高熵层状氧化物Na0.70Ni0.25Mn0.35Co0.15Fe0.05Ti0.20O2 (简称Na0.70NMCFT)。其中,高熵设计通过构型熵稳定效应有效抑制P2相的不可逆相变,而O3相则通过协同作用弥补容量不足并提升循环稳定性。此外,双相组分之间的相互作用进一步促进P2-O3与P2-P3相变的高度可逆性。Na0.70NMCFT在1C倍率下的初始放电容量为102.08 mAh g−1,200次循环后容量保持率达88.15%,表明具有优异的循环稳定性。更重要的是,即使在10C的高倍率下,Na0.70NMCFT仍能提供85.67 mAh g−1的初始放电比容量,并在1000次循环后容量保持率达70%。本工作证实双相高熵设计在提升钠离子电池正极性能中的关键作用,为开发先进钠离子电池正极材料提供了新思路。

English

    1. [1]

      K. Tian, Y. Dang, Z. Xu, R. Zheng, Z. Wang, D. Wang, Y. Liu, Q. Wang, Energy Storage Mater. 73(2024) 103841, https://doi.org/10.1016/j.ensm.2024.103841.K. Tian, Y. Dang, Z. Xu, R. Zheng, Z. Wang, D. Wang, Y. Liu, Q. Wang, Energy Storage Mater. 73(2024) 103841, https://doi.org/10.1016/j.ensm.2024.103841.

    2. [2]

      F. Zhang, B. He, Y. Xin, T. Zhu, Y. Zhang, S. Wang, W. Li, Y. Yang, H. Tian, Chem. Rev. 124(2024) 4778, https://doi.org/10.1021/acs.chemrev.3c00728.F. Zhang, B. He, Y. Xin, T. Zhu, Y. Zhang, S. Wang, W. Li, Y. Yang, H. Tian, Chem. Rev. 124(2024) 4778, https://doi.org/10.1021/acs.chemrev.3c00728.

    3. [3]

      J. Mei, B. Li, S. Zhang, D. Xiao, P. Hu, G. Zhang, Acta Phys. Chim. Sin. 40(2024) 2407023, https://doi.org/10.3866/PKU.WHXB202407023.J. Mei, B. Li, S. Zhang, D. Xiao, P. Hu, G. Zhang, Acta Phys. Chim. Sin. 40(2024) 2407023, https://doi.org/10.3866/PKU.WHXB202407023.

    4. [4]

      X. Gui, Z. Xiang, T. Ren, W. Liu, Z. Pei, G. Long, Z. Fu, K. Wan, Z. Liang, Adv. Mater. 37(2025) 2417008, https://doi.org/10.1002/adma.202417008.X. Gui, Z. Xiang, T. Ren, W. Liu, Z. Pei, G. Long, Z. Fu, K. Wan, Z. Liang, Adv. Mater. 37(2025) 2417008, https://doi.org/10.1002/adma.202417008.

    5. [5]

      C. Huang, H. Zheng, N. Qin, C. Wang, L. Wang, J. Lu, Acta Phys. Chim. Sin. 40(2024) 2308051, https://doi.org/10.3866/PKU.WHXB202308051.C. Huang, H. Zheng, N. Qin, C. Wang, L. Wang, J. Lu, Acta Phys. Chim. Sin. 40(2024) 2308051, https://doi.org/10.3866/PKU.WHXB202308051.

    6. [6]

      R. Usiskin, Y. Lu, J. Popovic, M. Law, P. Balaya, Y.-S. Hu, J. Maier, Nat. Rev. Mater. 6(2021) 1020, https://doi.org/10.1038/s41578-021-00324-w.R. Usiskin, Y. Lu, J. Popovic, M. Law, P. Balaya, Y.-S. Hu, J. Maier, Nat. Rev. Mater. 6(2021) 1020, https://doi.org/10.1038/s41578-021-00324-w.

    7. [7]

      J.W. Kim, V. Augustyn, B. Dunn, Adv. Energy Mater. 2(2012) 141, https://doi.org/10.1002/aenm.201100494.J.W. Kim, V. Augustyn, B. Dunn, Adv. Energy Mater. 2(2012) 141, https://doi.org/10.1002/aenm.201100494.

    8. [8]

      A. Bauer, J. Song, S. Vail, W. Pan, J. Barker, Y.H. Lu, Adv. Energy Mater. 8(2018) 1702869, https://doi.org/10.1002/aenm.201702869.A. Bauer, J. Song, S. Vail, W. Pan, J. Barker, Y.H. Lu, Adv. Energy Mater. 8(2018) 1702869, https://doi.org/10.1002/aenm.201702869.

    9. [9]

      J. Jin, Y. Liu, X. Zhao, H. Liu, S. Deng, Q. Shen, Y. Hou, H. Qi, X. Xing, L. Jiao, J. Chen, Angew. Chem. Int. Ed. 62(2023) e202219230, https://doi.org/10.1002/anie.202219230.J. Jin, Y. Liu, X. Zhao, H. Liu, S. Deng, Q. Shen, Y. Hou, H. Qi, X. Xing, L. Jiao, J. Chen, Angew. Chem. Int. Ed. 62(2023) e202219230, https://doi.org/10.1002/anie.202219230.

    10. [10]

      C. Zhao, Q. Wang, Z. Yao, J. Wang, B. Sánchez-Lengeling, F. Ding, X. Qi, Y. Lu, X. Bai, B. Li, H. Li, A. Aspuru-Guzik, X. Huang, C. Delmas, M. Wagemaker, L. Chen, Y.-S. Hu, Science 370(2020) 708, https://doi.org/10.1126/science.aay9972.C. Zhao, Q. Wang, Z. Yao, J. Wang, B. Sánchez-Lengeling, F. Ding, X. Qi, Y. Lu, X. Bai, B. Li, H. Li, A. Aspuru-Guzik, X. Huang, C. Delmas, M. Wagemaker, L. Chen, Y.-S. Hu, Science 370(2020) 708, https://doi.org/10.1126/science.aay9972.

    11. [11]

      Y. Wang, Z. Cao, Z. Du, X. Cao, S. Liang, Acta Phys. Chim. Sin. 41(2025) 100035, https://doi.org/10.3866/PKU.WHXB202406014.Y. Wang, Z. Cao, Z. Du, X. Cao, S. Liang, Acta Phys. Chim. Sin. 41(2025) 100035, https://doi.org/10.3866/PKU.WHXB202406014.

    12. [12]

      Y.P. Deng, Z.G. Wu, R. Liang, Y. Jiang, D. Luo, A. Yu, Z. Chen, Adv. Funct. Mater. 29(2019), 1808522, https://doi.org/10.1002/adfm.201808522.Y.P. Deng, Z.G. Wu, R. Liang, Y. Jiang, D. Luo, A. Yu, Z. Chen, Adv. Funct. Mater. 29(2019), 1808522, https://doi.org/10.1002/adfm.201808522.

    13. [13]

      H.R. Yao, L. Zheng, S. Xin, Y.G. Guo, Sci. China Chem. 65(2022) 1076, https://doi.org/10.1007/s11426-022-1257-8.H.R. Yao, L. Zheng, S. Xin, Y.G. Guo, Sci. China Chem. 65(2022) 1076, https://doi.org/10.1007/s11426-022-1257-8.

    14. [14]

      N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Chem. Rev. 114(2014) 11636, https://doi.org/10.1021/cr500192f.N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Chem. Rev. 114(2014) 11636, https://doi.org/10.1021/cr500192f.

    15. [15]

      C. Delmas, C. Fouassier, P. Hagenmuller, Physica B+C 99(1980) 81, https://doi.org/10.1016/0378-4363(80)90214-4.C. Delmas, C. Fouassier, P. Hagenmuller, Physica B+C 99(1980) 81, https://doi.org/10.1016/0378-4363(80)90214-4.

    16. [16]

      Y. Wen, C. Lin, H. Shen, K. Fang, F. Li, C. Luo, X. Wang, H. Peng, Y. Qiao, S. Zhuang, M. Lu, Chem. Eng. J. 506(2025) 160126, https://doi.org/10.1016/j.cej.2025.160126.Y. Wen, C. Lin, H. Shen, K. Fang, F. Li, C. Luo, X. Wang, H. Peng, Y. Qiao, S. Zhuang, M. Lu, Chem. Eng. J. 506(2025) 160126, https://doi.org/10.1016/j.cej.2025.160126.

    17. [17]

      L. Yu, H. Dong, Y.-X. Chang, Z. Cheng, K. Xu, Y.-H. Feng, D. Si, X. Zhu, M. Liu, B. Xiao, P.-F. Wang, S. Xu, Sci. China Chem. 65(2022) 2005, https://doi.org/10.1007/s11426-022-1364-1.L. Yu, H. Dong, Y.-X. Chang, Z. Cheng, K. Xu, Y.-H. Feng, D. Si, X. Zhu, M. Liu, B. Xiao, P.-F. Wang, S. Xu, Sci. China Chem. 65(2022) 2005, https://doi.org/10.1007/s11426-022-1364-1.

    18. [18]

      G. Wan, B. Peng, L. Zhao, F. Wang, L. Yu, R. Liu, G. Zhang, SusMat 3(2023) 58, https://doi.org/10.1002/sus2.105.G. Wan, B. Peng, L. Zhao, F. Wang, L. Yu, R. Liu, G. Zhang, SusMat 3(2023) 58, https://doi.org/10.1002/sus2.105.

    19. [19]

      L. Yao, P. Zou, C. Wang, J. Jiang, L. Ma, S. Tan, K.A. Beyer, F. Xu, E. Hu, H.L. Xin, Adv. Energy Mater. 12(2022) 2201989, https://doi.org/10.1002/aenm.202201989.L. Yao, P. Zou, C. Wang, J. Jiang, L. Ma, S. Tan, K.A. Beyer, F. Xu, E. Hu, H.L. Xin, Adv. Energy Mater. 12(2022) 2201989, https://doi.org/10.1002/aenm.202201989.

    20. [20]

      Y. Yao, Q. Dong, A. Brozena, J. Luo, J. Miao, M. Chi, C. Wang, I.G. Kevrekidis, Z.J. Ren, J. Greeley, G. Wang, A. Anapolsky, L. Hu, Science 376(2022) eabn3103, https://doi.org/10.1126/science.abn3103.Y. Yao, Q. Dong, A. Brozena, J. Luo, J. Miao, M. Chi, C. Wang, I.G. Kevrekidis, Z.J. Ren, J. Greeley, G. Wang, A. Anapolsky, L. Hu, Science 376(2022) eabn3103, https://doi.org/10.1126/science.abn3103.

    21. [21]

      H. Liu, Y. Wang, X. Ding, Y. Wang, F. Wu, H. Gao, Sustainable Energy Fuels 8(2024) 1304, https://doi.org/10.1039/D3SE01597A.H. Liu, Y. Wang, X. Ding, Y. Wang, F. Wu, H. Gao, Sustainable Energy Fuels 8(2024) 1304, https://doi.org/10.1039/D3SE01597A.

    22. [22]

      Y. Jiang, W. Li, K. Luo, ACS Sustainable Chem. Eng. 12(2024) 8051, https://doi.org/10.1021/acssuschemeng.4c00185.Y. Jiang, W. Li, K. Luo, ACS Sustainable Chem. Eng. 12(2024) 8051, https://doi.org/10.1021/acssuschemeng.4c00185.

    23. [23]

      Y. Dong, Z. Zhou, Y. Ma, H. Zhang, F. Meng, Y. Wu, Y. Ma, ACS Energy Lett. 9(2024) 5096, https://doi.org/10.1021/acsenergylett.4c02223.Y. Dong, Z. Zhou, Y. Ma, H. Zhang, F. Meng, Y. Wu, Y. Ma, ACS Energy Lett. 9(2024) 5096, https://doi.org/10.1021/acsenergylett.4c02223.

    24. [24]

      W. Zhang, K. Wang, H. Ning, Z. Qu, H. Luo, Q. Wei, P. Qing, X. Huang, X. Wang, G. Li, C. Huang, Z. Lan, W. Zhou, J. Guo, D. Huang, H. Liu, J. Power Sources 635(2025) 236516, https://doi.org/10.1016/j.jpowsour.2025.236516.W. Zhang, K. Wang, H. Ning, Z. Qu, H. Luo, Q. Wei, P. Qing, X. Huang, X. Wang, G. Li, C. Huang, Z. Lan, W. Zhou, J. Guo, D. Huang, H. Liu, J. Power Sources 635(2025) 236516, https://doi.org/10.1016/j.jpowsour.2025.236516.

    25. [25]

      P. Zhang, G. Zhang, Y. Liu, Y. Fan, X. Shi, Y. Dai, S. Gong, J. Hou, J. Ma, Y. Huang, R. Zhang, J. Colloid Interface Sci. 654(2024) 1405, https://doi.org/10.1016/j.jcis.2023.10.129.P. Zhang, G. Zhang, Y. Liu, Y. Fan, X. Shi, Y. Dai, S. Gong, J. Hou, J. Ma, Y. Huang, R. Zhang, J. Colloid Interface Sci. 654(2024) 1405, https://doi.org/10.1016/j.jcis.2023.10.129.

    26. [26]

      D. Zhou, W. Huang, X. Lv, F. Zhao, J. Power Sources 421(2019) 147, https://doi.org/10.1016/j.jpowsour.2019.02.061.D. Zhou, W. Huang, X. Lv, F. Zhao, J. Power Sources 421(2019) 147, https://doi.org/10.1016/j.jpowsour.2019.02.061.

    27. [27]

      Y. Wang, M. Yan, K. Xu, Y.-X. Chang, J. Guo, Q. Wang, B. Wang, D. Wang, Y.-X. Yin, S. Xu, Inorg. Chem. Front. 9(2022) 5231, https://doi.org/10.1039/D2QI01018F.Y. Wang, M. Yan, K. Xu, Y.-X. Chang, J. Guo, Q. Wang, B. Wang, D. Wang, Y.-X. Yin, S. Xu, Inorg. Chem. Front. 9(2022) 5231, https://doi.org/10.1039/D2QI01018F.

    28. [28]

      D. Hao, G. Zhang, D. Ning, D. Zhou, Y. Chai, J. Xu, X. Yin, R. Du, G. Schuck, J. Wang, Y. Li, Nano Energy 125(2024) 109562, https://doi.org/10.1016/j.nanoen.2024.109562.D. Hao, G. Zhang, D. Ning, D. Zhou, Y. Chai, J. Xu, X. Yin, R. Du, G. Schuck, J. Wang, Y. Li, Nano Energy 125(2024) 109562, https://doi.org/10.1016/j.nanoen.2024.109562.

    29. [29]

      L. Yu, Z. Cheng, K. Xu, Y.-X. Chang, Y.-H. Feng, D. Si, M. Liu, P.-F. Wang, S. Xu, Energy Storage Mater. 50(2022) 730, https://doi.org/10.1016/j.ensm.2022.06.012.L. Yu, Z. Cheng, K. Xu, Y.-X. Chang, Y.-H. Feng, D. Si, M. Liu, P.-F. Wang, S. Xu, Energy Storage Mater. 50(2022) 730, https://doi.org/10.1016/j.ensm.2022.06.012.

    30. [30]

      E. Lee, J. Lu, Y. Ren, X. Luo, X. Zhang, J. Wen, D. Miller, A. DeWahl, S. Hackney, B. Key, D. Kim, M.D. Slater, C.S. Johnson, Adv. Energy Mater. 4(2014) 1400458, https://doi.org/10.1002/aenm.201400458.E. Lee, J. Lu, Y. Ren, X. Luo, X. Zhang, J. Wen, D. Miller, A. DeWahl, S. Hackney, B. Key, D. Kim, M.D. Slater, C.S. Johnson, Adv. Energy Mater. 4(2014) 1400458, https://doi.org/10.1002/aenm.201400458.

    31. [31]

      C. Lin, P. Dai, X. Wang, J. Sun, S. Zhuang, L. Wu, M. Lu, Y. Wen, Chem. Eng. J. 480(2024) 147964, https://doi.org/10.1016/j.cej.2023.147964.C. Lin, P. Dai, X. Wang, J. Sun, S. Zhuang, L. Wu, M. Lu, Y. Wen, Chem. Eng. J. 480(2024) 147964, https://doi.org/10.1016/j.cej.2023.147964.

    32. [32]

      Z. Cheng, X.-Y. Fan, L. Yu, W. Hua, Y.-J. Guo, Y.-H. Feng, F.-D. Ji, M. Liu, Y.-X. Yin, X. Han, Y.-G. Guo, P.-F. Wang, Angew. Chem. Int. Ed. 61(2022) e202117728, https://doi.org/10.1002/anie.202117728.Z. Cheng, X.-Y. Fan, L. Yu, W. Hua, Y.-J. Guo, Y.-H. Feng, F.-D. Ji, M. Liu, Y.-X. Yin, X. Han, Y.-G. Guo, P.-F. Wang, Angew. Chem. Int. Ed. 61(2022) e202117728, https://doi.org/10.1002/anie.202117728.

    33. [33]

      X. Liu, X. Li, Y. Li, H. Zhang, Q. Jia, S. Zhang, W. Lei, EcoMat 4(2022) e12261, https://doi.org/10.1002/eom2.12261.X. Liu, X. Li, Y. Li, H. Zhang, Q. Jia, S. Zhang, W. Lei, EcoMat 4(2022) e12261, https://doi.org/10.1002/eom2.12261.

    34. [34]

      J.W. Sturman, E.A. Baranova, Y. Abu-Lebdeh, Front. Energy Res. 10(2022) 862551, https://doi.org/10.3389/fenrg.2022.862551.J.W. Sturman, E.A. Baranova, Y. Abu-Lebdeh, Front. Energy Res. 10(2022) 862551, https://doi.org/10.3389/fenrg.2022.862551.

    35. [35]

      W. Sun, L. Xiao, X. Wu, J. Alloys Compd. 772(2019) 465, https://doi.org/10.1016/j.jallcom.2018.09.185.W. Sun, L. Xiao, X. Wu, J. Alloys Compd. 772(2019) 465, https://doi.org/10.1016/j.jallcom.2018.09.185.

    36. [36]

      Z. Liu, J. Shen, S. Feng, Y. Huang, D. Wu, F. Li, Y. Zhu, M. Gu, Q. Liu, J. Liu, M. Zhu, Angew. Chem. Int. Ed. 60(2021) 20960, https://doi.org/10.1002/anie.202108109.Z. Liu, J. Shen, S. Feng, Y. Huang, D. Wu, F. Li, Y. Zhu, M. Gu, Q. Liu, J. Liu, M. Zhu, Angew. Chem. Int. Ed. 60(2021) 20960, https://doi.org/10.1002/anie.202108109.

    37. [37]

      T. Jin, P.-F. Wang, Q.-C. Wang, K. Zhu, T. Deng, J. Zhang, W. Zhang, X.-Q. Yang, L. Jiao, C. Wang, Angew. Chem. Int. Ed. 59(2020) 14511, https://doi.org/10.1002/anie.202003972.T. Jin, P.-F. Wang, Q.-C. Wang, K. Zhu, T. Deng, J. Zhang, W. Zhang, X.-Q. Yang, L. Jiao, C. Wang, Angew. Chem. Int. Ed. 59(2020) 14511, https://doi.org/10.1002/anie.202003972.

    38. [38]

      P. Zhou, Z. Che, J. Liu, J. Zhou, X. Wu, J. Weng, J. Zhao, H. Cao, J. Zhou, F. Cheng, Energy Storage Mater. 57(2023) 618, https://doi.org/10.1016/j.ensm.2023.03.007.P. Zhou, Z. Che, J. Liu, J. Zhou, X. Wu, J. Weng, J. Zhao, H. Cao, J. Zhou, F. Cheng, Energy Storage Mater. 57(2023) 618, https://doi.org/10.1016/j.ensm.2023.03.007.

    39. [39]

      S. Jamil, F. Mudasar, T. Yuan, M. Fasehullah, G. Ali, K.H. Chae, O. Voznyy, Y. Zhan, M. Xu, ACS Appl. Mater. Interfaces 16(2024) 14669, https://doi.org/10.1021/acsami.3c15667.S. Jamil, F. Mudasar, T. Yuan, M. Fasehullah, G. Ali, K.H. Chae, O. Voznyy, Y. Zhan, M. Xu, ACS Appl. Mater. Interfaces 16(2024) 14669, https://doi.org/10.1021/acsami.3c15667.

    40. [40]

      T. Jin, H. Li, Y. Li, L. Jiao, J. Chen, Nano Energy 50(2018) 462, https://doi.org/10.1016/j.nanoen.2018.05.056.T. Jin, H. Li, Y. Li, L. Jiao, J. Chen, Nano Energy 50(2018) 462, https://doi.org/10.1016/j.nanoen.2018.05.056.

    41. [41]

      M. Han, Z. Zou, J. Liu, C. Deng, Y. Chu, Y. Mu, K. Zheng, F. Yu, L. Wei, L. Zeng, T. Zhao, Small 20(2024) 2312119, https://doi.org/10.1002/smll.202312119.M. Han, Z. Zou, J. Liu, C. Deng, Y. Chu, Y. Mu, K. Zheng, F. Yu, L. Wei, L. Zeng, T. Zhao, Small 20(2024) 2312119, https://doi.org/10.1002/smll.202312119.

    42. [42]

      Z. Li, M. Han, J. Wang, L. Zhang, P. Yu, Q. Li, X. Bai, J. Yu, Adv. Funct. Mater. 34(2024) 2404263, https://doi.org/10.1002/adfm.202404263.Z. Li, M. Han, J. Wang, L. Zhang, P. Yu, Q. Li, X. Bai, J. Yu, Adv. Funct. Mater. 34(2024) 2404263, https://doi.org/10.1002/adfm.202404263.

    43. [43]

      Q. Shen, X. Zhao, Y. Liu, Y. Li, J. Zhang, N. Zhang, C. Yang, J. Chen, Adv. Sci. 7(2020) 2002199, https://doi.org/10.1002/advs.202002199.Q. Shen, X. Zhao, Y. Liu, Y. Li, J. Zhang, N. Zhang, C. Yang, J. Chen, Adv. Sci. 7(2020) 2002199, https://doi.org/10.1002/advs.202002199.

    44. [44]

      Y. Guo, S. Pan, X. Yi, S. Chi, X. Yin, C. Geng, Q. Yin, Q. Zhan, Z. Zhao, F.-M. Jin, H. Fang, Y.-B. He, F. Kang, S. Wu, Q.-H. Yang, Adv. Mater. 36(2024) 2308493, https://doi.org/10.1002/adma.202308493.Y. Guo, S. Pan, X. Yi, S. Chi, X. Yin, C. Geng, Q. Yin, Q. Zhan, Z. Zhao, F.-M. Jin, H. Fang, Y.-B. He, F. Kang, S. Wu, Q.-H. Yang, Adv. Mater. 36(2024) 2308493, https://doi.org/10.1002/adma.202308493.

    45. [45]

      N. Yabuuchi, M. Kajiyama, J. Iwatate, H. Nishikawa, S. Hitomi, R. Okuyama, R. Usui, Y. Yamada, S. Komaba, Nat. Mater. 11(2012) 512, https://doi.org/10.1038/nmat3309.N. Yabuuchi, M. Kajiyama, J. Iwatate, H. Nishikawa, S. Hitomi, R. Okuyama, R. Usui, Y. Yamada, S. Komaba, Nat. Mater. 11(2012) 512, https://doi.org/10.1038/nmat3309.

    46. [46]

      Z. Xu, H. Yang, X. Zhao, R. Zheng, Z. Song, Z. Wang, H. Sun, Y. Liu, D. Wang, ACS Appl. Mater. Interfaces 17(2025) 1085, https://doi.org/10.1021/acsami.4c16665.Z. Xu, H. Yang, X. Zhao, R. Zheng, Z. Song, Z. Wang, H. Sun, Y. Liu, D. Wang, ACS Appl. Mater. Interfaces 17(2025) 1085, https://doi.org/10.1021/acsami.4c16665.

    47. [47]

      X. Liang, Y.-K. Sun, Adv. Funct. Mater. 32(2022) 2206154, https://doi.org/10.1002/adfm.202206154.X. Liang, Y.-K. Sun, Adv. Funct. Mater. 32(2022) 2206154, https://doi.org/10.1002/adfm.202206154.

    48. [48]

      R. Li, X. Qin, X. Li, J. Zhu, L.-R. Zheng, Z. Li, W. Zhou, Adv. Energy Mater. 14(2024) 2400127, https://doi.org/10.1002/aenm.202400127.R. Li, X. Qin, X. Li, J. Zhu, L.-R. Zheng, Z. Li, W. Zhou, Adv. Energy Mater. 14(2024) 2400127, https://doi.org/10.1002/aenm.202400127.

    49. [49]

      Z.J. Li, Y.W. Zhang, X. Wu, X.Q. Wu, R. Maudgal, H.W. Zhang, G. Han, Adv. Sci. 2(2015) 1500001, https://doi.org/10.1002/advs.201500001.Z.J. Li, Y.W. Zhang, X. Wu, X.Q. Wu, R. Maudgal, H.W. Zhang, G. Han, Adv. Sci. 2(2015) 1500001, https://doi.org/10.1002/advs.201500001.

    50. [50]

      S.M. Oh, P. Oh, S.O. Kim, A. Manthiram, J. Electrochem. Soc. 164(2017) A321, https://doi.org/10.1149/2.0931702jes.S.M. Oh, P. Oh, S.O. Kim, A. Manthiram, J. Electrochem. Soc. 164(2017) A321, https://doi.org/10.1149/2.0931702jes.

    51. [51]

      Y. Liu, Q. Shen, X. Zhao, J. Zhang, X. Liu, T. Wang, N. Zhang, L. Jiao, J. Chen, L.-Z. Fan, Adv. Funct. Mater. 30(2020) 1907837, https://doi.org/10.1002/adfm.201907837.Y. Liu, Q. Shen, X. Zhao, J. Zhang, X. Liu, T. Wang, N. Zhang, L. Jiao, J. Chen, L.-Z. Fan, Adv. Funct. Mater. 30(2020) 1907837, https://doi.org/10.1002/adfm.201907837.

    52. [52]

      Z. Hu, Y. Niu, X. Rong, Y. Hu, Acta Phys. Chim. Sin. 40(2024) 2306005, https://doi.org/10.3866/PKU.WHXB202306005.Z. Hu, Y. Niu, X. Rong, Y. Hu, Acta Phys. Chim. Sin. 40(2024) 2306005, https://doi.org/10.3866/PKU.WHXB202306005.

    53. [53]

      Y. Ma, Y. Ma, S.L. Dreyer, Q. Wang, K. Wang, D. Goonetilleke, A. Omar, D. Mikhailova, H. Hahn, B. Breitung, T. Brezesinski, Adv. Mater. 33(2021) 2101342, https://doi.org/10.1002/adma.202101342.Y. Ma, Y. Ma, S.L. Dreyer, Q. Wang, K. Wang, D. Goonetilleke, A. Omar, D. Mikhailova, H. Hahn, B. Breitung, T. Brezesinski, Adv. Mater. 33(2021) 2101342, https://doi.org/10.1002/adma.202101342.

    54. [54]

      Q. Jiang, X. Li, Y. Hao, J. Zuo, R. Duan, J. Li, G. Cao, J. Wang, J. Wang, M. Li, X. Yang, M. Li, W. Li, Y. Xi, J. Zhang, W. Xiao, Adv. Funct. Mater. 35(2025) 2400670, https://doi.org/10.1002/adfm.202400670.Q. Jiang, X. Li, Y. Hao, J. Zuo, R. Duan, J. Li, G. Cao, J. Wang, J. Wang, M. Li, X. Yang, M. Li, W. Li, Y. Xi, J. Zhang, W. Xiao, Adv. Funct. Mater. 35(2025) 2400670, https://doi.org/10.1002/adfm.202400670.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  5
  • HTML全文浏览量:  1
文章相关
  • 发布日期:  2025-07-08
  • 收稿日期:  2025-05-27
  • 修回日期:  2025-06-29
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章