羟基功能化分子工程消除二维相壁垒实现高效宽带隙及全钙钛矿叠层太阳能电池

刘彬彬 陈杨 贾天赐 陈辰 吴章豪 刘毓辉 翟宇航 马天舒 王长擂

引用本文: 刘彬彬, 陈杨, 贾天赐, 陈辰, 吴章豪, 刘毓辉, 翟宇航, 马天舒, 王长擂. 羟基功能化分子工程消除二维相壁垒实现高效宽带隙及全钙钛矿叠层太阳能电池[J]. 物理化学学报, 2026, 42(1): 100128. doi: 10.1016/j.actphy.2025.100128 shu
Citation:  Binbin Liu,  Yang Chen,  Tianci Jia,  Chen Chen,  Zhanghao Wu,  Yuhui Liu,  Yuhang Zhai,  Tianshu Ma,  Changlei Wang. Hydroxyl-functionalized molecular engineering mitigates 2D phase barriers for efficient wide-bandgap and all-perovskite tandem solar cells[J]. Acta Physico-Chimica Sinica, 2026, 42(1): 100128. doi: 10.1016/j.actphy.2025.100128 shu

羟基功能化分子工程消除二维相壁垒实现高效宽带隙及全钙钛矿叠层太阳能电池

    通讯作者: 马天舒,Emails:tsma@suda.edu.cn; 王长擂,Emails:cl.wang@suda.edu.cn
  • 基金项目:

    国家自然科学基金(62005188),江苏省高校自然科学研究项目(22KJA480003),唐仲英基金会,国家资助博士后研究人员计划(GZB20240516),苏州大学大学生创新创业训练计划(202310285029Z)资助

摘要: 全钙钛矿叠层太阳能电池展现出突破单结器件效率极限的潜力,通过最大化利用太阳光谱和减少热弛豫损失,其理论转换效率可超过44%。宽带隙钙钛矿太阳能电池(WBG PSCs)是叠层光伏技术的核心元件,其性能在过去十年取得飞速进展。然而,这类器件仍然面临着严重的开路电压(VOC)损失问题,主要归因于界面复合损失和载流子传输损耗,其中关键诱因是在表面钝化过程中形成的绝缘性二维(2D)钙钛矿相。因此,本文引入多功能分子添加剂4-羟基苯乙基碘化铵(p-OHPEAI),以解决高电压和高效电荷提取之间的核心矛盾。不同于传统的苯乙基碘化铵(PEAI)处理会形成绝缘二维相并因其分子垂直取向导致反向内建电场(阻碍电荷输运),p-OHPEAI通过氨基(–NH3)和羟基(–OH)的协同作用,实现了分子在钙钛矿表面的平行吸附构型。这种构型有效抑制了绝缘二维相的形成,同时钝化了配位不足的卤素离子和铅空位缺陷,显著降低非辐射复合。此外,p-OHPEAI的分子极性会在钙钛矿层/电子传输层界面诱导产生内建偶极矩,优化了能级匹配并加速了电子提取过程。将p-OHPEAI应用于1.77 eV宽带隙钙钛矿太阳能电池,器件的开路电压达到1.344 V,相应的开路电压损失仅为0.426 V,在已经报道的1.75–1.80 eV带隙范围内的反式结构器件中处于领先水平。优化后的器件光电转换效率(PCE)达到19.24%,显著优于PEAI钝化器件。将该策略应用于全钙钛矿叠层太阳能电池(TSCs),实现了28.50%的冠军效率(认证效率为28.19%)。同时,叠层器件展现出优异的运行稳定性,在350 h持续光照后仍能保持90%以上的初始效率,充分验证了羟基钝化策略的可靠性。本研究通过在钝化分子中引入羟基官能团,开发了一种兼具缺陷钝化与电荷传输保障的普适性策略,成功解决了钙钛矿电池高电压与高效载流子提取之间的矛盾。

English

    1. [1]

      https://www.nrel.gov/pv/cell-efficiency.html. (Accessed 10 February 2025).https://www.nrel.gov/pv/cell-efficiency.html. (Accessed 10 February 2025).

    2. [2]

      L. Canil, T. Cramer, B. Fraboni, D. Ricciarelli, D. Meggiolaro, A. Singh, M. N. Liu, M. Rusu, C. M. Wolff, N. Phung, et al., Energy Environ. Sci. 14(2021) 1429, https://doi.org/10.1039/d0ee02216k.L. Canil, T. Cramer, B. Fraboni, D. Ricciarelli, D. Meggiolaro, A. Singh, M. N. Liu, M. Rusu, C. M. Wolff, N. Phung, et al., Energy Environ. Sci. 14(2021) 1429, https://doi.org/10.1039/d0ee02216k.

    3. [3]

      H. Chen, A. Maxwell, C. Li, S. Teale, B. Chen, T. Zhu, E. Ugur, G. Harrison, L. Grater, J. Wang, et al., Nature 613(2023) 676, https://doi.org/10.1038/s41586-022-05541-z.H. Chen, A. Maxwell, C. Li, S. Teale, B. Chen, T. Zhu, E. Ugur, G. Harrison, L. Grater, J. Wang, et al., Nature 613(2023) 676, https://doi.org/10.1038/s41586-022-05541-z.

    4. [4]

      C. Li, L. Chen, F. Jiang, Z. Song, X. Wang, A. Balvanz, E. Ugur, Y. Liu, C. Liu, A.Maxwell, et al., Nat. Energy 9(2024) 1388, https://doi.org/10.1038/s41560-024-01613-8.C. Li, L. Chen, F. Jiang, Z. Song, X. Wang, A. Balvanz, E. Ugur, Y. Liu, C. Liu, A.Maxwell, et al., Nat. Energy 9(2024) 1388, https://doi.org/10.1038/s41560-024-01613-8.

    5. [5]

      W. Shockley, H. J. Queisser, J. Appl. Phys. 32(1961) 510, https://doi.org/10.1063/1.1736034.W. Shockley, H. J. Queisser, J. Appl. Phys. 32(1961) 510, https://doi.org/10.1063/1.1736034.

    6. [6]

      Z. Yu, M. Leilaeioun, Z. Holman, Nat. Energy 1(2016) 16137, https://doi.org/10.1038/nenergy.2016.137.Z. Yu, M. Leilaeioun, Z. Holman, Nat. Energy 1(2016) 16137, https://doi.org/10.1038/nenergy.2016.137.

    7. [7]

      Y. An, T. Ma, X. Li, Sol. RRL 5(2021) 2100199, https://doi.org/10.1002/solr.202100199.Y. An, T. Ma, X. Li, Sol. RRL 5(2021) 2100199, https://doi.org/10.1002/solr.202100199.

    8. [8]

      S. Gu, R. Lin, Q. Han, Y. Gao, H. Tan, J. Zhu, Adv. Mater. 32(2020) 1907392, https://doi.org/10.1002/adma.201907392.S. Gu, R. Lin, Q. Han, Y. Gao, H. Tan, J. Zhu, Adv. Mater. 32(2020) 1907392, https://doi.org/10.1002/adma.201907392.

    9. [9]

      K. Xiao, Y. H. Lin, M. Zhang, R. D. J. Oliver, X. Wang, Z. Liu, X. Luo, J. Li, D. Lai, H. W. Luo, et al., Science 376(2022) 762, https://doi.org/10.1126/science.abn7696.K. Xiao, Y. H. Lin, M. Zhang, R. D. J. Oliver, X. Wang, Z. Liu, X. Luo, J. Li, D. Lai, H. W. Luo, et al., Science 376(2022) 762, https://doi.org/10.1126/science.abn7696.

    10. [10]

      W. Chen, Y. D. Zhu, J. W. Xiu, G. C. Chen, H. M. Liang, S. C. Liu, H. S. Xue, E. Birgersson, J. W. Ho, X. S. Qin, et al., Nat. Energy 7(2022) 229, https://doi.org/10.1038/s41560-021-00966-8.W. Chen, Y. D. Zhu, J. W. Xiu, G. C. Chen, H. M. Liang, S. C. Liu, H. S. Xue, E. Birgersson, J. W. Ho, X. S. Qin, et al., Nat. Energy 7(2022) 229, https://doi.org/10.1038/s41560-021-00966-8.

    11. [11]

      G. Yang, Z. W. Ren, K. Liu, M. C. Qin, W. Y. Deng, H. K. Zhang, H. B. Wang, J. W. Liang, F. H. Ye, Q. Liang, et al., Nat. Photonics 15(2021) 681, https://doi.org/10.1038/s41566-021-00829-4.G. Yang, Z. W. Ren, K. Liu, M. C. Qin, W. Y. Deng, H. K. Zhang, H. B. Wang, J. W. Liang, F. H. Ye, Q. Liang, et al., Nat. Photonics 15(2021) 681, https://doi.org/10.1038/s41566-021-00829-4.

    12. [12]

      Q. Jiang, Y. Zhao, X. W. Zhang, X. L. Yang, Y. Chen, Z. M. Chu, Q. F. Ye, X. X. Li, Z. G. Yin, J. B. You, Nat. Photonics 13(2019) 460, https://doi.org/10.1038/s41566-019-0398-2.Q. Jiang, Y. Zhao, X. W. Zhang, X. L. Yang, Y. Chen, Z. M. Chu, Q. F. Ye, X. X. Li, Z. G. Yin, J. B. You, Nat. Photonics 13(2019) 460, https://doi.org/10.1038/s41566-019-0398-2.

    13. [13]

      T. K. Zhang, M. Z. Long, M. C. Qin, X. H. Lu, S. Chen, F. Y. Xie, L. Gong, J. Chen, M. Chu, Q. Miao, et al., Joule 2(2018) 2706, https://doi.org/10.1016/j.joule.2018.09.022.T. K. Zhang, M. Z. Long, M. C. Qin, X. H. Lu, S. Chen, F. Y. Xie, L. Gong, J. Chen, M. Chu, Q. Miao, et al., Joule 2(2018) 2706, https://doi.org/10.1016/j.joule.2018.09.022.

    14. [14]

      Y. W. Jang, S. Lee, K. M. Yeom, K. Jeong, K. Choi, M. Choi, J. H. Noh, Nat. Energy 6(2021) 63, https://doi.org/10.1038/s41560-020-00749-7.Y. W. Jang, S. Lee, K. M. Yeom, K. Jeong, K. Choi, M. Choi, J. H. Noh, Nat. Energy 6(2021) 63, https://doi.org/10.1038/s41560-020-00749-7.

    15. [15]

      C. Li, R. Yang, G. Zhao, Y. Yue, W. Zhang, H. Zhang, Y. Zhang, S. Li, H. Zhou, Sol. RRL 8(2024) 2400201, https://doi.org/10.1002/solr.202400201.C. Li, R. Yang, G. Zhao, Y. Yue, W. Zhang, H. Zhang, Y. Zhang, S. Li, H. Zhou, Sol. RRL 8(2024) 2400201, https://doi.org/10.1002/solr.202400201.

    16. [16]

      C. Chen, Z. N. Song, C. X. Xiao, R. A. Awni, C. L. Yao, N. Shrestha, C. W. Li, S. S. Bista, Y. Zhang, L. Chen, et al., ACS Energy Lett. 5(2020) 2560, https://doi.org/10.1021/acsenergylett.0c01350.C. Chen, Z. N. Song, C. X. Xiao, R. A. Awni, C. L. Yao, N. Shrestha, C. W. Li, S. S. Bista, Y. Zhang, L. Chen, et al., ACS Energy Lett. 5(2020) 2560, https://doi.org/10.1021/acsenergylett.0c01350.

    17. [17]

      X. Huo, S. Mariotti, Y. Li, T. Guo, C. Ding, P. Ji, S. Yuan, T. Li, N. Meng, X. Liu, et al., Energy Environ. Sci. 17(2024) 8658, https://doi.org/10.1039/d4ee02133a.X. Huo, S. Mariotti, Y. Li, T. Guo, C. Ding, P. Ji, S. Yuan, T. Li, N. Meng, X. Liu, et al., Energy Environ. Sci. 17(2024) 8658, https://doi.org/10.1039/d4ee02133a.

    18. [18]

      Z. Wu, Y. Zhao, C. Wang, T. Ma, C. Chen, Y. Liu, T. Jia, Y. Zhai, C. Chen, C. Zhang, et al., Adv. Mater. 37(2025) 2412943, https://doi.org/10.1002/adma.202412943.Z. Wu, Y. Zhao, C. Wang, T. Ma, C. Chen, Y. Liu, T. Jia, Y. Zhai, C. Chen, C. Zhang, et al., Adv. Mater. 37(2025) 2412943, https://doi.org/10.1002/adma.202412943.

    19. [19]

      S. Wang, A. Wang, X. Deng, L. Xie, A. Xiao, C. Li, Y. Xiang, T. Li, L. Ding, F. Hao, J. Mater. Chem. A 8(2020) 12201, https://doi.org/10.1039/D0TA03957H.S. Wang, A. Wang, X. Deng, L. Xie, A. Xiao, C. Li, Y. Xiang, T. Li, L. Ding, F. Hao, J. Mater. Chem. A 8(2020) 12201, https://doi.org/10.1039/D0TA03957H.

    20. [20]

      T. Yu, Z. Ma, Z. Huang, Y. Li, J. Tan, G. Li, S. Hou, Z. Du, Z. Liu, Y. Li, et al., ACS Appl. Mater. Interfaces 15(2023) 55813, https://doi.org/10.1021/acsami.3c12898.T. Yu, Z. Ma, Z. Huang, Y. Li, J. Tan, G. Li, S. Hou, Z. Du, Z. Liu, Y. Li, et al., ACS Appl. Mater. Interfaces 15(2023) 55813, https://doi.org/10.1021/acsami.3c12898.

    21. [21]

      J. Liu, C. Ai, C. Hu, B. Cheng, J. Zhang, Acta Phys. Chim. Sin. 40(2024) 2402006, https://doi.org/10.3866/PKU.WHXB202402006.J. Liu, C. Ai, C. Hu, B. Cheng, J. Zhang, Acta Phys. Chim. Sin. 40(2024) 2402006, https://doi.org/10.3866/PKU.WHXB202402006.

    22. [22]

      C. Chen, J. W. Liang, J. J. Zhang, X. X. Liu, X. X. Yin, H. S. Cui, H. B. Wang, C. Wang, Z. F. Li, J. B. Gong, et al., Nano Energy 90(2021) 106608, https://doi.org/10.1016/j.nanoen.2021.106608.C. Chen, J. W. Liang, J. J. Zhang, X. X. Liu, X. X. Yin, H. S. Cui, H. B. Wang, C. Wang, Z. F. Li, J. B. Gong, et al., Nano Energy 90(2021) 106608, https://doi.org/10.1016/j.nanoen.2021.106608.

    23. [23]

      J. Zhuang, P. Mao, Y. Luan, X. Yi, Z. Tu, Y. Zhang, Y. Yi, Y. Wei, N. Chen, T. Lin, et al., ACS Energy Lett. 4(2019) 2913, https://doi.org/10.1021/acsenergylett.9b02375.J. Zhuang, P. Mao, Y. Luan, X. Yi, Z. Tu, Y. Zhang, Y. Yi, Y. Wei, N. Chen, T. Lin, et al., ACS Energy Lett. 4(2019) 2913, https://doi.org/10.1021/acsenergylett.9b02375.

    24. [24]

      A. Ray, B. Martin-Garcia, M. Prato, A. Moliterni, S. Bordignon, D. Spirito, S. Marras, L. Goldoni, K. M. Boopathi, F. Moro, et al., ACS Appl. Mater. Interfaces 15(2023) 28166, https://doi.org/10.1021/acsami.3c03366.A. Ray, B. Martin-Garcia, M. Prato, A. Moliterni, S. Bordignon, D. Spirito, S. Marras, L. Goldoni, K. M. Boopathi, F. Moro, et al., ACS Appl. Mater. Interfaces 15(2023) 28166, https://doi.org/10.1021/acsami.3c03366.

    25. [25]

      G. Sadoughi, D. E. Starr, E. Handick, S. D. Stranks, M. Gorgoi, R. G. Wilks, M. Baer, H. J. Snaith, ACS Appl. Mater. Interfaces 7(2015) 13440, https://doi.org/10.1021/acsami.5b02237.G. Sadoughi, D. E. Starr, E. Handick, S. D. Stranks, M. Gorgoi, R. G. Wilks, M. Baer, H. J. Snaith, ACS Appl. Mater. Interfaces 7(2015) 13440, https://doi.org/10.1021/acsami.5b02237.

    26. [26]

      X. Chen, J. Zhang, C. Liu, Q. Lou, K. Zheng, X. Yin, L. Xie, P. Wen, C. Liu, Z. Ge, ACS Appl. Energy Mater. 4(2021) 11112, https://doi.org/10.1021/acsaem.1c02033.X. Chen, J. Zhang, C. Liu, Q. Lou, K. Zheng, X. Yin, L. Xie, P. Wen, C. Liu, Z. Ge, ACS Appl. Energy Mater. 4(2021) 11112, https://doi.org/10.1021/acsaem.1c02033.

    27. [27]

      Y. Shi, Z. Zhu, D. Miao, Y. Ding, Q. Mi, ACS Energy Lett. 9(2024) 1895, https://doi.org/10.1021/acsenergylett.4c00529.Y. Shi, Z. Zhu, D. Miao, Y. Ding, Q. Mi, ACS Energy Lett. 9(2024) 1895, https://doi.org/10.1021/acsenergylett.4c00529.

    28. [28]

      J. Zhang, Y. Sun, C. Huang, B. Yu, H. Yu, Adv. Energy Mater. 12(2022) 2202542, https://doi.org/10.1002/aenm.202202542.J. Zhang, Y. Sun, C. Huang, B. Yu, H. Yu, Adv. Energy Mater. 12(2022) 2202542, https://doi.org/10.1002/aenm.202202542.

    29. [29]

      S. Xiong, F. Tian, F. Wang, A. Cao, Z. Chen, S. Jiang, D. Li, B. Xu, H. Wu, Y. Zhang, et al., Nat. Commun. 15(2024) 5607, https://doi.org/10.1038/s41467-024-50019-3.S. Xiong, F. Tian, F. Wang, A. Cao, Z. Chen, S. Jiang, D. Li, B. Xu, H. Wu, Y. Zhang, et al., Nat. Commun. 15(2024) 5607, https://doi.org/10.1038/s41467-024-50019-3.

    30. [30]

      T. Li, J. Xu, R. Lin, S. Teale, H. Li, Z. Liu, C. Duan, Q. Zhao, K. Xiao, P. Wu, et al., Nat. Energy 8(2023) 610, https://doi.org/10.1038/s41560-023-01250-7.T. Li, J. Xu, R. Lin, S. Teale, H. Li, Z. Liu, C. Duan, Q. Zhao, K. Xiao, P. Wu, et al., Nat. Energy 8(2023) 610, https://doi.org/10.1038/s41560-023-01250-7.

    31. [31]

      R. He, W. Wang, Z. Yi, F. Lang, C. Chen, J. Luo, J. Zhu, J. Thiesbrummel, S. Shah, K. Wei, et al., Nature 618(2023) 80, https://doi.org/10.1038/s41586-023-05992-y.R. He, W. Wang, Z. Yi, F. Lang, C. Chen, J. Luo, J. Zhu, J. Thiesbrummel, S. Shah, K. Wei, et al., Nature 618(2023) 80, https://doi.org/10.1038/s41586-023-05992-y.

    32. [32]

      S. Liu, J. Li, W. Xiao, R. Chen, Z. Sun, Y. Zhang, X. Lei, S. Hu, M. Kober-Czerny, J. Wang, et al., Nature 632(2024) 536, https://doi.org/10.1038/s41586-024-07723-3.S. Liu, J. Li, W. Xiao, R. Chen, Z. Sun, Y. Zhang, X. Lei, S. Hu, M. Kober-Czerny, J. Wang, et al., Nature 632(2024) 536, https://doi.org/10.1038/s41586-024-07723-3.

    33. [33]

      H. D. Sun, S. W. Liu, X. X. Liu, Y. Gao, J. A. Wang, C. Y. Shi, H. Raza, Z. X. Sun, Y. Y. Pan, Y. Cai, et al., Small Methods 8(2024) 2400067, https://doi.org/10.1002/smtd.202400067.H. D. Sun, S. W. Liu, X. X. Liu, Y. Gao, J. A. Wang, C. Y. Shi, H. Raza, Z. X. Sun, Y. Y. Pan, Y. Cai, et al., Small Methods 8(2024) 2400067, https://doi.org/10.1002/smtd.202400067.

    34. [34]

      X. Lin, H. Su, S. He, Y. Song, Y. Wang, Z. Qin, Y. Wu, X. Yang, Q. Han, J. Fang, et al., Nat. Energy 7(2022) 520, https://doi.org/10.1038/s41560-022-01038-1.X. Lin, H. Su, S. He, Y. Song, Y. Wang, Z. Qin, Y. Wu, X. Yang, Q. Han, J. Fang, et al., Nat. Energy 7(2022) 520, https://doi.org/10.1038/s41560-022-01038-1.

    35. [35]

      X. Li, W. Zhang, X. Guo, C. Lu, J. Wei, J. Fang, Science 375(2022) 434, https://doi.org/10.1126/science.abl5676.X. Li, W. Zhang, X. Guo, C. Lu, J. Wei, J. Fang, Science 375(2022) 434, https://doi.org/10.1126/science.abl5676.

    36. [36]

      C. Wang, Y. Zhao, T. Ma, Y. An, R. He, J. Zhu, C. Chen, S. Ren, F. Fu, D. Zhao, et al., Nat. Energy 7(2022) 744, https://doi.org/10.1038/s41560-022-01076-9.C. Wang, Y. Zhao, T. Ma, Y. An, R. He, J. Zhu, C. Chen, S. Ren, F. Fu, D. Zhao, et al., Nat. Energy 7(2022) 744, https://doi.org/10.1038/s41560-022-01076-9.

    37. [37]

      S. F. Hu, K. Otsuka, R. Murdey, T. Nakamura, M. A. Truong, T. Yamada, T. Handa, K. Matsuda, K. Nakano, A. Sato, et al., Energy Environ. Sci. 15(2022) 2096, https://doi.org/10.1039/d2ee00288d.S. F. Hu, K. Otsuka, R. Murdey, T. Nakamura, M. A. Truong, T. Yamada, T. Handa, K. Matsuda, K. Nakano, A. Sato, et al., Energy Environ. Sci. 15(2022) 2096, https://doi.org/10.1039/d2ee00288d.

    38. [38]

      Q. Jiang, J. H. Tong, Y. M. Xian, R. A. Kerner, S. P. Dunfield, C. X. Xiao, R. A. Scheidt, D. Kuciauskas, X. M. Wang, M. P. Hautzinger, et al., Nature 611(2022) 278, https://doi.org/10.1038/s41586-022-05268-x.Q. Jiang, J. H. Tong, Y. M. Xian, R. A. Kerner, S. P. Dunfield, C. X. Xiao, R. A. Scheidt, D. Kuciauskas, X. M. Wang, M. P. Hautzinger, et al., Nature 611(2022) 278, https://doi.org/10.1038/s41586-022-05268-x.

    39. [39]

      C. L. Wang, D. W. Zhao, C. R. Grice, W. Q. Liao, Y. Yu, A. Cimaroli, N. Shrestha, P. J. Roland, J. Chen, Z. H. Yu, et al., J. Mater. Chem. A 4(2016) 12080, https://doi.org/10.1039/c6ta04503k.C. L. Wang, D. W. Zhao, C. R. Grice, W. Q. Liao, Y. Yu, A. Cimaroli, N. Shrestha, P. J. Roland, J. Chen, Z. H. Yu, et al., J. Mater. Chem. A 4(2016) 12080, https://doi.org/10.1039/c6ta04503k.

    40. [40]

      D. W. Zhao, Y. Yu, C. L. Wang, W. Q. Liao, N. Shrestha, C. R. Grice, A. J. Cimaroli, L. Guan, R. J. Ellingson, K. Zhu, et al., Nat. Energy 2(2017) 17018, https://doi.org/10.1038/nenergy.2017.18.D. W. Zhao, Y. Yu, C. L. Wang, W. Q. Liao, N. Shrestha, C. R. Grice, A. J. Cimaroli, L. Guan, R. J. Ellingson, K. Zhu, et al., Nat. Energy 2(2017) 17018, https://doi.org/10.1038/nenergy.2017.18.

    41. [41]

      R. A. Awni, Z. N. Song, C. Chen, C. W. Li, C. L. Wang, M. A. Razooqi, L. Chen, X. M. Wang, R. J. Ellingson, J. V. Li, et al., Joule 4(2020) 644, https://doi.org/10.1016/j.joule.2020.01.012.R. A. Awni, Z. N. Song, C. Chen, C. W. Li, C. L. Wang, M. A. Razooqi, L. Chen, X. M. Wang, R. J. Ellingson, J. V. Li, et al., Joule 4(2020) 644, https://doi.org/10.1016/j.joule.2020.01.012.

    42. [42]

      R. Chen, S. Liu, X. Xu, F. Ren, J. Zhou, X. Tian, Z. Yang, X. Guanz, Z. Liu, S. Zhang, et al., Energy Environ. Sci. 15(2022) 2567, https://doi.org/10.1039/d2ee00433j.R. Chen, S. Liu, X. Xu, F. Ren, J. Zhou, X. Tian, Z. Yang, X. Guanz, Z. Liu, S. Zhang, et al., Energy Environ. Sci. 15(2022) 2567, https://doi.org/10.1039/d2ee00433j.

    43. [43]

      D. Zhao, C. Chen, C. Wang, M. M. Junda, Z. Song, C. R. Grice, Y. Yu, C. Li, B. Subedi, N. J. Podraza, et al., Nat. Energy 3(2018) 1093, https://doi.org/10.1038/s41560-018-0278-x.D. Zhao, C. Chen, C. Wang, M. M. Junda, Z. Song, C. R. Grice, Y. Yu, C. Li, B. Subedi, N. J. Podraza, et al., Nat. Energy 3(2018) 1093, https://doi.org/10.1038/s41560-018-0278-x.

    44. [44]

      N. Koch, L. Naumann, F. Pretis, N. Ritter, M. Schwarz, Nat. Energy 7(2022) 844, https://doi.org/10.1038/s41560-022-01095-6.N. Koch, L. Naumann, F. Pretis, N. Ritter, M. Schwarz, Nat. Energy 7(2022) 844, https://doi.org/10.1038/s41560-022-01095-6.

  • 加载中
计量
  • PDF下载量:  1
  • 文章访问数:  9
  • HTML全文浏览量:  3
文章相关
  • 发布日期:  2025-07-03
  • 收稿日期:  2025-04-19
  • 修回日期:  2025-06-11
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章