电化学提锂中的法拉第材料:进展、挑战与性能强化方法

王雷 张盼盼 郭志远 汪婧 马杰 纪志永

引用本文: 王雷, 张盼盼, 郭志远, 汪婧, 马杰, 纪志永. 电化学提锂中的法拉第材料:进展、挑战与性能强化方法[J]. 物理化学学报, 2026, 42(1): 100127. doi: 10.1016/j.actphy.2025.100127 shu
Citation:  Lei Wang, Panpan Zhang, Zhiyuan Guo, Jing Wang, Jie Ma, Zhi-yong Ji. Electrochemical lithium extraction by the faradaic materials: advances, challenges and enhancement approaches[J]. Acta Physico-Chimica Sinica, 2026, 42(1): 100127. doi: 10.1016/j.actphy.2025.100127 shu

电化学提锂中的法拉第材料:进展、挑战与性能强化方法

    通讯作者: Email: wangl0703@163.com (王雷); Email: jma@tongji.edu.cn (马杰); Email: jizhiyong@hebut.edu.cn (纪志永)
摘要: 电动汽车行业的快速增长导致锂产品需求激增,推动了先进锂提取技术的发展。其中,电化学提锂技术因其优异锂选择性(相较于竞争性阳离子,如Na+和Mg2+)、高能效和环境可持续性被认为具有发展前景。关于法拉第材料、操作模式/参数和装置构型的研究已大量发表。尽管已有一些关于电化学提锂技术的综述发表,但仍缺乏系统性总结电化学提锂中法拉第材料研究进展、分析其固有性质如何影响提锂性能并阐明性能增强策略与关键提锂性能指标之间联系的全面综述。在此,我们系统地介绍了电化学提锂技术的原理并汇总了文献中涉及的所有性能指标,包括锂离子嵌入容量、锂离子提取速率、容量保持率、选择性系数(或纯度)、能耗和电流效率。我们全面分析了用于电化学提锂的法拉第材料,其中包括LiFePO4、LiMn2O4、层状镍钴锰氧化物、Li3V2(PO4)3和Li1.6Mn1.6O4,构建了其性质与性能间的内在关系,并比较了每种材料的优缺点。此外,我们对不同的性能增强策略进行了分类和评估,包括材料设计方法(如3D结构制造、晶体调控、元素掺杂和表面包覆),以及涉及进水流向、充放电模式和操作参数等方面的条件优化方法,并进一步阐明了每种方法如何影响电化学提锂的某一/某些性能及其内在影响机制。我们同时综述了基于每种法拉第材料的电化学提锂技术的工业化进展及材料成本。本综述旨在通过建立材料设计、操作条件优化和性能结果间的联系,为从事新型电化学提锂法拉第材料研究的学者和工程师提供有价值的见解,并启发法拉第材料开发和工艺优化的创新方法,为实现更可持续和更具成本效益的卤水锂资源开发提供参考。

English

    1. [1]

      A.-M. Desaulty, D. Monfort Climent, G. Lefebvre, A. Cristiano-Tassi, D. Peralta, S. Perret, A. Urban, C. Guerrot, Nat. Commun. 13 (2022) 4172, https://doi.org/10.1038/s41467-022-31850-y. doi: 10.1038/s41467-022-31850-y

    2. [2]

      B. Swain, Sep. Purif. Technol. 172 (2017) 388, https://doi.org/10.1016/j.seppur.2016.08.031. doi: 10.1016/j.seppur.2016.08.031

    3. [3]

      A. Z. Haddad, L. Hackl, B. Akuzum, G. Pohlman, J.-F. Magnan, R. Kostecki, Nature 616 (2023) 245, https://doi.org/10.1038/d41586-023-00978-2. doi: 10.1038/d41586-023-00978-2

    4. [4]

      J. C. Kelly, M. Wang, Q. Dai, O. Winjobi, Resour. Conserv. Recycl. 174 (2021) 105762, https://doi.org/10.1016/j.resconrec.2021.105762. doi: 10.1016/j.resconrec.2021.105762

    5. [5]

      Y. Xiong, J. Zhou, P. Lu, J. Yin, Y. Wang, Z. Fan, Matter 5 (2022) 1760, https://doi.org/10.1016/j.matt.2022.04.034. doi: 10.1016/j.matt.2022.04.034

    6. [6]

      L. Kölbel, T. Kölbel, L. Herrmann, E. Kaymakci, I. Ghergut, A. Poirel, J. Schneider, Hydrometallurgy 221 (2023) 106131, https://doi.org/10.1016/j.hydromet.2023.106131. doi: 10.1016/j.hydromet.2023.106131

    7. [7]

      Q. Liu, P. Yang, W. Tu, H. Sun, S. Li, Y. Zhang, J. Water Process Eng. 55 (2023) 104148, https://doi.org/10.1016/j.jwpe.2023.104148. doi: 10.1016/j.jwpe.2023.104148

    8. [8]

      W. Zhang, X. Che, D. Pei, X. Zhang, Y. Chen, M. Li, C. Li, Exploration 2 (2022) 20220050, https://doi.org/10.1002/EXP.20220050. doi: 10.1002/EXP.20220050

    9. [9]

      Y. Zhang, Y. Hu, L. Wang, W. Sun, Miner. Eng. 139 (2019) 105868, https://doi.org/10.1016/j.mineng.2019.105868. doi: 10.1016/j.mineng.2019.105868

    10. [10]

      X. Xu, Y. Chen, P. Wan, K. Gasem, K. Wang, T. He, H. Adidharma, M. Fan, Prog. Mater Sci. 84 (2016) 276, https://doi.org/10.1016/j.pmatsci.2016.09.004. doi: 10.1016/j.pmatsci.2016.09.004

    11. [11]

      J. Hou, H. Zhang, A. W. Thornton, A. J. Hill, H. Wang, K. Konstas, Adv. Funct. Mater. 31 (2021) 2105991, https://doi.org/10.1002/adfm.202105991. doi: 10.1002/adfm.202105991

    12. [12]

      Q. He, N. J. Williams, J. H. Oh, V. M. Lynch, S. K. Kim, B. A. Moyer, J. L. Sessler, Angew. Chem. Int. Ed. 57 (2018) 11924, https://doi.org/10.1002/anie.201805127. doi: 10.1002/anie.201805127

    13. [13]

      Y. Zeng, W. Li, Z. Wan, S. Qin, Q. Huang, W. Cai, Q. Wang, M. Yao, Y. Zhang, Adv. Funct. Mater. 34 (2024) 2400416, https://doi.org/10.1002/adfm.202400416. doi: 10.1002/adfm.202400416

    14. [14]

      A. Battistel, M. S. Palagonia, D. Brogioli, F. La Mantia, R. Trócoli, Adv. Mater. 32 (2020) 1905440, https://doi.org/10.1002/adma.201905440. doi: 10.1002/adma.201905440

    15. [15]

      J. F. Song, L. D. Nghiem, X.-M. Li, T. He, Environ. Sci. Water Res. Technol. 3 (2017) 593, https://doi.org/10.1039/C7EW00020K. doi: 10.1039/C7EW00020K

    16. [16]

      L. Baudino, C. Santos, C. F. Pirri, F. La Mantia, A. Lamberti, Adv. Sci. 9 (2022) 2201380, https://doi.org/10.1002/advs.202201380. doi: 10.1002/advs.202201380

    17. [17]

      S. Xu, J. Song, Q. Bi, Q. Chen, W.-M. Zhang, Z. Qian, L. Zhang, S. Xu, N. Tang, T. He, J. Membr. Sci. 635 (2021) 119441, https://doi.org/10.1016/j.memsci.2021.119441. doi: 10.1016/j.memsci.2021.119441

    18. [18]

      X. Li, Y. Mo, W. Qing, S. Shao, C. Y. Tang, J. Li, J. Membr. Sci. 591 (2019) 117317, https://doi.org/10.1016/j.memsci.2019.117317. doi: 10.1016/j.memsci.2019.117317

    19. [19]

      S. Zavahir, T. Elmakki, M. Gulied, Z. Ahmad, L. Al-Sulaiti, H. K. Shon, Y. Chen, H. Park, B. Batchelor, D. S. Han, Desalination 500 (2021) 114883, https://doi.org/10.1016/j.desal.2020.114883. doi: 10.1016/j.desal.2020.114883

    20. [20]

      J. Farahbakhsh, F. Arshadi, Z. Mofidi, M. Mohseni-Dargah, C. Kök, M. Assefi, A. Soozanipour, M. Zargar, M. Asadnia, Y. Boroumand, V. Presser, A. Razmjou, Desalination 575 (2024) 117249, https://doi.org/10.1016/j.desal.2023.117249. doi: 10.1016/j.desal.2023.117249

    21. [21]

      H. Kanoh, K. Ooi, Y. Miyai, S. Katoh, Langmuir 7 (1991) 1841, https://doi.org/10.1021/la00057a002. doi: 10.1021/la00057a002

    22. [22]

      H. Kanoh, K. Ooi, Y. Miyai, S. Katoh, Sep. Sci. Technol. 28 (1993) 643, https://doi.org/10.1080/01496399308019512. doi: 10.1080/01496399308019512

    23. [23]

      M. Pasta, A. Battistel, F. La Mantia, Energy Environ. Sci. 5 (2012) 9487, https://doi.org/10.1039/C2EE22977C. doi: 10.1039/C2EE22977C

    24. [24]

      Z. Zhao, X. Si, X. Liu, L. He, X. Liang, Hydrometallurgy 133 (2013) 75, https://doi.org/10.1016/j.hydromet.2012.11.013. doi: 10.1016/j.hydromet.2012.11.013

    25. [25]

      L. Wang, K. Frisella, P. Srimuk, O. Janka, G. Kickelbick, V. Presser, Sustainable Energy Fuels 5 (2021) 3124, https://doi.org/10.1039/D1SE00450F. doi: 10.1039/D1SE00450F

    26. [26]

      H. Zhang, Z. Huang, L. Zhao, Z. Guo, J. Wang, J. Liu, Y. Zhao, F. Li, P. Zhang, Z.-Y. Ji, Chem. Eng. J. 482 (2024) 148802, https://doi.org/10.1016/j.cej.2024.148802. doi: 10.1016/j.cej.2024.148802

    27. [27]

      X. Meng, Y. Jing, J. Li, Z. Sun, Z. Wu, Chem. Eng. Sci. 283 (2024) 119400, https://doi.org/10.1016/j.ces.2023.119400. doi: 10.1016/j.ces.2023.119400

    28. [28]

      X. Zhao, H. Yang, Y. Wang, L. Yang, L. Zhu, Sep. Purif. Technol. 274 (2021) 119078, https://doi.org/10.1016/j.seppur.2021.119078. doi: 10.1016/j.seppur.2021.119078

    29. [29]

      L. L. Missoni, F. Marchini, M. Del Pozo, E. J. Calvo, J. Electrochem. Soc. 163 (2016) A1898, https://doi.org/10.1149/2.0591609jes. doi: 10.1149/2.0591609jes

    30. [30]

      R. Trócoli, C. Erinmwingbovo, F. La Mantia, ChemElectroChem 4 (2017) 143, https://doi.org/10.1002/celc.201600509. doi: 10.1002/celc.201600509

    31. [31]

      M.-Y. Zhao, Z.-Y. Ji, Y.-G. Zhang, Z.-Y. Guo, Y.-Y. Zhao, J. Liu, J.-S. Yuan, Electrochim. Acta 252 (2017) 350, https://doi.org/10.1016/j.electacta.2017.08.178. doi: 10.1016/j.electacta.2017.08.178

    32. [32]

      S. Kim, J. S. Kang, H. Joo, Y.-E. Sung, J. Yoon, Environ. Sci. Technol. 54 (2020) 9044, https://doi.org/10.1021/acs.est.9b07646. doi: 10.1021/acs.est.9b07646

    33. [33]

      K. Sun, M. Tebyetekerwa, X. Zeng, Z. Wang, T. T. Duignan, X. Zhang, Environ. Sci. Technol. 58 (2024) 3997, https://doi.org/10.1021/acs.est.3c09111. doi: 10.1021/acs.est.3c09111

    34. [34]

      V. C. E. Romero, D. S. Putrino, M. Tagliazucchi, V. Flexer, E. J. Calvo, J. Electrochem. Soc. 168 (2021) 020518, https://doi.org/10.1149/1945-7111/abde81. doi: 10.1149/1945-7111/abde81

    35. [35]

      H. Joo, S. Y. Jung, S. Kim, K. H. Ahn, W. S. Ryoo, J. Yoon, ACS Sustainable Chem. Eng. 8 (2020) 9622, https://doi.org/10.1021/acssuschemeng.9b07427. doi: 10.1021/acssuschemeng.9b07427

    36. [36]

      R. Trócoli, A. Battistel, F. La Mantia, ChemSusChem 8 (2015) 2514, https://doi.org/10.1002/cssc.201500368. doi: 10.1002/cssc.201500368

    37. [37]

      Y. Kondo, T. Abe, Y. Yamada, ACS Appl. Mater. Interfaces 14 (2022) 22706, https://doi.org/10.1021/acsami.1c21683. doi: 10.1021/acsami.1c21683

    38. [38]

      N. V. Kosova, O. A. Podgornova, Y. M. Volfkovich, V. E. Sosenkin, J. Solid State Electrochem. 25 (2021) 1029, https://doi.org/10.1007/s10008-020-04877-8. doi: 10.1007/s10008-020-04877-8

    39. [39]

      Y. Zhang, C. Prehal, H. Jiang, Y. Liu, G. Feng, V. Presser, Cell Rep. Phys. Sci. 3 (2022) 100689, https://doi.org/10.1016/j.xcrp.2021.100689. doi: 10.1016/j.xcrp.2021.100689

    40. [40]

      A. J. Bard, L. R. Faulkner, Electrochemical methods: fundamentals and applications, 2nd ed.; John Wiley & Sons: the United States of America, 2001; pp. 7–20.

    41. [41]

      P. Sebastián-Pascual, Y. Shao-Horn, M. Escudero-Escribano, Curr. Opin. Electrochem. 32 (2022) 100918, https://doi.org/10.1016/j.coelec.2021.100918. doi: 10.1016/j.coelec.2021.100918

    42. [42]

      S. Fleischmann, J. B. Mitchell, R. Wang, C. Zhan, D.-E. Jiang, V. Presser, V. Augustyn, Chem. Rev. 120 (2020) 6738, https://doi.org/10.1021/acs.chemrev.0c00170. doi: 10.1021/acs.chemrev.0c00170

    43. [43]

      S. Cui, Y. Wei, T. Liu, W. Deng, Z. Hu, Y. Su, H. Li, M. Li, H. Guo, Y. Duan, W. Wang, M. Rao, J. Zheng, X. Wang, F. Pan, Adv. Energy Mater. 6 (2016) 1501309, https://doi.org/10.1002/aenm.201501309. doi: 10.1002/aenm.201501309

    44. [44]

      Y. Wei, J. Zheng, S. Cui, X. Song, Y. Su, W. Deng, Z. Wu, X. Wang, W. Wang, M. Rao, Y. Lin, C. Wang, K. Amine, F. Pan, J. Am. Chem. Soc. 137 (2015) 8364, https://doi.org/10.1021/jacs.5b04040. doi: 10.1021/jacs.5b04040

    45. [45]

      Z. Chen, D. L. Danilov, R.-A. Eichel, P. H. L. Notten, Adv. Energy Mater. 12 (2022) 2201506, https://doi.org/10.1002/aenm.202201506. doi: 10.1002/aenm.202201506

    46. [46]

      M. Weiss, R. Ruess, J. Kasnatscheew, Y. Levartovsky, N. R. Levy, P. Minnmann, L. Stolz, T. Waldmann, M. Wohlfahrt-Mehrens, D. Aurbach, M. Winter, Y. Ein-Eli, J. Janek, Adv. Energy Mater. 11 (2021) 2101126, https://doi.org/10.1002/aenm.202101126. doi: 10.1002/aenm.202101126

    47. [47]

      G. Yan, M. Wang, G. T. Hill, S. Zou, C. Liu, Proc. Natl. Acad. Sci. 119 (2022) e2200751119, https://doi.org/10.1073/pnas.2200751119. doi: 10.1073/pnas.2200751119

    48. [48]

      W. Xu, D. Liu, X. Liu, D. Wang, L. He, Z. Zhao, Desalination 546 (2023) 116188, https://doi.org/10.1016/j.desal.2022.116188. doi: 10.1016/j.desal.2022.116188

    49. [49]

      Z. Zhang, J. Zhang, Z. Zhang, X. Du, X. Hao, X. An, G. Guan, J. Li, Z. Liu, Sep. Purif. Technol. 316 (2023) 123777, https://doi.org/10.1016/j.seppur.2023.123777. doi: 10.1016/j.seppur.2023.123777

    50. [50]

      D.-F. Liu, S.-Y. Sun, J.-G. Yu, The Canadian Journal of Chemical Engineering 97 (2019) 1589, https://doi.org/10.1002/cjce.23370. doi: 10.1002/cjce.23370

    51. [51]

      M. S. Palagonia, D. Brogioli, F. L. Mantia, J. Electrochem. Soc. 164 (2017) E586, https://doi.org/10.1149/2.1531714jes. doi: 10.1149/2.1531714jes

    52. [52]

      W.-J. Zhang, J. Power Sources 196 (2011) 2962, https://doi.org/10.1016/j.jpowsour.2010.11.113. doi: 10.1016/j.jpowsour.2010.11.113

    53. [53]

      S.-I. Nishimura, G. Kobayashi, K. Ohoyama, R. Kanno, M. Yashima, A. Yamada, Nat. Mater. 7 (2008) 707, https://doi.org/10.1038/nmat2251. doi: 10.1038/nmat2251

    54. [54]

      H. Zhang, Z. Zou, S. Zhang, J. Liu, S. Zhong, Int. J. Electrochem. Sci. 15 (2020) 12041, https://doi.org/10.20964/2020.12.71. doi: 10.20964/2020.12.71

    55. [55]

      D. Morgan, A. Van Der Ven, G. Ceder, Electrochem. Solid-State Lett. 7 (2004) A30, https://doi.org/10.1149/1.1633511. doi: 10.1149/1.1633511

    56. [56]

      M. S. Islam, D. J. Driscoll, C. a. J. Fisher, P. R. Slater, Chem. Mater. 17 (2005) 5085, https://doi.org/10.1021/cm050999v. doi: 10.1021/cm050999v

    57. [57]

      Y. Zou, S. Chen, X. Yang, N. Ma, Y. Xia, D. Yang, S. Guo, Adv. Energy Mater. 6 (2016) 1601549, https://doi.org/10.1002/aenm.201601549. doi: 10.1002/aenm.201601549

    58. [58]

      C. a. J. Fisher, V. M. Hart Prieto, M. S. Islam, Chem. Mater. 20 (2008) 5907, https://doi.org/10.1021/cm801262x. doi: 10.1021/cm801262x

    59. [59]

      J. Yang, J. S. Tse, The Journal of Physical Chemistry A 115 (2011) 13045, https://doi.org/10.1021/jp205057d. doi: 10.1021/jp205057d

    60. [60]

      S. Zhou, P. Wang, S. Tang, J. Zhang, S. Gu, J. Yu, Desalination 592 (2024) 118153, https://doi.org/10.1016/j.desal.2024.118153. doi: 10.1016/j.desal.2024.118153

    61. [61]

      M. Du, J.-Z. Guo, S.-H. Zheng, Y. Liu, J.-L. Yang, K.-Y. Zhang, Z.-Y. Gu, X.-T. Wang, X.-L. Wu, Chin. Chem. Lett. 34 (2023) 107706, https://doi.org/10.1016/j.cclet.2022.07.049. doi: 10.1016/j.cclet.2022.07.049

    62. [62]

      A. Urban, D.-H. Seo, G. Ceder, npj Comput. Mater. 2 (2016) 16002, https://doi.org/10.1038/npjcompumats.2016.2. doi: 10.1038/npjcompumats.2016.2

    63. [63]

      C. Liu, Z. G. Neale, G. Cao, Mater. Today 19 (2016) 109, https://doi.org/10.1016/j.mattod.2015.10.009. doi: 10.1016/j.mattod.2015.10.009

    64. [64]

      A. Van Der Ven, J. Bhattacharya, A. A. Belak, Acc. Chem. Res. 46 (2013) 1216, https://doi.org/10.1021/ar200329r. doi: 10.1021/ar200329r

    65. [65]

      C. Delmas, M. Maccario, L. Croguennec, F. Le Cras, F. Weill, Nat. Mater. 7 (2008) 665, https://doi.org/10.1038/nmat2230. doi: 10.1038/nmat2230

    66. [66]

      C. Delacourt, P. Poizot, J.-M. Tarascon, C. Masquelier, Nat. Mater. 4 (2005) 254, https://doi.org/10.1038/nmat1335. doi: 10.1038/nmat1335

    67. [67]

      G. Kobayashi, S.-I. Nishimura, M.-S. Park, R. Kanno, M. Yashima, T. Ida, A. Yamada, Adv. Funct. Mater. 19 (2009) 395, https://doi.org/10.1002/adfm.200801522. doi: 10.1002/adfm.200801522

    68. [68]

      N. Sharma, X. Guo, G. Du, Z. Guo, J. Wang, Z. Wang, V. K. Peterson, J. Am. Chem. Soc. 134 (2012) 7867, https://doi.org/10.1021/ja301187u. doi: 10.1021/ja301187u

    69. [69]

      H. Liu, F. C. Strobridge, O. J. Borkiewicz, K. M. Wiaderek, K. W. Chapman, P. J. Chupas, C. P. Grey, Science 344 (2014) 1252817, https://doi.org/10.1126/science.1252817. doi: 10.1126/science.1252817

    70. [70]

      P. Gibot, M. Casas-Cabanas, L. Laffont, S. Levasseur, P. Carlach, S. Hamelet, J.-M. Tarascon, C. Masquelier, Nat. Mater. 7 (2008) 741, https://doi.org/10.1038/nmat2245. doi: 10.1038/nmat2245

    71. [71]

      J. Lu, S. C. Chung, S.-I. Nishimura, A. Yamada, Chem. Mater. 25 (2013) 4557, https://doi.org/10.1021/cm402617b. doi: 10.1021/cm402617b

    72. [72]

      Z.-W. Zhao, X.-F. Si, X.-X. Liang, X.-H. Liu, L.-H. He, Transactions of Nonferrous Metals Society of China 23 (2013) 1157, https://doi.org/10.1016/S1003-6326(13)62578-9. doi: 10.1016/S1003-6326(13)62578-9

    73. [73]

      S. P. Ong, V. L. Chevrier, G. Hautier, A. Jain, C. Moore, S. Kim, X. Ma, G. Ceder, Energy Environ. Sci. 4 (2011) 3680, https://doi.org/10.1039/C1EE01782A. doi: 10.1039/C1EE01782A

    74. [74]

      T. Zhang, D. Li, Z. Tao, J. Chen, Prog. Nat. Sci. : Mater. Int. 23 (2013) 256, https://doi.org/10.1016/j.pnsc.2013.04.005. doi: 10.1016/j.pnsc.2013.04.005

    75. [75]

      Y. Huang, Y. Dong, S. Li, J. Lee, C. Wang, Z. Zhu, W. Xue, Y. Li, J. Li, Adv. Energy Mater. 11 (2021) 2000997, https://doi.org/10.1002/aenm.202000997. doi: 10.1002/aenm.202000997

    76. [76]

      R. A. House, G. J. Rees, M. A. Pérez-Osorio, J.-J. Marie, E. Boivin, A. W. Robertson, A. Nag, M. Garcia-Fernandez, K.-J. Zhou, P. G. Bruce, Nat. Energy 5 (2020) 777, https://doi.org/10.1038/s41560-020-00697-2. doi: 10.1038/s41560-020-00697-2

    77. [77]

      W. Xu, L. He, Z. Zhao, Desalination 503 (2021) 114935, https://doi.org/10.1016/j.desal.2021.114935. doi: 10.1016/j.desal.2021.114935

    78. [78]

      J. Rodríguez-Carvajal, G. Rousse, C. Masquelier, M. Hervieu, Phys. Rev. Lett. 81 (1998) 4660, https://doi.org/10.1103/PhysRevLett.81.4660. doi: 10.1103/PhysRevLett.81.4660

    79. [79]

      S. Liu, B. Wang, X. Zhang, S. Zhao, Z. Zhang, H. Yu, Matter 4 (2021) 1511, https://doi.org/10.1016/j.matt.2021.02.023. doi: 10.1016/j.matt.2021.02.023

    80. [80]

      M. A. Halcrow, Chem. Soc. Rev. 42 (2013) 1784, https://doi.org/10.1039/C2CS35253B. doi: 10.1039/C2CS35253B

    81. [81]

      J. B. Goodenough, K.-S. Park, J. Am. Chem. Soc. 135 (2013) 1167, https://doi.org/10.1021/ja3091438. doi: 10.1021/ja3091438

    82. [82]

      J. Ren, H. Zhu, Y. Fang, W. Li, S. Lan, S. Wei, Z. Yin, Y. Tang, Y. Ren, Q. Liu, Carbon Neutralization 2 (2023) 339, https://doi.org/10.1002/cnl2.62. doi: 10.1002/cnl2.62

    83. [83]

      M. Okubo, Y. Mizuno, H. Yamada, J. Kim, E. Hosono, H. Zhou, T. Kudo, I. Honma, ACS Nano 4 (2010) 741, https://doi.org/10.1021/nn9012065. doi: 10.1021/nn9012065

    84. [84]

      T. Liu, A. Dai, J. Lu, Y. Yuan, Y. Xiao, L. Yu, M. Li, J. Gim, L. Ma, J. Liu, C. Zhan, L. Li, J. Zheng, Y. Ren, T. Wu, R. Shahbazian-Yassar, J. Wen, F. Pan, K. Amine, Nat. Commun. 10 (2019) 4721, https://doi.org/10.1038/s41467-019-12626-3. doi: 10.1038/s41467-019-12626-3

    85. [85]

      P. Wang, S. Zhou, Y. Fu, H. Fang, S. Gu, J. Yu, Desalination 581 (2024) 117618, https://doi.org/10.1016/j.desal.2024.117618. doi: 10.1016/j.desal.2024.117618

    86. [86]

      J. Yu, D. Fang, H. Zhang, Z. Y. Leong, J. Zhang, X. Li, H. Y. Yang, ACS Mater. Lett. 2 (2020) 1662, https://doi.org/10.1021/acsmaterialslett.0c00385. doi: 10.1021/acsmaterialslett.0c00385

    87. [87]

      M. D. Radin, S. Hy, M. Sina, C. Fang, H. Liu, J. Vinckeviciute, M. Zhang, M. S. Whittingham, Y. S. Meng, A. Van Der Ven, Adv. Energy Mater. 7 (2017) 1602888, https://doi.org/10.1002/aenm.201602888. doi: 10.1002/aenm.201602888

    88. [88]

      K. Kang, Y. S. Meng, J. Bréger, C. P. Grey, G. Ceder, Science 311 (2006) 977, https://doi.org/10.1126/science.1122152. doi: 10.1126/science.1122152

    89. [89]

      J. U. Choi, N. Voronina, Y.-K. Sun, S.-T. Myung, Adv. Energy Mater. 10 (2020) 2002027, https://doi.org/10.1002/aenm.202002027. doi: 10.1002/aenm.202002027

    90. [90]

      Z. Xu, K. Song, X. Chang, L. Li, W. Zhang, Y. Xue, J. Zhang, D. Lin, Z. Liu, Q. Wang, Y. Yu, C. Yang, Carbon Neutralization 3 (2024) 832, https://doi.org/10.1002/cnl2.162. doi: 10.1002/cnl2.162

    91. [91]

      C. Zhao, C. Wang, X. Liu, I. Hwang, T. Li, X. Zhou, J. Diao, J. Deng, Y. Qin, Z. Yang, G. Wang, W. Xu, C. Sun, L. Wu, W. Cha, I. Robinson, R. Harder, Y. Jiang, T. Bicer, J.-T. Li, W. Lu, L. Li, Y. Liu, S.-G. Sun, G.-L. Xu, K. Amine, Nat. Energy 9 (2024) 345, https://doi.org/10.1038/s41560-024-01465-2. doi: 10.1038/s41560-024-01465-2

    92. [92]

      H.-H. Ryu, K.-J. Park, C. S. Yoon, Y.-K. Sun, Chem. Mater. 30 (2018) 1155, https://doi.org/10.1021/acs.chemmater.7b05269. doi: 10.1021/acs.chemmater.7b05269

    93. [93]

      D. Goonetilleke, N. Sharma, W. K. Pang, V. K. Peterson, R. Petibon, J. Li, J. R. Dahn, Chem. Mater. 31 (2019) 376, https://doi.org/10.1021/acs.chemmater.8b03525. doi: 10.1021/acs.chemmater.8b03525

    94. [94]

      C. P. Lawagon, G. M. Nisola, R. a. I. Cuevas, R. E. C. Torrejos, H. Kim, S.-P. Lee, W.-J. Chung, Sep. Purif. Technol. 212 (2019) 416, https://doi.org/10.1016/j.seppur.2018.11.046. doi: 10.1016/j.seppur.2018.11.046

    95. [95]

      X. Zhao, M. Feng, Y. Jiao, Y. Zhang, Y. Wang, Z. Sha, Desalination 481 (2020) 114360, https://doi.org/10.1016/j.desal.2020.114360. doi: 10.1016/j.desal.2020.114360

    96. [96]

      C. P. Lawagon, G. M. Nisola, R. a. I. Cuevas, H. Kim, S.-P. Lee, W.-J. Chung, Chem. Eng. J. 348 (2018) 1000, https://doi.org/10.1016/j.cej.2018.05.030. doi: 10.1016/j.cej.2018.05.030

    97. [97]

      L. Britala, M. Marinaro, G. Kucinskis, J. Energy Storage 73 (2023) 108875, https://doi.org/10.1016/j.est.2023.108875. doi: 10.1016/j.est.2023.108875

    98. [98]

      M. Jiang, P. Wang, Q. Chen, Y. Zhang, Q. Wu, L. Tan, T. Ning, L. Li, K. Zou, Chin. Chem. Lett. 36 (2025) 110040, https://doi.org/10.1016/j.cclet.2024.110040. doi: 10.1016/j.cclet.2024.110040

    99. [99]

      W. Lin, W. Bao, J. Cai, X. Cai, H. Zhao, Y. Zhang, Y. Deng, S. Yang, Z. Zhou, Z. Liu, J. Xie, Appl. Surf. Sci. 615 (2023) 156278, https://doi.org/10.1016/j.apsusc.2022.156278. doi: 10.1016/j.apsusc.2022.156278

    100. [100]

      M. Yang, L. Chen, H. Li, F. Wu, Energy Mater. Adv. 2022 (2022) 9842651, https://doi.org/10.34133/2022/9842651. doi: 10.34133/2022/9842651

    101. [101]

      D. Tao, S. Wang, Y. Liu, Y. Dai, J. Yu, X. Lei, Ionics 21 (2015) 1201, https://doi.org/10.1007/s11581-015-1405-3. doi: 10.1007/s11581-015-1405-3

    102. [102]

      X.-F. Sun, Y.-L. Xu, X.-Y. Zheng, X.-F. Meng, P. Ding, H. Ren, L. Li, Acta Phys. Chim. Sin. 31 (2015) 1513, https://doi.org/10.3866/pku.Whxb201506082. doi: 10.3866/pku.Whxb201506082

    103. [103]

      C. Ahmani Ferdi, M. Belaiche, E. Iffer, J. Solid State Electrochem. 25 (2021) 301, https://doi.org/10.1007/s10008-020-04808-7. doi: 10.1007/s10008-020-04808-7

    104. [104]

      X. Rui, Q. Yan, M. Skyllas-Kazacos, T. M. Lim, J. Power Sources 258 (2014) 19, https://doi.org/10.1016/j.jpowsour.2014.01.126. doi: 10.1016/j.jpowsour.2014.01.126

    105. [105]

      J. Zhou, S. Xiang, X. Wang, D.-M. Shin, H. Zhou, Chem. Eng. J. 482 (2024) 148985, https://doi.org/10.1016/j.cej.2024.148985. doi: 10.1016/j.cej.2024.148985

    106. [106]

      A. Gao, X. Hou, Z. Sun, S. Li, H. Li, J. Zhang, J. Mater. Chem. A 7 (2019) 20878, https://doi.org/10.1039/C9TA06080D. doi: 10.1039/C9TA06080D

    107. [107]

      S. C. Yin, H. Grondey, P. Strobel, M. Anne, L. F. Nazar, J. Am. Chem. Soc. 125 (2003) 10402, https://doi.org/10.1021/ja034565h. doi: 10.1021/ja034565h

    108. [108]

      J. Gaubicher, C. Wurm, G. Goward, C. Masquelier, L. Nazar, Chem. Mater. 12 (2000) 3240, https://doi.org/10.1021/cm000345g. doi: 10.1021/cm000345g

    109. [109]

      J. Zhang, J. Shen, H. Chu, Y. Xie, Z. Jiang, D. Gao, T. Deng, X. Yu, Chem. Eng. J. 516 (2025) 164011, https://doi.org/10.1016/j.cej.2025.164011. doi: 10.1016/j.cej.2025.164011

    110. [110]

      J. Zhou, Y. Xu, D.-M. Shin, H. Zhou, Desalination 600 (2025) 118530, https://doi.org/10.1016/j.desal.2025.118530. doi: 10.1016/j.desal.2025.118530

    111. [111]

      A. Gao, Z. Sun, S. Li, X. Hou, H. Li, Q. Wu, X. Xi, Dalton Trans. 47 (2018) 3864, https://doi.org/10.1039/C8DT00033F. doi: 10.1039/C8DT00033F

    112. [112]

      Y. Tu, Z. Zhou, W. Wei, L. Guan, Y. Liu, Z. Xu, H. Liu, Z. Liu, Chem. Eng. J. 503 (2025) 158533, https://doi.org/10.1016/j.cej.2024.158533. doi: 10.1016/j.cej.2024.158533

    113. [113]

      Y. Zhang, H. Xing, Q. Meng, Q. Liu, H. Liu, L. Yang, Sep. Purif. Technol. 348 (2024) 127739, https://doi.org/10.1016/j.seppur.2024.127739. doi: 10.1016/j.seppur.2024.127739

    114. [114]

      F. Qian, B. Zhao, M. Guo, Z. Qian, Z. Wu, Z. Liu, Mater. Des. 194 (2020) 108867, https://doi.org/10.1016/j.matdes.2020.108867. doi: 10.1016/j.matdes.2020.108867

    115. [115]

      H. Zhan, Y. Qiao, Z. Qian, B. Lv, Z. Wu, Z. Liu, Chem. Eng. J. 497 (2024) 154859, https://doi.org/10.1016/j.cej.2024.154859. doi: 10.1016/j.cej.2024.154859

    116. [116]

      H. Zhan, Y. Qiao, Z. Qian, J. Li, Z. Wu, X. Hao, Z. Liu, J. Ind. Eng. Chem. 114 (2022) 142, https://doi.org/10.1016/j.jiec.2022.07.003. doi: 10.1016/j.jiec.2022.07.003

    117. [117]

      R. Trócoli, A. Battistel, F. L. Mantia, Chemistry – A European Journal 20 (2014) 9888, https://doi.org/10.1002/chem.201403535. doi: 10.1002/chem.201403535

    118. [118]

      C. Liu, R. Massé, X. Nan, G. Cao, Energy Storage Mater. 4 (2016) 15, https://doi.org/10.1016/j.ensm.2016.02.002. doi: 10.1016/j.ensm.2016.02.002

    119. [119]

      P.-C. Tsai, B. Wen, M. Wolfman, M.-J. Choe, M. S. Pan, L. Su, K. Thornton, J. Cabana, Y.-M. Chiang, Energy Environ. Sci. 11 (2018) 860, https://doi.org/10.1039/C8EE00001H. doi: 10.1039/C8EE00001H

    120. [120]

      M. Park, X. Zhang, M. Chung, G. B. Less, A. M. Sastry, J. Power Sources 195 (2010) 7904, https://doi.org/10.1016/j.jpowsour.2010.06.060. doi: 10.1016/j.jpowsour.2010.06.060

    121. [121]

      M. M. Thackeray, K. Amine, Nat. Energy 6 (2021) 566, https://doi.org/10.1038/s41560-021-00815-8. doi: 10.1038/s41560-021-00815-8

    122. [122]

      M. M. Thackeray, K. Amine, Nat. Energy 6 (2021) 933, https://doi.org/10.1038/s41560-021-00860-3. doi: 10.1038/s41560-021-00860-3

    123. [123]

      J. Li, Z.-F. Ma, Chem 5 (2019) 3, https://doi.org/10.1016/j.chempr.2018.12.012. doi: 10.1016/j.chempr.2018.12.012

    124. [124]

      W. Zhu, W. Xu, D. Liu, L. He, X. Liu, Z. Zhao, Electrochim. Acta 475 (2024) 143519, https://doi.org/10.1016/j.electacta.2023.143519. doi: 10.1016/j.electacta.2023.143519

    125. [125]

      P. Wang, S. Zhou, X. Yao, Y. Fu, S. Gu, J. Yu, Sep. Purif. Technol. 357 (2025) 130184, https://doi.org/10.1016/j.seppur.2024.130184. doi: 10.1016/j.seppur.2024.130184

    126. [126]

      J. Gu, G. Zhou, L. Chen, X. Li, G. Luo, L. Fan, Y. Chao, H. Ji, W. Zhu, J. Electroanal. Chem. 940 (2023) 117487, https://doi.org/10.1016/j.jelechem.2023.117487. doi: 10.1016/j.jelechem.2023.117487

    127. [127]

      D. Liu, W. Xu, J. Xiong, L. He, Z. Zhao, Sep. Purif. Technol. 270 (2021) 118809, https://doi.org/10.1016/j.seppur.2021.118809. doi: 10.1016/j.seppur.2021.118809

    128. [128]

      Z.-Y. Guo, Z.-Y. Ji, H.-Y. Chen, J. Liu, Y.-Y. Zhao, F. Li, J.-S. Yuan, ACS Sustainable Chem. Eng. 8 (2020) 11834, https://doi.org/10.1021/acssuschemeng.0c04359. doi: 10.1021/acssuschemeng.0c04359

    129. [129]

      Z.-Y. Guo, Z.-Y. Ji, J. Wang, H.-Y. Chen, J. Liu, Y.-Y. Zhao, F. Li, J.-S. Yuan, Sep. Purif. Technol. 259 (2021) 118154, https://doi.org/10.1016/j.seppur.2020.118154. doi: 10.1016/j.seppur.2020.118154

    130. [130]

      H. Zhan, Z. Qian, Y. Qiao, B. Lv, R. Liu, H. Chen, Z. Liu, ACS Nano 18 (2024) 31204, https://doi.org/10.1021/acsnano.4c09379. doi: 10.1021/acsnano.4c09379

    131. [131]

      L. He, W. Xu, Y. Song, Y. Luo, X. Liu, Z. Zhao, Global Challenges 2 (2018) 1700079, https://doi.org/10.1002/gch2.201700079. doi: 10.1002/gch2.201700079

    132. [132]

      J. Xiong, L. He, Z. Zhao, Desalination 535 (2022) 115822, https://doi.org/10.1016/j.desal.2022.115822. doi: 10.1016/j.desal.2022.115822

    133. [133]

      L. Wang, Y. Zhou, W. Chen, J.-L. Jiang, Z.-H. Guo, Sep. Purif. Technol. 306 (2023) 122605, https://doi.org/10.1016/j.seppur.2022.122605. doi: 10.1016/j.seppur.2022.122605

    134. [134]

      Z. Huang, W. Xu, Z. Zhao, D. Liu, L. He, X. Liu, Chem. Eng. J. 467 (2023) 143247, https://doi.org/10.1016/j.cej.2023.143247. doi: 10.1016/j.cej.2023.143247

    135. [135]

      S. Sun, X. Yu, M. Li, J. Duo, Y. Guo, T. Deng, J. Cleaner Prod. 247 (2020) 119178, https://doi.org/10.1016/j.jclepro.2019.119178. doi: 10.1016/j.jclepro.2019.119178

    136. [136]

      J. Yang, X. Shang, B. Hu, B. Zhang, Y. Wang, J. Yang, J. Liu, J. Solid State Electrochem. 27 (2023) 2029, https://doi.org/10.1007/s10008-023-05461-6. doi: 10.1007/s10008-023-05461-6

    137. [137]

      X. Zhao, Y. Gong, K. Gao, Y. Wang, H. Y. Yang, Chem. Eng. J. 474 (2023) 145975, https://doi.org/10.1016/j.cej.2023.145975. doi: 10.1016/j.cej.2023.145975

    138. [138]

      G. Tan, S. Wan, J.-J. Chen, H.-Q. Yu, Y. Yu, Adv. Mater. 36 (2024) 2310657, https://doi.org/10.1002/adma.202310657. doi: 10.1002/adma.202310657

    139. [139]

      G. Tian, J. Gao, M. Wang, X. Wen, Y. Liu, J. Xiang, L. Zhang, P. Cheng, J. Zhang, N. Tang, Electrochim. Acta 475 (2024) 143361, https://doi.org/10.1016/j.electacta.2023.143361. doi: 10.1016/j.electacta.2023.143361

    140. [140]

      J. Gu, L. Chen, X. Li, G. Luo, L. Fan, Y. Chao, H. Ji, W. Zhu, J. Energy Chem. 89 (2024) 410, https://doi.org/10.1016/j.jechem.2023.10.005. doi: 10.1016/j.jechem.2023.10.005

    141. [141]

      G. Luo, X. Li, L. Chen, Y. Zhang, J. Gu, Y. Chao, W. Zhu, Z. Liu, C. Xu, Chem. Eng. J. 455 (2023) 140928, https://doi.org/10.1016/j.cej.2022.140928. doi: 10.1016/j.cej.2022.140928

    142. [142]

      J. Gu, L. Chen, L. Fan, G. Luo, X. Li, X. Chen, H. Ji, Y. Chao, W. Zhu, Desalination 586 (2024) 117828, https://doi.org/10.1016/j.desal.2024.117828. doi: 10.1016/j.desal.2024.117828

    143. [143]

      G. Luo, M. Zhou, Y. Chao, P. Cui, X. Li, L. Chen, G. Jiang, W. Zhu, Z. Liu, C. Xu, Sep. Purif. Technol. 354 (2025) 128683, https://doi.org/10.1016/j.seppur.2024.128683. doi: 10.1016/j.seppur.2024.128683

    144. [144]

      Z. Li, I.-C. Chen, L. Cao, X. Liu, K.-W. Huang, Z. Lai, Science 385 (2024) 1438, https://doi.org/10.1126/science.adg8487. doi: 10.1126/science.adg8487

    145. [145]

      X. Zhao, S. Yang, X. Song, Y. Wang, H. Zhang, M. Li, Y. Wang, Adv. Sci. 11 (2024) 2405176, https://doi.org/10.1002/advs.202405176. doi: 10.1002/advs.202405176

    146. [146]

      D. Chen, Z. Zhang, T. Ma, Q. Luo, X. Du, X. Ye, X. Hao, Z. Wu, X. Wang, J. Li, Process Safety and Environmental Protection 191 (2024) 112, https://doi.org/10.1016/j.psep.2024.08.113. doi: 10.1016/j.psep.2024.08.113

    147. [147]

      G. Liao, L. Yu, Y. Xia, Z. Wang, Z. Lu, J. Mei, H. Liu, C. Liu, Water Res. 274 (2025) 123131, https://doi.org/10.1016/j.watres.2025.123131. doi: 10.1016/j.watres.2025.123131

    148. [148]

      Z. Hui, J. An, J. Zhou, W. Huang, G. Sun, Exploration 2 (2022) 20210237, https://doi.org/10.1002/EXP.20210237. doi: 10.1002/EXP.20210237

    149. [149]

      R.-X. Yin, W.-G. Zhu, Z.-W. Zhao, W.-H. Xu, X.-H. Liu, L.-H. He, Sep. Purif. Technol. 338 (2024) 126375, https://doi.org/10.1016/j.seppur.2024.126375. doi: 10.1016/j.seppur.2024.126375

    150. [150]

      J. Wang, J.-W. Fang, Z.-Y. Ji, Z.-Y. Guo, X.-W. Li, J. Liu, Y.-Y. Zhao, Z. Liu, F.-F. Gao, Y. Zhong, J.-S. Yuan, J. Environ. Chem. Eng. 11 (2023) 110878, https://doi.org/10.1016/j.jece.2023.110878. doi: 10.1016/j.jece.2023.110878

    151. [151]

      Y. Mu, C. Zhang, W. Zhang, Y. Wang, Desalination 511 (2021) 115112, https://doi.org/10.1016/j.desal.2021.115112. doi: 10.1016/j.desal.2021.115112

    152. [152]

      G. Ma, Y. Xu, A. Cai, H. Mao, X. Zhang, D.-M. Shin, L. Wang, H. Zhou, Small 20 (2024) 2306530, https://doi.org/10.1002/smll.202306530. doi: 10.1002/smll.202306530

    153. [153]

      H. Zhang, L. Zhao, Z. Guo, L. Wang, Y. Ma, P. Zhang, J. Wang, Z.-Y. Ji, Environ. Sci. Technol. 59 (2025) 6881, https://doi.org/10.1021/acs.est.4c13308. doi: 10.1021/acs.est.4c13308

    154. [154]

      M. Nakayama, H. Taki, T. Nakamura, S. Tokuda, R. Jalem, T. Kasuga, J. Phys. Chem. C 118 (2014) 27245, https://doi.org/10.1021/jp509232m. doi: 10.1021/jp509232m

    155. [155]

      G. Zhou, L. Chen, X. Li, G. Luo, Z. Yu, J. Yin, L. Fan, Y. Chao, L. Jiang, W. Zhu, Green Energy Environ. 8 (2023) 1081, https://doi.org/10.1016/j.gee.2021.12.002. doi: 10.1016/j.gee.2021.12.002

    156. [156]

      L. Peng, X. Zhang, Z. Fang, Y. Zhu, Y. Xie, J. J. Cha, G. Yu, Chem. Mater. 29 (2017) 10526, https://doi.org/10.1021/acs.chemmater.7b04514. doi: 10.1021/acs.chemmater.7b04514

    157. [157]

      Y. Zhao, L. Peng, B. Liu, G. Yu, Nano Lett. 14 (2014) 2849, https://doi.org/10.1021/nl5008568. doi: 10.1021/nl5008568

    158. [158]

      A. Yamada, H. Koizumi, S. I. Nishimura, N. Sonoyama, R. Kanno, M. Yonemura, T. Nakamura, Y. Kobayashi, Nat. Mater. 5 (2006) 357, https://doi.org/10.1038/nmat1634. doi: 10.1038/nmat1634

    159. [159]

      X.-C. Tang, L.-X. Li, Q.-L. Lai, X.-W. Song, L.-H. Jiang, Electrochim. Acta 54 (2009) 2329, https://doi.org/10.1016/j.electacta.2008.10.065. doi: 10.1016/j.electacta.2008.10.065

    160. [160]

      P. P. Prosini, M. Lisi, D. Zane, M. Pasquali, Solid State Ionics 148 (2002) 45, https://doi.org/10.1016/S0167-2738(02)00134-0. doi: 10.1016/S0167-2738(02)00134-0

    161. [161]

      G. Yan, G. Kim, R. Yuan, E. Hoenig, F. Shi, W. Chen, Y. Han, Q. Chen, J.-M. Zuo, W. Chen, C. Liu, Nat. Commun. 13 (2022) 4579, https://doi.org/10.1038/s41467-022-32369-y. doi: 10.1038/s41467-022-32369-y

    162. [162]

      Y. Wu, P. Shi, Y. Zhong, R. Cai, Energy & Fuels 37 (2023) 4083, https://doi.org/10.1021/acs.energyfuels.2c04113. doi: 10.1021/acs.energyfuels.2c04113

    163. [163]

      C. Cai, G. M. Koenig, Electrochim. Acta 401 (2022) 139484, https://doi.org/10.1016/j.electacta.2021.139484. doi: 10.1016/j.electacta.2021.139484

    164. [164]

      Y. K. Lee, J. Park, W. Lu, J. Electrochem. Soc. 163 (2016) A1359, https://doi.org/10.1149/2.0991607jes. doi: 10.1149/2.0991607jes

    165. [165]

      X. Sun, R. Xiao, X. Yu, H. Li, ACS Appl. Mater. Interfaces 14 (2022) 10353, https://doi.org/10.1021/acsami.1c23478. doi: 10.1021/acsami.1c23478

    166. [166]

      Z. Ahaliabadeh, X. Kong, E. Fedorovskaya, T. Kallio, J. Power Sources 540 (2022) 231633, https://doi.org/10.1016/j.jpowsour.2022.231633. doi: 10.1016/j.jpowsour.2022.231633

    167. [167]

      J. Choi, S.-Y. Lee, S. Yoon, K.-H. Kim, M. Kim, S.-H. Hong, ChemSusChem 12 (2019) 2439, https://doi.org/10.1002/cssc.201900500. doi: 10.1002/cssc.201900500

    168. [168]

      S.-Y. Chung, J. T. Bloking, Y.-M. Chiang, Nat. Mater. 1 (2002) 123, https://doi.org/10.1038/nmat732. doi: 10.1038/nmat732

    169. [169]

      P. S. Herle, B. Ellis, N. Coombs, L. F. Nazar, Nat. Mater. 3 (2004) 147, https://doi.org/10.1038/nmat1063. doi: 10.1038/nmat1063

    170. [170]

      M. Wagemaker, B. L. Ellis, D. Lützenkirchen-Hecht, F. M. Mulder, L. F. Nazar, Chem. Mater. 20 (2008) 6313, https://doi.org/10.1021/cm801781k. doi: 10.1021/cm801781k

    171. [171]

      M. D. Johannes, K. Hoang, J. L. Allen, K. Gaskell, Phys. Rev. B 85 (2012) 115106, https://doi.org/10.1103/PhysRevB.85.115106. doi: 10.1103/PhysRevB.85.115106

    172. [172]

      C. Ban, W.-J. Yin, H. Tang, S.-H. Wei, Y. Yan, A. C. Dillon, Adv. Energy Mater. 2 (2012) 1028, https://doi.org/10.1002/aenm.201200085. doi: 10.1002/aenm.201200085

    173. [173]

      K. Hoang, M. D. Johannes, J. Power Sources 206 (2012) 274, https://doi.org/10.1016/j.jpowsour.2012.01.126. doi: 10.1016/j.jpowsour.2012.01.126

    174. [174]

      Y. Zhang, J. A. Alarco, J. Y. Nerkar, A. S. Best, G. A. Snook, P. C. Talbot, B. C. C. Cowie, ACS Appl. Energy Mater. 3 (2020) 9158, https://doi.org/10.1021/acsaem.0c01536. doi: 10.1021/acsaem.0c01536

    175. [175]

      F. Bizzotto, W. Dachraoui, R. Grissa, W. Zhao, F. Pagani, E. Querel, R.-S. Kühnel, C. Battaglia, Electrochim. Acta 462 (2023) 142758, https://doi.org/10.1016/j.electacta.2023.142758. doi: 10.1016/j.electacta.2023.142758

    176. [176]

      F. Schipper, H. Bouzaglo, M. Dixit, E. M. Erickson, T. Weigel, M. Talianker, J. Grinblat, L. Burstein, M. Schmidt, J. Lampert, C. Erk, B. Markovsky, D. T. Major, D. Aurbach, Adv. Energy Mater. 8 (2018) 1701682, https://doi.org/10.1002/aenm.201701682. doi: 10.1002/aenm.201701682

    177. [177]

      U. Nisar, N. Muralidharan, R. Essehli, R. Amin, I. Belharouak, Energy Storage Mater. 38 (2021) 309, https://doi.org/10.1016/j.ensm.2021.03.015. doi: 10.1016/j.ensm.2021.03.015

    178. [178]

      P. Zhu, Z. Yang, H. Zhang, J. Yu, Z. Zhang, J. Cai, C. Li, J. Alloys Compd. 745 (2018) 164, https://doi.org/10.1016/j.jallcom.2018.02.119. doi: 10.1016/j.jallcom.2018.02.119

    179. [179]

      B. Xiao, B. Wang, J. Liu, K. Kaliyappan, Q. Sun, Y. Liu, G. Dadheech, M. P. Balogh, L. Yang, T.-K. Sham, R. Li, M. Cai, X. Sun, Nano Energy 34 (2017) 120, https://doi.org/10.1016/j.nanoen.2017.02.015. doi: 10.1016/j.nanoen.2017.02.015

    180. [180]

      Y. He, H. Pham, X. Liang, J. Park, Chem. Eng. J. 440 (2022) 135565, https://doi.org/10.1016/j.cej.2022.135565. doi: 10.1016/j.cej.2022.135565

    181. [181]

      X. Li, J. Liu, M. N. Banis, A. Lushington, R. Li, M. Cai, X. Sun, Energy Environ. Sci. 7 (2014) 768, https://doi.org/10.1039/C3EE42704H. doi: 10.1039/C3EE42704H

    182. [182]

      P. Guan, L. Zhou, Z. Yu, Y. Sun, Y. Liu, F. Wu, Y. Jiang, D. Chu, J. Energy Chem. 43 (2020) 220, https://doi.org/10.1016/j.jechem.2019.08.022. doi: 10.1016/j.jechem.2019.08.022

    183. [183]

      J. Li, Q. Wu, J. Wu, Synthesis of Nanoparticles via Solvothermal and Hydrothermal Methods. In Handbook of Nanoparticles; M. Aliofkhazraei, Eds.; Springer Cham: Switzerland, 2016; pp. 295–328.

    184. [184]

      H.-H. Ryu, H.-W. Lim, S. G. Lee, Y.-K. Sun, Nat. Energy 9 (2023) 47, https://doi.org/10.1038/s41560-023-01403-8. doi: 10.1038/s41560-023-01403-8

    185. [185]

      Y. Lin, Y. Lin, T. Zhou, G. Zhao, Y. Huang, Z. Huang, J. Power Sources 226 (2013) 20, https://doi.org/10.1016/j.jpowsour.2012.10.074. doi: 10.1016/j.jpowsour.2012.10.074

    186. [186]

      Y. Liu, X.-J. Lin, Y.-G. Sun, Y.-S. Xu, B.-B. Chang, C.-T. Liu, A.-M. Cao, L.-J. Wan, Small 15 (2019) 1901019, https://doi.org/10.1002/smll.201901019. doi: 10.1002/smll.201901019

    187. [187]

      Y.-F. Deng, S.-X. Zhao, Y.-H. Xu, C.-W. Nan, J. Mater. Chem. A 2 (2014) 18889, https://doi.org/10.1039/C4TA03772C. doi: 10.1039/C4TA03772C

    188. [188]

      F. Xiong, Z. Chen, C. Huang, T. Wang, W. Zhang, Z. Yang, F. Chen, Inorg. Chem. 58 (2019) 15498, https://doi.org/10.1021/acs.inorgchem.9b02533. doi: 10.1021/acs.inorgchem.9b02533

    189. [189]

      Z.-X. Chi, W. Zhang, X.-S. Wang, F.-Q. Cheng, J.-T. Chen, A.-M. Cao, L.-J. Wan, ACS Appl. Mater. Interfaces 6 (2014) 22719, https://doi.org/10.1021/am506860e. doi: 10.1021/am506860e

    190. [190]

      Y. Kwon, Y. Lee, S.-O. Kim, H.-S. Kim, K. J. Kim, D. Byun, W. Choi, ACS Appl. Mater. Interfaces 10 (2018) 29457, https://doi.org/10.1021/acsami.8b08200. doi: 10.1021/acsami.8b08200

    191. [191]

      Q. Wang, Y. Lei, Y. Wang, Y. Liu, C. Song, J. Zeng, Y. Song, X. Duan, D. Wang, Y. Li, Energy Environ. Sci. 13 (2020) 1593, https://doi.org/10.1039/D0EE00450B. doi: 10.1039/D0EE00450B

    192. [192]

      I. Gómez-Palos, M. Vazquez-Pufleau, R. S. Schäufele, A. Mikhalchan, A. Pendashteh, Á. Ridruejo, J. J. Vilatela, Nanoscale 15 (2023) 6052, https://doi.org/10.1039/D3NR00289F. doi: 10.1039/D3NR00289F

    193. [193]

      Q. Hou, G. Cao, P. Wang, D. Zhao, X. Cui, S. Li, C. Li, J. Alloys Compd. 747 (2018) 796, https://doi.org/10.1016/j.jallcom.2018.03.115. doi: 10.1016/j.jallcom.2018.03.115

    194. [194]

      C. Gao, J. Zhou, G. Liu, L. Wang, Appl. Surf. Sci. 433 (2018) 35, https://doi.org/10.1016/j.apsusc.2017.10.034. doi: 10.1016/j.apsusc.2017.10.034

    195. [195]

      Q. Gong, Y.-S. He, Y. Yang, X.-Z. Liao, Z.-F. Ma, J. Solid State Electrochem. 16 (2012) 1383, https://doi.org/10.1007/s10008-011-1538-x. doi: 10.1007/s10008-011-1538-x

    196. [196]

      Q. Liu, Y.-T. Liu, C. Zhao, Q.-S. Weng, J. Deng, I. Hwang, Y. Jiang, C. Sun, T. Li, W. Xu, K. Du, A. Daali, G.-L. Xu, K. Amine, G. Chen, ACS Nano 16 (2022) 14527, https://doi.org/10.1021/acsnano.2c04959. doi: 10.1021/acsnano.2c04959

    197. [197]

      L. Sun, G. Yuan, L. Gao, J. Yang, M. Chhowalla, M. H. Gharahcheshmeh, K. K. Gleason, Y. S. Choi, B. H. Hong, Z. Liu, Nat. Rev. Methods Primers 1 (2021) 5, https://doi.org/10.1038/s43586-020-00005-y. doi: 10.1038/s43586-020-00005-y

    198. [198]

      R. W. Johnson, A. Hultqvist, S. F. Bent, Mater. Today 17 (2014) 236, https://doi.org/10.1016/j.mattod.2014.04.026. doi: 10.1016/j.mattod.2014.04.026

    199. [199]

      S. M. George, Chem. Rev. 110 (2010) 111, https://doi.org/10.1021/cr900056b. doi: 10.1021/cr900056b

    200. [200]

      M. Zhang, N. Garcia-Araez, Electrochim. Acta 499 (2024) 144686, https://doi.org/10.1016/j.electacta.2024.144686. doi: 10.1016/j.electacta.2024.144686

    201. [201]

      X. Zhao, L. Zheng, Y. Hou, Y. Wang, L. Zhu, Chem. Eng. J. 450 (2022) 138454, https://doi.org/10.1016/j.cej.2022.138454. doi: 10.1016/j.cej.2022.138454

    202. [202]

      T. Han, X. Yu, Y. Guo, M. Li, J. Duo, T. Deng, Electrochim. Acta 350 (2020) 136385, https://doi.org/10.1016/j.electacta.2020.136385. doi: 10.1016/j.electacta.2020.136385

    203. [203]

      J. Zhang, W. Pan, Y. Zhou, C. Hai, Y. Xu, Y. Zhao, Y. Sun, S. Dong, X. He, Q. Xu, J. Chen, H. Su, L. Ma, Chemosphere 360 (2024) 142325, https://doi.org/10.1016/j.chemosphere.2024.142325. doi: 10.1016/j.chemosphere.2024.142325

    204. [204]

      J. Zhang, Y. Zhou, C. Hai, H. Su, Y. Zhao, Y. Sun, S. Dong, X. He, Q. Xu, T. Chen, J. Xiang, S. Huang, L. Ma, Sep. Purif. Technol. 334 (2024) 126010, https://doi.org/10.1016/j.seppur.2023.126010. doi: 10.1016/j.seppur.2023.126010

    205. [205]

      J. Zhang, Y. Zhou, C. Hai, Y. Gao, Y. Zhao, Y. Sun, S. Dong, X. He, Q. Xu, J. Chen, H. Su, L. Ma, Desalination 579 (2024) 117457, https://doi.org/10.1016/j.desal.2024.117457. doi: 10.1016/j.desal.2024.117457

    206. [206]

      B. Hu, X. Shang, P. Nie, B. Zhang, J. Yang, J. Liu, J. Colloid Interface Sci. 612 (2022) 392, https://doi.org/10.1016/j.jcis.2021.12.181. doi: 10.1016/j.jcis.2021.12.181

    207. [207]

      X. Du, G. Guan, X. Li, A. D. Jagadale, X. Ma, Z. Wang, X. Hao, A. Abudula, J. Mater. Chem. A 4 (2016) 13989, https://doi.org/10.1039/C6TA05985F. doi: 10.1039/C6TA05985F

    208. [208]

      X. Zhao, G. Li, M. Feng, Y. Wang, Electrochim. Acta 331 (2020) 135285, https://doi.org/10.1016/j.electacta.2019.135285. doi: 10.1016/j.electacta.2019.135285

    209. [209]

      B. Hu, Y. Wang, B. Zhang, X. Song, H. Jiang, J. Ma, J. Liu, Sep. Purif. Technol. 348 (2024) 127693, https://doi.org/10.1016/j.seppur.2024.127693. doi: 10.1016/j.seppur.2024.127693

    210. [210]

      B. Mojtahedi, M. Askari, A. Dolati, N. Shahcheraghi, M. Ghorbanzadeh, Energy & Fuels 38 (2024) 19878, https://doi.org/10.1021/acs.energyfuels.4c03409. doi: 10.1021/acs.energyfuels.4c03409

    211. [211]

      L. Gou, Y.-F. Zhang, W. Wang, J.-Y. Ying, X.-Y. Fan, Z.-Z. Zhang, Chem. Eng. J. 498 (2024) 155755, https://doi.org/10.1016/j.cej.2024.155755. doi: 10.1016/j.cej.2024.155755

    212. [212]

      N. Xue, X. Wu, H. Shi, Y. Zhang, Y. Zhang, Y. Lv, X. Zhang, X. Chen, Y. Yu, W. Liu, ACS Nano 18 (2024) 33743, https://doi.org/10.1021/acsnano.4c15473. doi: 10.1021/acsnano.4c15473

    213. [213]

      J. Li, L. Han, R. Wang, T. Wang, L. Pan, X. Zhang, C. Wang, Desalination 591 (2024) 118035, https://doi.org/10.1016/j.desal.2024.118035. doi: 10.1016/j.desal.2024.118035

    214. [214]

      G. Luo, X. Li, L. Chen, J. Gu, Y. Huang, J. Sun, H. Liu, Y. Chao, W. Zhu, Z. Liu, Appl. Energy 337 (2023) 120890, https://doi.org/10.1016/j.apenergy.2023.120890. doi: 10.1016/j.apenergy.2023.120890

    215. [215]

      L. Chen, L. Fan, D. Lan, J. Gu, C. Xiaojun, H. Ji, Y. Chao, P. Wu, W. Zhu, Chem. Eng. J. 505 (2025) 159815, https://doi.org/10.1016/j.cej.2025.159815. doi: 10.1016/j.cej.2025.159815

    216. [216]

      Y. Bao, Z. Ji, H. Zhou, C. Zhang, S. Song, F. Jia, J. Li, M. Quintana, Small (2024) 2406951, https://doi.org/10.1002/smll.202406951. doi: 10.1002/smll.202406951

    217. [217]

      Y. Chen, H. Zhan, Y. Qiao, Z. Qian, B. Lv, Z. Wu, Z. Liu, Chem. Eng. J. 477 (2023) 147136, https://doi.org/10.1016/j.cej.2023.147136. doi: 10.1016/j.cej.2023.147136

    218. [218]

      G. T. Hill, F. Shi, H. Zhou, Y. Han, C. Liu, Matter 4 (2021) 1611, https://doi.org/10.1016/j.matt.2021.02.005. doi: 10.1016/j.matt.2021.02.005

    219. [219]

      V. C. E. Romero, K. Llano, E. J. Calvo, Electrochem. Commun. 125 (2021) 106980, https://doi.org/10.1016/j.elecom.2021.106980. doi: 10.1016/j.elecom.2021.106980

    220. [220]

      E. N. Guyes, A. N. Shocron, A. Simanovski, P. M. Biesheuvel, M. E. Suss, Desalination 415 (2017) 8, https://doi.org/10.1016/j.desal.2017.03.013. doi: 10.1016/j.desal.2017.03.013

    221. [221]

      Z.-Y. Guo, Z.-Y. Ji, J. Wang, X.-F. Guo, J.-S. Liang, Desalination 533 (2022) 115767, https://doi.org/10.1016/j.desal.2022.115767. doi: 10.1016/j.desal.2022.115767

    222. [222]

      D. Liu, Z. Zhao, W. Xu, J. Xiong, L. He, Desalination 519 (2021) 115302, https://doi.org/10.1016/j.desal.2021.115302. doi: 10.1016/j.desal.2021.115302

    223. [223]

      J. Xiong, L. He, D. Liu, W. Xu, Z. Zhao, Desalination 520 (2021) 115326, https://doi.org/10.1016/j.desal.2021.115326. doi: 10.1016/j.desal.2021.115326

    224. [224]

      C. Liu, Y. Li, D. Lin, P.-C. Hsu, B. Liu, G. Yan, T. Wu, Y. Cui, S. Chu, Joule 4 (2020) 1459, https://doi.org/10.1016/j.joule.2020.05.017. doi: 10.1016/j.joule.2020.05.017

    225. [225]

      M. S. Palagonia, D. Brogioli, F. La Mantia, J. Electrochem. Soc. 166 (2019) E286, https://doi.org/10.1149/2.0221910jes. doi: 10.1149/2.0221910jes

    226. [226]

      S. Kim, J. Lee, S. Kim, S. Kim, J. Yoon, Energy Technol. 6 (2018) 340, https://doi.org/10.1002/ente.201700488. doi: 10.1002/ente.201700488

    227. [227]

      A. Zhao, J. Liu, X. Ai, H. Yang, Y. Cao, ChemSusChem 12 (2019) 1361, https://doi.org/10.1002/cssc.201803045. doi: 10.1002/cssc.201803045

    228. [228]

      C.-T. Hsieh, C.-T. Pai, Y.-F. Chen, P.-Y. Yu, R.-S. Juang, Electrochim. Acta 115 (2014) 96, https://doi.org/10.1016/j.electacta.2013.10.082. doi: 10.1016/j.electacta.2013.10.082

    229. [229]

      Z. Wang, Z. Chen, Y. Li, X. Ren, X. Xiong, Z. Lu, L. Deng, Nano Energy 131 (2024) 110249, https://doi.org/10.1016/j.nanoen.2024.110249. doi: 10.1016/j.nanoen.2024.110249

    230. [230]

      C. P. Graettinger, S. Garcia, J. Siviy, R. J. Schenk, P. J. Van Syckle, Using the Technology Readiness Levels Scale to Support Technology Management in the DoD's ATD/STO Environments. [2025-04-01]. https://insights.sei.cmu.edu/library/using-the-technology-readiness-levels-scale-to-support-technology-management-in-the-dods-atdsto-environments-a-findings-and-recommendations-report-conducted-for-army-cecom/.

    231. [231]

      L. Wu, C. Zhang, S. Kim, T. A. Hatton, H. Mo, T. D. Waite, Water Res. 221 (2022) 118822, https://doi.org/10.1016/j.watres.2022.118822. doi: 10.1016/j.watres.2022.118822

    232. [232]

      H. Joo, S. Kim, S. Kim, M. Choi, S.-H. Kim, J. Yoon, Environ. Sci. Water Res. Technol. 6 (2020) 290, https://doi.org/10.1039/C9EW00756C. doi: 10.1039/C9EW00756C

    233. [233]

      J. Zhang, S. Dong, X. He, Q. Xu, C. Hai, Y. Zhou, X. Zhang, L. Ma, Chemistry 86 (2023) 1044, https://doi.org/10.14159/j.cnki.0441-3776.2023.09.013. doi: 10.14159/j.cnki.0441-3776.2023.09.013

    234. [234]

      National Engineering Research Center of Low-carbon Nonferrous Metallurgy (Central South University). 中南大学赵中伟教授团队"电化学脱嵌法盐湖提锂"获阶段性进展. [2025-04-01]. https://rnmlab.csu.edu.cn/info/1009/1067.htm.

  • 加载中
计量
  • PDF下载量:  1
  • 文章访问数:  40
  • HTML全文浏览量:  8
文章相关
  • 发布日期:  2026-01-15
  • 收稿日期:  2025-04-29
  • 接受日期:  2025-06-30
  • 修回日期:  2025-06-11
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章