电化学提锂中的法拉第材料:进展、挑战与性能强化方法

王雷 张盼盼 郭志远 汪婧 马杰 纪志永

引用本文: 王雷, 张盼盼, 郭志远, 汪婧, 马杰, 纪志永. 电化学提锂中的法拉第材料:进展、挑战与性能强化方法[J]. 物理化学学报, 2026, 42(1): 100127. doi: 10.1016/j.actphy.2025.100127 shu
Citation:  Lei Wang,  Panpan Zhang,  Zhiyuan Guo,  Jing Wang,  Jie Ma,  Zhi-yong Ji. Electrochemical lithium extraction by the faradaic materials: advances, challenges and enhancement approaches[J]. Acta Physico-Chimica Sinica, 2026, 42(1): 100127. doi: 10.1016/j.actphy.2025.100127 shu

电化学提锂中的法拉第材料:进展、挑战与性能强化方法

    通讯作者: 王雷,Emails:wangl0703@163.com; 马杰,Emails:jma@tongji.edu.cn; 纪志永,Emails:jizhiyong@hebut.edu.cn
  • 基金项目:

    国家自然科学基金(U23A20119, 92475207)和天津市教委科研计划(2024KJ149)资助项目

摘要: 电动汽车行业的快速增长导致锂产品需求激增,推动了先进锂提取技术的发展。其中,电化学提锂技术因其优异锂选择性(相较于竞争性阳离子,如Na+和Mg2+)、高能效和环境可持续性被认为具有发展前景。关于法拉第材料、操作模式/参数和装置构型的研究已大量发表。尽管已有一些关于电化学提锂技术的综述发表,但仍缺乏系统性总结电化学提锂中法拉第材料研究进展、分析其固有性质如何影响提锂性能并阐明性能增强策略与关键提锂性能指标之间联系的全面综述。在此,我们系统地介绍了电化学提锂技术的原理并汇总了文献中涉及的所有性能指标,包括锂离子嵌入容量、锂离子提取速率、容量保持率、选择性系数(或纯度)、能耗和电流效率。我们全面分析了用于电化学提锂的法拉第材料,其中包括LiFePO4、LiMn2O4、层状镍钴锰氧化物、Li3V2(PO4)3和Li1.6Mn1.6O4,构建了其性质与性能间的内在关系,并比较了每种材料的优缺点。此外,我们对不同的性能增强策略进行了分类和评估,包括材料设计方法(如3D结构制造、晶体调控、元素掺杂和表面包覆),以及涉及进水流向、充放电模式和操作参数等方面的条件优化方法,并进一步阐明了每种方法如何影响电化学提锂的某一/某些性能及其内在影响机制。我们同时综述了基于每种法拉第材料的电化学提锂技术的工业化进展及材料成本。本综述旨在通过建立材料设计、操作条件优化和性能结果间的联系,为从事新型电化学提锂法拉第材料研究的学者和工程师提供有价值的见解,并启发法拉第材料开发和工艺优化的创新方法,为实现更可持续和更具成本效益的卤水锂资源开发提供参考。

English

    1. [1]

      A.-M. Desaulty, D. Monfort Climent, G. Lefebvre, A. Cristiano-Tassi, D. Peralta, S. Perret, A. Urban, C. Guerrot, Nat. Commun. 13(2022) 4172, https://doi.org/10.1038/s41467-022-31850-y.A.-M. Desaulty, D. Monfort Climent, G. Lefebvre, A. Cristiano-Tassi, D. Peralta, S. Perret, A. Urban, C. Guerrot, Nat. Commun. 13(2022) 4172, https://doi.org/10.1038/s41467-022-31850-y.

    2. [2]

      B. Swain, Sep. Purif. Technol. 172(2017) 388, https://doi.org/10.1016/j.seppur.2016.08.031.B. Swain, Sep. Purif. Technol. 172(2017) 388, https://doi.org/10.1016/j.seppur.2016.08.031.

    3. [3]

      A. Z. Haddad, L. Hackl, B. Akuzum, G. Pohlman, J.-F. Magnan, R. Kostecki, Nature 616(2023) 245, https://doi.org/10.1038/d41586-023-00978-2.A. Z. Haddad, L. Hackl, B. Akuzum, G. Pohlman, J.-F. Magnan, R. Kostecki, Nature 616(2023) 245, https://doi.org/10.1038/d41586-023-00978-2.

    4. [4]

      J. C. Kelly, M. Wang, Q. Dai, O. Winjobi, Resour. Conserv. Recycl. 174(2021) 105762, https://doi.org/10.1016/j.resconrec.2021.105762.J. C. Kelly, M. Wang, Q. Dai, O. Winjobi, Resour. Conserv. Recycl. 174(2021) 105762, https://doi.org/10.1016/j.resconrec.2021.105762.

    5. [5]

      Y. Xiong, J. Zhou, P. Lu, J. Yin, Y. Wang, Z. Fan, Matter 5(2022) 1760, https://doi.org/10.1016/j.matt.2022.04.034.Y. Xiong, J. Zhou, P. Lu, J. Yin, Y. Wang, Z. Fan, Matter 5(2022) 1760, https://doi.org/10.1016/j.matt.2022.04.034.

    6. [6]

      L. Kölbel, T. Kölbel, L. Herrmann, E. Kaymakci, I. Ghergut, A. Poirel, J. Schneider, Hydrometallurgy 221(2023) 106131, https://doi.org/10.1016/j.hydromet.2023.106131.L. Kölbel, T. Kölbel, L. Herrmann, E. Kaymakci, I. Ghergut, A. Poirel, J. Schneider, Hydrometallurgy 221(2023) 106131, https://doi.org/10.1016/j.hydromet.2023.106131.

    7. [7]

      Q. Liu, P. Yang, W. Tu, H. Sun, S. Li, Y. Zhang, J. Water Process Eng. 55(2023) 104148, https://doi.org/10.1016/j.jwpe.2023.104148.Q. Liu, P. Yang, W. Tu, H. Sun, S. Li, Y. Zhang, J. Water Process Eng. 55(2023) 104148, https://doi.org/10.1016/j.jwpe.2023.104148.

    8. [8]

      W. Zhang, X. Che, D. Pei, X. Zhang, Y. Chen, M. Li, C. Li, Exploration 2(2022) 20220050, https://doi.org/10.1002/EXP.20220050.W. Zhang, X. Che, D. Pei, X. Zhang, Y. Chen, M. Li, C. Li, Exploration 2(2022) 20220050, https://doi.org/10.1002/EXP.20220050.

    9. [9]

      Y. Zhang, Y. Hu, L. Wang, W. Sun, Miner. Eng. 139(2019) 105868, https://doi.org/10.1016/j.mineng.2019.105868.Y. Zhang, Y. Hu, L. Wang, W. Sun, Miner. Eng. 139(2019) 105868, https://doi.org/10.1016/j.mineng.2019.105868.

    10. [10]

      X. Xu, Y. Chen, P. Wan, K. Gasem, K. Wang, T. He, H. Adidharma, M. Fan, Prog. Mater Sci. 84(2016) 276, https://doi.org/10.1016/j.pmatsci.2016.09.004.X. Xu, Y. Chen, P. Wan, K. Gasem, K. Wang, T. He, H. Adidharma, M. Fan, Prog. Mater Sci. 84(2016) 276, https://doi.org/10.1016/j.pmatsci.2016.09.004.

    11. [11]

      J. Hou, H. Zhang, A. W. Thornton, A. J. Hill, H. Wang, K. Konstas, Adv. Funct. Mater. 31(2021) 2105991, https://doi.org/10.1002/adfm.202105991.J. Hou, H. Zhang, A. W. Thornton, A. J. Hill, H. Wang, K. Konstas, Adv. Funct. Mater. 31(2021) 2105991, https://doi.org/10.1002/adfm.202105991.

    12. [12]

      Q. He, N. J. Williams, J. H. Oh, V. M. Lynch, S. K. Kim, B. A. Moyer, J. L. Sessler, Angew. Chem. Int. Ed. 57(2018) 11924, https://doi.org/10.1002/anie.201805127.Q. He, N. J. Williams, J. H. Oh, V. M. Lynch, S. K. Kim, B. A. Moyer, J. L. Sessler, Angew. Chem. Int. Ed. 57(2018) 11924, https://doi.org/10.1002/anie.201805127.

    13. [13]

      Y. Zeng, W. Li, Z. Wan, S. Qin, Q. Huang, W. Cai, Q. Wang, M. Yao, Y. Zhang, Adv. Funct. Mater. 34(2024) 2400416, https://doi.org/10.1002/adfm.202400416.Y. Zeng, W. Li, Z. Wan, S. Qin, Q. Huang, W. Cai, Q. Wang, M. Yao, Y. Zhang, Adv. Funct. Mater. 34(2024) 2400416, https://doi.org/10.1002/adfm.202400416.

    14. [14]

      A. Battistel, M. S. Palagonia, D. Brogioli, F. La Mantia, R. Trócoli, Adv. Mater. 32(2020) 1905440, https://doi.org/10.1002/adma.201905440.A. Battistel, M. S. Palagonia, D. Brogioli, F. La Mantia, R. Trócoli, Adv. Mater. 32(2020) 1905440, https://doi.org/10.1002/adma.201905440.

    15. [15]

      J. F. Song, L. D. Nghiem, X.-M. Li, T. He, Environ. Sci. Water Res. Technol. 3(2017) 593, https://doi.org/10.1039/C7EW00020K.J. F. Song, L. D. Nghiem, X.-M. Li, T. He, Environ. Sci. Water Res. Technol. 3(2017) 593, https://doi.org/10.1039/C7EW00020K.

    16. [16]

      L. Baudino, C. Santos, C. F. Pirri, F. La Mantia, A. Lamberti, Adv. Sci. 9(2022) 2201380, https://doi.org/10.1002/advs.202201380.L. Baudino, C. Santos, C. F. Pirri, F. La Mantia, A. Lamberti, Adv. Sci. 9(2022) 2201380, https://doi.org/10.1002/advs.202201380.

    17. [17]

      S. Xu, J. Song, Q. Bi, Q. Chen, W.-M. Zhang, Z. Qian, L. Zhang, S. Xu, N. Tang, T. He, J. Membr. Sci. 635(2021) 119441, https://doi.org/10.1016/j.memsci.2021.119441.S. Xu, J. Song, Q. Bi, Q. Chen, W.-M. Zhang, Z. Qian, L. Zhang, S. Xu, N. Tang, T. He, J. Membr. Sci. 635(2021) 119441, https://doi.org/10.1016/j.memsci.2021.119441.

    18. [18]

      X. Li, Y. Mo, W. Qing, S. Shao, C. Y. Tang, J. Li, J. Membr. Sci. 591(2019) 117317, https://doi.org/10.1016/j.memsci.2019.117317.X. Li, Y. Mo, W. Qing, S. Shao, C. Y. Tang, J. Li, J. Membr. Sci. 591(2019) 117317, https://doi.org/10.1016/j.memsci.2019.117317.

    19. [19]

      S. Zavahir, T. Elmakki, M. Gulied, Z. Ahmad, L. Al-Sulaiti, H. K. Shon, Y. Chen, H. Park, B. Batchelor, D. S. Han, Desalination 500(2021) 114883, https://doi.org/10.1016/j.desal.2020.114883.S. Zavahir, T. Elmakki, M. Gulied, Z. Ahmad, L. Al-Sulaiti, H. K. Shon, Y. Chen, H. Park, B. Batchelor, D. S. Han, Desalination 500(2021) 114883, https://doi.org/10.1016/j.desal.2020.114883.

    20. [20]

      J. Farahbakhsh, F. Arshadi, Z. Mofidi, M. Mohseni-Dargah, C. Kök, M. Assefi, A. Soozanipour, M. Zargar, M. Asadnia, Y. Boroumand, V. Presser, A. Razmjou, Desalination 575(2024) 117249, https://doi.org/10.1016/j.desal.2023.117249.J. Farahbakhsh, F. Arshadi, Z. Mofidi, M. Mohseni-Dargah, C. Kök, M. Assefi, A. Soozanipour, M. Zargar, M. Asadnia, Y. Boroumand, V. Presser, A. Razmjou, Desalination 575(2024) 117249, https://doi.org/10.1016/j.desal.2023.117249.

    21. [21]

      H. Kanoh, K. Ooi, Y. Miyai, S. Katoh, Langmuir 7(1991) 1841, https://doi.org/10.1021/la00057a002.H. Kanoh, K. Ooi, Y. Miyai, S. Katoh, Langmuir 7(1991) 1841, https://doi.org/10.1021/la00057a002.

    22. [22]

      H. Kanoh, K. Ooi, Y. Miyai, S. Katoh, Sep. Sci. Technol. 28(1993) 643, https://doi.org/10.1080/01496399308019512.H. Kanoh, K. Ooi, Y. Miyai, S. Katoh, Sep. Sci. Technol. 28(1993) 643, https://doi.org/10.1080/01496399308019512.

    23. [23]

      M. Pasta, A. Battistel, F. La Mantia, Energy Environ. Sci. 5(2012) 9487, https://doi.org/10.1039/C2EE22977C.M. Pasta, A. Battistel, F. La Mantia, Energy Environ. Sci. 5(2012) 9487, https://doi.org/10.1039/C2EE22977C.

    24. [24]

      Z. Zhao, X. Si, X. Liu, L. He, X. Liang, Hydrometallurgy 133(2013) 75, https://doi.org/10.1016/j.hydromet.2012.11.013.Z. Zhao, X. Si, X. Liu, L. He, X. Liang, Hydrometallurgy 133(2013) 75, https://doi.org/10.1016/j.hydromet.2012.11.013.

    25. [25]

      L. Wang, K. Frisella, P. Srimuk, O. Janka, G. Kickelbick, V. Presser, Sustainable Energy Fuels 5(2021) 3124, https://doi.org/10.1039/D1SE00450F.L. Wang, K. Frisella, P. Srimuk, O. Janka, G. Kickelbick, V. Presser, Sustainable Energy Fuels 5(2021) 3124, https://doi.org/10.1039/D1SE00450F.

    26. [26]

      H. Zhang, Z. Huang, L. Zhao, Z. Guo, J. Wang, J. Liu, Y. Zhao, F. Li, P. Zhang, Z.-Y. Ji, Chem. Eng. J. 482(2024) 148802, https://doi.org/10.1016/j.cej.2024.148802.H. Zhang, Z. Huang, L. Zhao, Z. Guo, J. Wang, J. Liu, Y. Zhao, F. Li, P. Zhang, Z.-Y. Ji, Chem. Eng. J. 482(2024) 148802, https://doi.org/10.1016/j.cej.2024.148802.

    27. [27]

      X. Meng, Y. Jing, J. Li, Z. Sun, Z. Wu, Chem. Eng. Sci. 283(2024) 119400, https://doi.org/10.1016/j.ces.2023.119400.X. Meng, Y. Jing, J. Li, Z. Sun, Z. Wu, Chem. Eng. Sci. 283(2024) 119400, https://doi.org/10.1016/j.ces.2023.119400.

    28. [28]

      X. Zhao, H. Yang, Y. Wang, L. Yang, L. Zhu, Sep. Purif. Technol. 274(2021) 119078, https://doi.org/10.1016/j.seppur.2021.119078.X. Zhao, H. Yang, Y. Wang, L. Yang, L. Zhu, Sep. Purif. Technol. 274(2021) 119078, https://doi.org/10.1016/j.seppur.2021.119078.

    29. [29]

      L. L. Missoni, F. Marchini, M. Del Pozo, E. J. Calvo, J. Electrochem. Soc. 163(2016) A1898, https://doi.org/10.1149/2.0591609jes.L. L. Missoni, F. Marchini, M. Del Pozo, E. J. Calvo, J. Electrochem. Soc. 163(2016) A1898, https://doi.org/10.1149/2.0591609jes.

    30. [30]

      R. Trócoli, C. Erinmwingbovo, F. La Mantia, ChemElectroChem 4(2017) 143, https://doi.org/10.1002/celc.201600509.R. Trócoli, C. Erinmwingbovo, F. La Mantia, ChemElectroChem 4(2017) 143, https://doi.org/10.1002/celc.201600509.

    31. [31]

      M.-Y. Zhao, Z.-Y. Ji, Y.-G. Zhang, Z.-Y. Guo, Y.-Y. Zhao, J. Liu, J.-S. Yuan, Electrochim. Acta 252(2017) 350, https://doi.org/10.1016/j.electacta.2017.08.178.M.-Y. Zhao, Z.-Y. Ji, Y.-G. Zhang, Z.-Y. Guo, Y.-Y. Zhao, J. Liu, J.-S. Yuan, Electrochim. Acta 252(2017) 350, https://doi.org/10.1016/j.electacta.2017.08.178.

    32. [32]

      S. Kim, J. S. Kang, H. Joo, Y.-E. Sung, J. Yoon, Environ. Sci. Technol. 54(2020) 9044, https://doi.org/10.1021/acs.est.9b07646.S. Kim, J. S. Kang, H. Joo, Y.-E. Sung, J. Yoon, Environ. Sci. Technol. 54(2020) 9044, https://doi.org/10.1021/acs.est.9b07646.

    33. [33]

      K. Sun, M. Tebyetekerwa, X. Zeng, Z. Wang, T. T. Duignan, X. Zhang, Environ. Sci. Technol. 58(2024) 3997, https://doi.org/10.1021/acs.est.3c09111.K. Sun, M. Tebyetekerwa, X. Zeng, Z. Wang, T. T. Duignan, X. Zhang, Environ. Sci. Technol. 58(2024) 3997, https://doi.org/10.1021/acs.est.3c09111.

    34. [34]

      V. C. E. Romero, D. S. Putrino, M. Tagliazucchi, V. Flexer, E. J. Calvo, J. Electrochem. Soc. 168(2021) 020518, https://doi.org/10.1149/1945-7111/abde81.V. C. E. Romero, D. S. Putrino, M. Tagliazucchi, V. Flexer, E. J. Calvo, J. Electrochem. Soc. 168(2021) 020518, https://doi.org/10.1149/1945-7111/abde81.

    35. [35]

      H. Joo, S. Y. Jung, S. Kim, K. H. Ahn, W. S. Ryoo, J. Yoon, ACS Sustainable Chem. Eng. 8(2020) 9622, https://doi.org/10.1021/acssuschemeng.9b07427.H. Joo, S. Y. Jung, S. Kim, K. H. Ahn, W. S. Ryoo, J. Yoon, ACS Sustainable Chem. Eng. 8(2020) 9622, https://doi.org/10.1021/acssuschemeng.9b07427.

    36. [36]

      R. Trócoli, A. Battistel, F. La Mantia, ChemSusChem 8(2015) 2514, https://doi.org/10.1002/cssc.201500368.R. Trócoli, A. Battistel, F. La Mantia, ChemSusChem 8(2015) 2514, https://doi.org/10.1002/cssc.201500368.

    37. [37]

      Y. Kondo, T. Abe, Y. Yamada, ACS Appl. Mater. Interfaces 14(2022) 22706, https://doi.org/10.1021/acsami.1c21683.Y. Kondo, T. Abe, Y. Yamada, ACS Appl. Mater. Interfaces 14(2022) 22706, https://doi.org/10.1021/acsami.1c21683.

    38. [38]

      N. V. Kosova, O. A. Podgornova, Y. M. Volfkovich, V. E. Sosenkin, J. Solid State Electrochem. 25(2021) 1029, https://doi.org/10.1007/s10008-020-04877-8.N. V. Kosova, O. A. Podgornova, Y. M. Volfkovich, V. E. Sosenkin, J. Solid State Electrochem. 25(2021) 1029, https://doi.org/10.1007/s10008-020-04877-8.

    39. [39]

      Y. Zhang, C. Prehal, H. Jiang, Y. Liu, G. Feng, V. Presser, Cell Rep. Phys. Sci. 3(2022) 100689, https://doi.org/10.1016/j.xcrp.2021.100689.Y. Zhang, C. Prehal, H. Jiang, Y. Liu, G. Feng, V. Presser, Cell Rep. Phys. Sci. 3(2022) 100689, https://doi.org/10.1016/j.xcrp.2021.100689.

    40. [40]

      A. J. Bard, L. R. Faulkner, Electrochemical methods: fundamentals and applications, 2nd ed.; John Wiley & Sons: the United States of America, 2001; pp. 7–20.A. J. Bard, L. R. Faulkner, Electrochemical methods: fundamentals and applications, 2nd ed.; John Wiley & Sons: the United States of America, 2001; pp. 7–20.

    41. [41]

      P. Sebastián-Pascual, Y. Shao-Horn, M. Escudero-Escribano, Curr. Opin. Electrochem. 32(2022) 100918, https://doi.org/10.1016/j.coelec.2021.100918.P. Sebastián-Pascual, Y. Shao-Horn, M. Escudero-Escribano, Curr. Opin. Electrochem. 32(2022) 100918, https://doi.org/10.1016/j.coelec.2021.100918.

    42. [42]

      S. Fleischmann, J. B. Mitchell, R. Wang, C. Zhan, D.-E. Jiang, V. Presser, V. Augustyn, Chem. Rev. 120(2020) 6738, https://doi.org/10.1021/acs.chemrev.0c00170.S. Fleischmann, J. B. Mitchell, R. Wang, C. Zhan, D.-E. Jiang, V. Presser, V. Augustyn, Chem. Rev. 120(2020) 6738, https://doi.org/10.1021/acs.chemrev.0c00170.

    43. [43]

      S. Cui, Y. Wei, T. Liu, W. Deng, Z. Hu, Y. Su, H. Li, M. Li, H. Guo, Y. Duan, W. Wang, M. Rao, J. Zheng, X. Wang, F. Pan, Adv. Energy Mater. 6(2016) 1501309, https://doi.org/10.1002/aenm.201501309.S. Cui, Y. Wei, T. Liu, W. Deng, Z. Hu, Y. Su, H. Li, M. Li, H. Guo, Y. Duan, W. Wang, M. Rao, J. Zheng, X. Wang, F. Pan, Adv. Energy Mater. 6(2016) 1501309, https://doi.org/10.1002/aenm.201501309.

    44. [44]

      Y. Wei, J. Zheng, S. Cui, X. Song, Y. Su, W. Deng, Z. Wu, X. Wang, W. Wang, M. Rao, Y. Lin, C. Wang, K. Amine, F. Pan, J. Am. Chem. Soc. 137(2015) 8364, https://doi.org/10.1021/jacs.5b04040.Y. Wei, J. Zheng, S. Cui, X. Song, Y. Su, W. Deng, Z. Wu, X. Wang, W. Wang, M. Rao, Y. Lin, C. Wang, K. Amine, F. Pan, J. Am. Chem. Soc. 137(2015) 8364, https://doi.org/10.1021/jacs.5b04040.

    45. [45]

      Z. Chen, D. L. Danilov, R.-A. Eichel, P. H. L. Notten, Adv. Energy Mater. 12(2022) 2201506, https://doi.org/10.1002/aenm.202201506.Z. Chen, D. L. Danilov, R.-A. Eichel, P. H. L. Notten, Adv. Energy Mater. 12(2022) 2201506, https://doi.org/10.1002/aenm.202201506.

    46. [46]

      M. Weiss, R. Ruess, J. Kasnatscheew, Y. Levartovsky, N. R. Levy, P. Minnmann, L. Stolz, T. Waldmann, M. Wohlfahrt-Mehrens, D. Aurbach, M. Winter, Y. Ein-Eli, J. Janek, Adv. Energy Mater. 11(2021) 2101126, https://doi.org/10.1002/aenm.202101126.M. Weiss, R. Ruess, J. Kasnatscheew, Y. Levartovsky, N. R. Levy, P. Minnmann, L. Stolz, T. Waldmann, M. Wohlfahrt-Mehrens, D. Aurbach, M. Winter, Y. Ein-Eli, J. Janek, Adv. Energy Mater. 11(2021) 2101126, https://doi.org/10.1002/aenm.202101126.

    47. [47]

      G. Yan, M. Wang, G. T. Hill, S. Zou, C. Liu, Proc. Natl. Acad. Sci. 119(2022) e2200751119, https://doi.org/10.1073/pnas.2200751119.G. Yan, M. Wang, G. T. Hill, S. Zou, C. Liu, Proc. Natl. Acad. Sci. 119(2022) e2200751119, https://doi.org/10.1073/pnas.2200751119.

    48. [48]

      W. Xu, D. Liu, X. Liu, D. Wang, L. He, Z. Zhao, Desalination 546(2023) 116188, https://doi.org/10.1016/j.desal.2022.116188.W. Xu, D. Liu, X. Liu, D. Wang, L. He, Z. Zhao, Desalination 546(2023) 116188, https://doi.org/10.1016/j.desal.2022.116188.

    49. [49]

      Z. Zhang, J. Zhang, Z. Zhang, X. Du, X. Hao, X. An, G. Guan, J. Li, Z. Liu, Sep. Purif. Technol. 316(2023) 123777, https://doi.org/10.1016/j.seppur.2023.123777.Z. Zhang, J. Zhang, Z. Zhang, X. Du, X. Hao, X. An, G. Guan, J. Li, Z. Liu, Sep. Purif. Technol. 316(2023) 123777, https://doi.org/10.1016/j.seppur.2023.123777.

    50. [50]

      D.-F. Liu, S.-Y. Sun, J.-G. Yu, The Canadian Journal of Chemical Engineering 97(2019) 1589, https://doi.org/10.1002/cjce.23370.D.-F. Liu, S.-Y. Sun, J.-G. Yu, The Canadian Journal of Chemical Engineering 97(2019) 1589, https://doi.org/10.1002/cjce.23370.

    51. [51]

      M. S. Palagonia, D. Brogioli, F. L. Mantia, J. Electrochem. Soc. 164(2017) E586, https://doi.org/10.1149/2.1531714jes.M. S. Palagonia, D. Brogioli, F. L. Mantia, J. Electrochem. Soc. 164(2017) E586, https://doi.org/10.1149/2.1531714jes.

    52. [52]

      W.-J. Zhang, J. Power Sources 196(2011) 2962, https://doi.org/10.1016/j.jpowsour.2010.11.113.W.-J. Zhang, J. Power Sources 196(2011) 2962, https://doi.org/10.1016/j.jpowsour.2010.11.113.

    53. [53]

      S.-I. Nishimura, G. Kobayashi, K. Ohoyama, R. Kanno, M. Yashima, A. Yamada, Nat. Mater. 7(2008) 707, https://doi.org/10.1038/nmat2251.S.-I. Nishimura, G. Kobayashi, K. Ohoyama, R. Kanno, M. Yashima, A. Yamada, Nat. Mater. 7(2008) 707, https://doi.org/10.1038/nmat2251.

    54. [54]

      H. Zhang, Z. Zou, S. Zhang, J. Liu, S. Zhong, Int. J. Electrochem. Sci. 15(2020) 12041, https://doi.org/10.20964/2020.12.71.H. Zhang, Z. Zou, S. Zhang, J. Liu, S. Zhong, Int. J. Electrochem. Sci. 15(2020) 12041, https://doi.org/10.20964/2020.12.71.

    55. [55]

      D. Morgan, A. Van Der Ven, G. Ceder, Electrochem. Solid-State Lett. 7(2004) A30, https://doi.org/10.1149/1.1633511.D. Morgan, A. Van Der Ven, G. Ceder, Electrochem. Solid-State Lett. 7(2004) A30, https://doi.org/10.1149/1.1633511.

    56. [56]

      M. S. Islam, D. J. Driscoll, C. a. J. Fisher, P. R. Slater, Chem. Mater. 17(2005) 5085, https://doi.org/10.1021/cm050999v.M. S. Islam, D. J. Driscoll, C. a. J. Fisher, P. R. Slater, Chem. Mater. 17(2005) 5085, https://doi.org/10.1021/cm050999v.

    57. [57]

      Y. Zou, S. Chen, X. Yang, N. Ma, Y. Xia, D. Yang, S. Guo, Adv. Energy Mater. 6(2016) 1601549, https://doi.org/10.1002/aenm.201601549.Y. Zou, S. Chen, X. Yang, N. Ma, Y. Xia, D. Yang, S. Guo, Adv. Energy Mater. 6(2016) 1601549, https://doi.org/10.1002/aenm.201601549.

    58. [58]

      C. a. J. Fisher, V. M. Hart Prieto, M. S. Islam, Chem. Mater. 20(2008) 5907, https://doi.org/10.1021/cm801262x.C. a. J. Fisher, V. M. Hart Prieto, M. S. Islam, Chem. Mater. 20(2008) 5907, https://doi.org/10.1021/cm801262x.

    59. [59]

      J. Yang, J. S. Tse, The Journal of Physical Chemistry A 115(2011) 13045, https://doi.org/10.1021/jp205057d.J. Yang, J. S. Tse, The Journal of Physical Chemistry A 115(2011) 13045, https://doi.org/10.1021/jp205057d.

    60. [60]

      S. Zhou, P. Wang, S. Tang, J. Zhang, S. Gu, J. Yu, Desalination 592(2024) 118153, https://doi.org/10.1016/j.desal.2024.118153.S. Zhou, P. Wang, S. Tang, J. Zhang, S. Gu, J. Yu, Desalination 592(2024) 118153, https://doi.org/10.1016/j.desal.2024.118153.

    61. [61]

      M. Du, J.-Z. Guo, S.-H. Zheng, Y. Liu, J.-L. Yang, K.-Y. Zhang, Z.-Y. Gu, X.-T. Wang, X.-L. Wu, Chin. Chem. Lett. 34(2023) 107706, https://doi.org/10.1016/j.cclet.2022.07.049.M. Du, J.-Z. Guo, S.-H. Zheng, Y. Liu, J.-L. Yang, K.-Y. Zhang, Z.-Y. Gu, X.-T. Wang, X.-L. Wu, Chin. Chem. Lett. 34(2023) 107706, https://doi.org/10.1016/j.cclet.2022.07.049.

    62. [62]

      A. Urban, D.-H. Seo, G. Ceder, npj Comput. Mater. 2(2016) 16002, https://doi.org/10.1038/npjcompumats.2016.2.A. Urban, D.-H. Seo, G. Ceder, npj Comput. Mater. 2(2016) 16002, https://doi.org/10.1038/npjcompumats.2016.2.

    63. [63]

      C. Liu, Z. G. Neale, G. Cao, Mater. Today 19(2016) 109, https://doi.org/10.1016/j.mattod.2015.10.009.C. Liu, Z. G. Neale, G. Cao, Mater. Today 19(2016) 109, https://doi.org/10.1016/j.mattod.2015.10.009.

    64. [64]

      A. Van Der Ven, J. Bhattacharya, A. A. Belak, Acc. Chem. Res. 46(2013) 1216, https://doi.org/10.1021/ar200329r.A. Van Der Ven, J. Bhattacharya, A. A. Belak, Acc. Chem. Res. 46(2013) 1216, https://doi.org/10.1021/ar200329r.

    65. [65]

      C. Delmas, M. Maccario, L. Croguennec, F. Le Cras, F. Weill, Nat. Mater. 7(2008) 665, https://doi.org/10.1038/nmat2230.C. Delmas, M. Maccario, L. Croguennec, F. Le Cras, F. Weill, Nat. Mater. 7(2008) 665, https://doi.org/10.1038/nmat2230.

    66. [66]

      C. Delacourt, P. Poizot, J.-M. Tarascon, C. Masquelier, Nat. Mater. 4(2005) 254, https://doi.org/10.1038/nmat1335.C. Delacourt, P. Poizot, J.-M. Tarascon, C. Masquelier, Nat. Mater. 4(2005) 254, https://doi.org/10.1038/nmat1335.

    67. [67]

      G. Kobayashi, S.-I. Nishimura, M.-S. Park, R. Kanno, M. Yashima, T. Ida, A. Yamada, Adv. Funct. Mater. 19(2009) 395, https://doi.org/10.1002/adfm.200801522.G. Kobayashi, S.-I. Nishimura, M.-S. Park, R. Kanno, M. Yashima, T. Ida, A. Yamada, Adv. Funct. Mater. 19(2009) 395, https://doi.org/10.1002/adfm.200801522.

    68. [68]

      N. Sharma, X. Guo, G. Du, Z. Guo, J. Wang, Z. Wang, V. K. Peterson, J. Am. Chem. Soc. 134(2012) 7867, https://doi.org/10.1021/ja301187u.N. Sharma, X. Guo, G. Du, Z. Guo, J. Wang, Z. Wang, V. K. Peterson, J. Am. Chem. Soc. 134(2012) 7867, https://doi.org/10.1021/ja301187u.

    69. [69]

      H. Liu, F. C. Strobridge, O. J. Borkiewicz, K. M. Wiaderek, K. W. Chapman, P. J. Chupas, C. P. Grey, Science 344(2014) 1252817, https://doi.org/10.1126/science.1252817.H. Liu, F. C. Strobridge, O. J. Borkiewicz, K. M. Wiaderek, K. W. Chapman, P. J. Chupas, C. P. Grey, Science 344(2014) 1252817, https://doi.org/10.1126/science.1252817.

    70. [70]

      P. Gibot, M. Casas-Cabanas, L. Laffont, S. Levasseur, P. Carlach, S. Hamelet, J.-M. Tarascon, C. Masquelier, Nat. Mater. 7(2008) 741, https://doi.org/10.1038/nmat2245.P. Gibot, M. Casas-Cabanas, L. Laffont, S. Levasseur, P. Carlach, S. Hamelet, J.-M. Tarascon, C. Masquelier, Nat. Mater. 7(2008) 741, https://doi.org/10.1038/nmat2245.

    71. [71]

      J. Lu, S. C. Chung, S.-I. Nishimura, A. Yamada, Chem. Mater. 25(2013) 4557, https://doi.org/10.1021/cm402617b.J. Lu, S. C. Chung, S.-I. Nishimura, A. Yamada, Chem. Mater. 25(2013) 4557, https://doi.org/10.1021/cm402617b.

    72. [72]

      Z.-W. Zhao, X.-F. Si, X.-X. Liang, X.-H. Liu, L.-H. He, Transactions of Nonferrous Metals Society of China 23(2013) 1157, https://doi.org/10.1016/S1003-6326(13)62578-9.Z.-W. Zhao, X.-F. Si, X.-X. Liang, X.-H. Liu, L.-H. He, Transactions of Nonferrous Metals Society of China 23(2013) 1157, https://doi.org/10.1016/S1003-6326(13)62578-9.

    73. [73]

      S. P. Ong, V. L. Chevrier, G. Hautier, A. Jain, C. Moore, S. Kim, X. Ma, G. Ceder, Energy Environ. Sci. 4(2011) 3680, https://doi.org/10.1039/C1EE01782A.S. P. Ong, V. L. Chevrier, G. Hautier, A. Jain, C. Moore, S. Kim, X. Ma, G. Ceder, Energy Environ. Sci. 4(2011) 3680, https://doi.org/10.1039/C1EE01782A.

    74. [74]

      T. Zhang, D. Li, Z. Tao, J. Chen, Prog. Nat. Sci.: Mater. Int. 23(2013) 256, https://doi.org/10.1016/j.pnsc.2013.04.005.T. Zhang, D. Li, Z. Tao, J. Chen, Prog. Nat. Sci.: Mater. Int. 23(2013) 256, https://doi.org/10.1016/j.pnsc.2013.04.005.

    75. [75]

      Y. Huang, Y. Dong, S. Li, J. Lee, C. Wang, Z. Zhu, W. Xue, Y. Li, J. Li, Adv. Energy Mater. 11(2021) 2000997, https://doi.org/10.1002/aenm.202000997.Y. Huang, Y. Dong, S. Li, J. Lee, C. Wang, Z. Zhu, W. Xue, Y. Li, J. Li, Adv. Energy Mater. 11(2021) 2000997, https://doi.org/10.1002/aenm.202000997.

    76. [76]

      R. A. House, G. J. Rees, M. A. Pérez-Osorio, J.-J. Marie, E. Boivin, A. W. Robertson, A. Nag, M. Garcia-Fernandez, K.-J. Zhou, P. G. Bruce, Nat. Energy 5(2020) 777, https://doi.org/10.1038/s41560-020-00697-2.R. A. House, G. J. Rees, M. A. Pérez-Osorio, J.-J. Marie, E. Boivin, A. W. Robertson, A. Nag, M. Garcia-Fernandez, K.-J. Zhou, P. G. Bruce, Nat. Energy 5(2020) 777, https://doi.org/10.1038/s41560-020-00697-2.

    77. [77]

      W. Xu, L. He, Z. Zhao, Desalination 503(2021) 114935, https://doi.org/10.1016/j.desal.2021.114935.W. Xu, L. He, Z. Zhao, Desalination 503(2021) 114935, https://doi.org/10.1016/j.desal.2021.114935.

    78. [78]

      J. Rodríguez-Carvajal, G. Rousse, C. Masquelier, M. Hervieu, Phys. Rev. Lett. 81(1998) 4660, https://doi.org/10.1103/PhysRevLett.81.4660.J. Rodríguez-Carvajal, G. Rousse, C. Masquelier, M. Hervieu, Phys. Rev. Lett. 81(1998) 4660, https://doi.org/10.1103/PhysRevLett.81.4660.

    79. [79]

      S. Liu, B. Wang, X. Zhang, S. Zhao, Z. Zhang, H. Yu, Matter 4(2021) 1511, https://doi.org/10.1016/j.matt.2021.02.023.S. Liu, B. Wang, X. Zhang, S. Zhao, Z. Zhang, H. Yu, Matter 4(2021) 1511, https://doi.org/10.1016/j.matt.2021.02.023.

    80. [80]

      M. A. Halcrow, Chem. Soc. Rev. 42(2013) 1784, https://doi.org/10.1039/C2CS35253B.M. A. Halcrow, Chem. Soc. Rev. 42(2013) 1784, https://doi.org/10.1039/C2CS35253B.

    81. [81]

      J. B. Goodenough, K.-S. Park, J. Am. Chem. Soc. 135(2013) 1167, https://doi.org/10.1021/ja3091438.J. B. Goodenough, K.-S. Park, J. Am. Chem. Soc. 135(2013) 1167, https://doi.org/10.1021/ja3091438.

    82. [82]

      J. Ren, H. Zhu, Y. Fang, W. Li, S. Lan, S. Wei, Z. Yin, Y. Tang, Y. Ren, Q. Liu, Carbon Neutralization 2(2023) 339, https://doi.org/10.1002/cnl2.62.J. Ren, H. Zhu, Y. Fang, W. Li, S. Lan, S. Wei, Z. Yin, Y. Tang, Y. Ren, Q. Liu, Carbon Neutralization 2(2023) 339, https://doi.org/10.1002/cnl2.62.

    83. [83]

      M. Okubo, Y. Mizuno, H. Yamada, J. Kim, E. Hosono, H. Zhou, T. Kudo, I. Honma, ACS Nano 4(2010) 741, https://doi.org/10.1021/nn9012065.M. Okubo, Y. Mizuno, H. Yamada, J. Kim, E. Hosono, H. Zhou, T. Kudo, I. Honma, ACS Nano 4(2010) 741, https://doi.org/10.1021/nn9012065.

    84. [84]

      T. Liu, A. Dai, J. Lu, Y. Yuan, Y. Xiao, L. Yu, M. Li, J. Gim, L. Ma, J. Liu, C. Zhan, L. Li, J. Zheng, Y. Ren, T. Wu, R. Shahbazian-Yassar, J. Wen, F. Pan, K. Amine, Nat. Commun. 10(2019) 4721, https://doi.org/10.1038/s41467-019-12626-3.T. Liu, A. Dai, J. Lu, Y. Yuan, Y. Xiao, L. Yu, M. Li, J. Gim, L. Ma, J. Liu, C. Zhan, L. Li, J. Zheng, Y. Ren, T. Wu, R. Shahbazian-Yassar, J. Wen, F. Pan, K. Amine, Nat. Commun. 10(2019) 4721, https://doi.org/10.1038/s41467-019-12626-3.

    85. [85]

      P. Wang, S. Zhou, Y. Fu, H. Fang, S. Gu, J. Yu, Desalination 581(2024) 117618, https://doi.org/10.1016/j.desal.2024.117618.P. Wang, S. Zhou, Y. Fu, H. Fang, S. Gu, J. Yu, Desalination 581(2024) 117618, https://doi.org/10.1016/j.desal.2024.117618.

    86. [86]

      J. Yu, D. Fang, H. Zhang, Z. Y. Leong, J. Zhang, X. Li, H. Y. Yang, ACS Mater. Lett. 2(2020) 1662, https://doi.org/10.1021/acsmaterialslett.0c00385.J. Yu, D. Fang, H. Zhang, Z. Y. Leong, J. Zhang, X. Li, H. Y. Yang, ACS Mater. Lett. 2(2020) 1662, https://doi.org/10.1021/acsmaterialslett.0c00385.

    87. [87]

      M. D. Radin, S. Hy, M. Sina, C. Fang, H. Liu, J. Vinckeviciute, M. Zhang, M. S. Whittingham, Y. S. Meng, A. Van Der Ven, Adv. Energy Mater. 7(2017) 1602888, https://doi.org/10.1002/aenm.201602888.M. D. Radin, S. Hy, M. Sina, C. Fang, H. Liu, J. Vinckeviciute, M. Zhang, M. S. Whittingham, Y. S. Meng, A. Van Der Ven, Adv. Energy Mater. 7(2017) 1602888, https://doi.org/10.1002/aenm.201602888.

    88. [88]

      K. Kang, Y. S. Meng, J. Bréger, C. P. Grey, G. Ceder, Science 311(2006) 977, https://doi.org/10.1126/science.1122152.K. Kang, Y. S. Meng, J. Bréger, C. P. Grey, G. Ceder, Science 311(2006) 977, https://doi.org/10.1126/science.1122152.

    89. [89]

      J. U. Choi, N. Voronina, Y.-K. Sun, S.-T. Myung, Adv. Energy Mater. 10(2020) 2002027, https://doi.org/10.1002/aenm.202002027.J. U. Choi, N. Voronina, Y.-K. Sun, S.-T. Myung, Adv. Energy Mater. 10(2020) 2002027, https://doi.org/10.1002/aenm.202002027.

    90. [90]

      Z. Xu, K. Song, X. Chang, L. Li, W. Zhang, Y. Xue, J. Zhang, D. Lin, Z. Liu, Q. Wang, Y. Yu, C. Yang, Carbon Neutralization 3(2024) 832, https://doi.org/10.1002/cnl2.162.Z. Xu, K. Song, X. Chang, L. Li, W. Zhang, Y. Xue, J. Zhang, D. Lin, Z. Liu, Q. Wang, Y. Yu, C. Yang, Carbon Neutralization 3(2024) 832, https://doi.org/10.1002/cnl2.162.

    91. [91]

      C. Zhao, C. Wang, X. Liu, I. Hwang, T. Li, X. Zhou, J. Diao, J. Deng, Y. Qin, Z. Yang, G. Wang, W. Xu, C. Sun, L. Wu, W. Cha, I. Robinson, R. Harder, Y. Jiang, T. Bicer, J.-T. Li, W. Lu, L. Li, Y. Liu, S.-G. Sun, G.-L. Xu, K. Amine, Nat. Energy 9(2024) 345, https://doi.org/10.1038/s41560-024-01465-2.C. Zhao, C. Wang, X. Liu, I. Hwang, T. Li, X. Zhou, J. Diao, J. Deng, Y. Qin, Z. Yang, G. Wang, W. Xu, C. Sun, L. Wu, W. Cha, I. Robinson, R. Harder, Y. Jiang, T. Bicer, J.-T. Li, W. Lu, L. Li, Y. Liu, S.-G. Sun, G.-L. Xu, K. Amine, Nat. Energy 9(2024) 345, https://doi.org/10.1038/s41560-024-01465-2.

    92. [92]

      H.-H. Ryu, K.-J. Park, C. S. Yoon, Y.-K. Sun, Chem. Mater. 30(2018) 1155, https://doi.org/10.1021/acs.chemmater.7b05269.H.-H. Ryu, K.-J. Park, C. S. Yoon, Y.-K. Sun, Chem. Mater. 30(2018) 1155, https://doi.org/10.1021/acs.chemmater.7b05269.

    93. [93]

      D. Goonetilleke, N. Sharma, W. K. Pang, V. K. Peterson, R. Petibon, J. Li, J. R. Dahn, Chem. Mater. 31(2019) 376, https://doi.org/10.1021/acs.chemmater.8b03525.D. Goonetilleke, N. Sharma, W. K. Pang, V. K. Peterson, R. Petibon, J. Li, J. R. Dahn, Chem. Mater. 31(2019) 376, https://doi.org/10.1021/acs.chemmater.8b03525.

    94. [94]

      C. P. Lawagon, G. M. Nisola, R. a. I. Cuevas, R. E. C. Torrejos, H. Kim, S.-P. Lee, W.-J. Chung, Sep. Purif. Technol. 212(2019) 416, https://doi.org/10.1016/j.seppur.2018.11.046.C. P. Lawagon, G. M. Nisola, R. a. I. Cuevas, R. E. C. Torrejos, H. Kim, S.-P. Lee, W.-J. Chung, Sep. Purif. Technol. 212(2019) 416, https://doi.org/10.1016/j.seppur.2018.11.046.

    95. [95]

      X. Zhao, M. Feng, Y. Jiao, Y. Zhang, Y. Wang, Z. Sha, Desalination 481(2020) 114360, https://doi.org/10.1016/j.desal.2020.114360.X. Zhao, M. Feng, Y. Jiao, Y. Zhang, Y. Wang, Z. Sha, Desalination 481(2020) 114360, https://doi.org/10.1016/j.desal.2020.114360.

    96. [96]

      C. P. Lawagon, G. M. Nisola, R. a. I. Cuevas, H. Kim, S.-P. Lee, W.-J. Chung, Chem. Eng. J. 348(2018) 1000, https://doi.org/10.1016/j.cej.2018.05.030.C. P. Lawagon, G. M. Nisola, R. a. I. Cuevas, H. Kim, S.-P. Lee, W.-J. Chung, Chem. Eng. J. 348(2018) 1000, https://doi.org/10.1016/j.cej.2018.05.030.

    97. [97]

      L. Britala, M. Marinaro, G. Kucinskis, J. Energy Storage 73(2023) 108875, https://doi.org/10.1016/j.est.2023.108875.L. Britala, M. Marinaro, G. Kucinskis, J. Energy Storage 73(2023) 108875, https://doi.org/10.1016/j.est.2023.108875.

    98. [98]

      M. Jiang, P. Wang, Q. Chen, Y. Zhang, Q. Wu, L. Tan, T. Ning, L. Li, K. Zou, Chin. Chem. Lett. 36(2025) 110040, https://doi.org/10.1016/j.cclet.2024.110040.M. Jiang, P. Wang, Q. Chen, Y. Zhang, Q. Wu, L. Tan, T. Ning, L. Li, K. Zou, Chin. Chem. Lett. 36(2025) 110040, https://doi.org/10.1016/j.cclet.2024.110040.

    99. [99]

      W. Lin, W. Bao, J. Cai, X. Cai, H. Zhao, Y. Zhang, Y. Deng, S. Yang, Z. Zhou, Z. Liu, J. Xie, Appl. Surf. Sci. 615(2023) 156278, https://doi.org/10.1016/j.apsusc.2022.156278.W. Lin, W. Bao, J. Cai, X. Cai, H. Zhao, Y. Zhang, Y. Deng, S. Yang, Z. Zhou, Z. Liu, J. Xie, Appl. Surf. Sci. 615(2023) 156278, https://doi.org/10.1016/j.apsusc.2022.156278.

    100. [100]

      M. Yang, L. Chen, H. Li, F. Wu, Energy Mater. Adv. 2022(2022) 9842651, https://doi.org/10.34133/2022/9842651.M. Yang, L. Chen, H. Li, F. Wu, Energy Mater. Adv. 2022(2022) 9842651, https://doi.org/10.34133/2022/9842651.

    101. [101]

      D. Tao, S. Wang, Y. Liu, Y. Dai, J. Yu, X. Lei, Ionics 21(2015) 1201, https://doi.org/10.1007/s11581-015-1405-3.D. Tao, S. Wang, Y. Liu, Y. Dai, J. Yu, X. Lei, Ionics 21(2015) 1201, https://doi.org/10.1007/s11581-015-1405-3.

    102. [102]

      X.-F. Sun, Y.-L. Xu, X.-Y. Zheng, X.-F. Meng, P. Ding, H. Ren, L. Li, Acta Phys. Chim. Sin. 31(2015) 1513, https://doi.org/10.3866/pku.Whxb201506082.X.-F. Sun, Y.-L. Xu, X.-Y. Zheng, X.-F. Meng, P. Ding, H. Ren, L. Li, Acta Phys. Chim. Sin. 31(2015) 1513, https://doi.org/10.3866/pku.Whxb201506082.

    103. [103]

      C. Ahmani Ferdi, M. Belaiche, E. Iffer, J. Solid State Electrochem. 25(2021) 301, https://doi.org/10.1007/s10008-020-04808-7.C. Ahmani Ferdi, M. Belaiche, E. Iffer, J. Solid State Electrochem. 25(2021) 301, https://doi.org/10.1007/s10008-020-04808-7.

    104. [104]

      X. Rui, Q. Yan, M. Skyllas-Kazacos, T. M. Lim, J. Power Sources 258(2014) 19, https://doi.org/10.1016/j.jpowsour.2014.01.126.X. Rui, Q. Yan, M. Skyllas-Kazacos, T. M. Lim, J. Power Sources 258(2014) 19, https://doi.org/10.1016/j.jpowsour.2014.01.126.

    105. [105]

      J. Zhou, S. Xiang, X. Wang, D.-M. Shin, H. Zhou, Chem. Eng. J. 482(2024) 148985, https://doi.org/10.1016/j.cej.2024.148985.J. Zhou, S. Xiang, X. Wang, D.-M. Shin, H. Zhou, Chem. Eng. J. 482(2024) 148985, https://doi.org/10.1016/j.cej.2024.148985.

    106. [106]

      A. Gao, X. Hou, Z. Sun, S. Li, H. Li, J. Zhang, J. Mater. Chem. A 7(2019) 20878, https://doi.org/10.1039/C9TA06080D.A. Gao, X. Hou, Z. Sun, S. Li, H. Li, J. Zhang, J. Mater. Chem. A 7(2019) 20878, https://doi.org/10.1039/C9TA06080D.

    107. [107]

      S. C. Yin, H. Grondey, P. Strobel, M. Anne, L. F. Nazar, J. Am. Chem. Soc. 125(2003) 10402, https://doi.org/10.1021/ja034565h.S. C. Yin, H. Grondey, P. Strobel, M. Anne, L. F. Nazar, J. Am. Chem. Soc. 125(2003) 10402, https://doi.org/10.1021/ja034565h.

    108. [108]

      J. Gaubicher, C. Wurm, G. Goward, C. Masquelier, L. Nazar, Chem. Mater. 12(2000) 3240, https://doi.org/10.1021/cm000345g.J. Gaubicher, C. Wurm, G. Goward, C. Masquelier, L. Nazar, Chem. Mater. 12(2000) 3240, https://doi.org/10.1021/cm000345g.

    109. [109]

      J. Zhang, J. Shen, H. Chu, Y. Xie, Z. Jiang, D. Gao, T. Deng, X. Yu, Chem. Eng. J. 516(2025) 164011, https://doi.org/10.1016/j.cej.2025.164011.J. Zhang, J. Shen, H. Chu, Y. Xie, Z. Jiang, D. Gao, T. Deng, X. Yu, Chem. Eng. J. 516(2025) 164011, https://doi.org/10.1016/j.cej.2025.164011.

    110. [110]

      J. Zhou, Y. Xu, D.-M. Shin, H. Zhou, Desalination 600(2025) 118530, https://doi.org/10.1016/j.desal.2025.118530.J. Zhou, Y. Xu, D.-M. Shin, H. Zhou, Desalination 600(2025) 118530, https://doi.org/10.1016/j.desal.2025.118530.

    111. [111]

      A. Gao, Z. Sun, S. Li, X. Hou, H. Li, Q. Wu, X. Xi, Dalton Trans. 47(2018) 3864, https://doi.org/10.1039/C8DT00033F.A. Gao, Z. Sun, S. Li, X. Hou, H. Li, Q. Wu, X. Xi, Dalton Trans. 47(2018) 3864, https://doi.org/10.1039/C8DT00033F.

    112. [112]

      Y. Tu, Z. Zhou, W. Wei, L. Guan, Y. Liu, Z. Xu, H. Liu, Z. Liu, Chem. Eng. J. 503(2025) 158533, https://doi.org/10.1016/j.cej.2024.158533.Y. Tu, Z. Zhou, W. Wei, L. Guan, Y. Liu, Z. Xu, H. Liu, Z. Liu, Chem. Eng. J. 503(2025) 158533, https://doi.org/10.1016/j.cej.2024.158533.

    113. [113]

      Y. Zhang, H. Xing, Q. Meng, Q. Liu, H. Liu, L. Yang, Sep. Purif. Technol. 348(2024) 127739, https://doi.org/10.1016/j.seppur.2024.127739.Y. Zhang, H. Xing, Q. Meng, Q. Liu, H. Liu, L. Yang, Sep. Purif. Technol. 348(2024) 127739, https://doi.org/10.1016/j.seppur.2024.127739.

    114. [114]

      F. Qian, B. Zhao, M. Guo, Z. Qian, Z. Wu, Z. Liu, Mater. Des. 194(2020) 108867, https://doi.org/10.1016/j.matdes.2020.108867.F. Qian, B. Zhao, M. Guo, Z. Qian, Z. Wu, Z. Liu, Mater. Des. 194(2020) 108867, https://doi.org/10.1016/j.matdes.2020.108867.

    115. [115]

      H. Zhan, Y. Qiao, Z. Qian, B. Lv, Z. Wu, Z. Liu, Chem. Eng. J. 497(2024) 154859, https://doi.org/10.1016/j.cej.2024.154859.H. Zhan, Y. Qiao, Z. Qian, B. Lv, Z. Wu, Z. Liu, Chem. Eng. J. 497(2024) 154859, https://doi.org/10.1016/j.cej.2024.154859.

    116. [116]

      H. Zhan, Y. Qiao, Z. Qian, J. Li, Z. Wu, X. Hao, Z. Liu, J. Ind. Eng. Chem. 114(2022) 142, https://doi.org/10.1016/j.jiec.2022.07.003.H. Zhan, Y. Qiao, Z. Qian, J. Li, Z. Wu, X. Hao, Z. Liu, J. Ind. Eng. Chem. 114(2022) 142, https://doi.org/10.1016/j.jiec.2022.07.003.

    117. [117]

      R. Trócoli, A. Battistel, F. L. Mantia, Chemistry – A European Journal 20(2014) 9888, https://doi.org/10.1002/chem.201403535.R. Trócoli, A. Battistel, F. L. Mantia, Chemistry – A European Journal 20(2014) 9888, https://doi.org/10.1002/chem.201403535.

    118. [118]

      C. Liu, R. Massé, X. Nan, G. Cao, Energy Storage Mater. 4(2016) 15, https://doi.org/10.1016/j.ensm.2016.02.002.C. Liu, R. Massé, X. Nan, G. Cao, Energy Storage Mater. 4(2016) 15, https://doi.org/10.1016/j.ensm.2016.02.002.

    119. [119]

      P.-C. Tsai, B. Wen, M. Wolfman, M.-J. Choe, M. S. Pan, L. Su, K. Thornton, J. Cabana, Y.-M. Chiang, Energy Environ. Sci. 11(2018) 860, https://doi.org/10.1039/C8EE00001H.P.-C. Tsai, B. Wen, M. Wolfman, M.-J. Choe, M. S. Pan, L. Su, K. Thornton, J. Cabana, Y.-M. Chiang, Energy Environ. Sci. 11(2018) 860, https://doi.org/10.1039/C8EE00001H.

    120. [120]

      M. Park, X. Zhang, M. Chung, G. B. Less, A. M. Sastry, J. Power Sources 195(2010) 7904, https://doi.org/10.1016/j.jpowsour.2010.06.060.M. Park, X. Zhang, M. Chung, G. B. Less, A. M. Sastry, J. Power Sources 195(2010) 7904, https://doi.org/10.1016/j.jpowsour.2010.06.060.

    121. [121]

      M. M. Thackeray, K. Amine, Nat. Energy 6 (2021) 566, https://doi.org/10.1038/s41560-021-00815-8.M. M. Thackeray, K. Amine, Nat. Energy 6 (2021) 566, https://doi.org/10.1038/s41560-021-00815-8.

    122. [122]

      M. M. Thackeray, K. Amine, Nat. Energy 6 (2021) 933, https://doi.org/10.1038/s41560-021-00860-3.M. M. Thackeray, K. Amine, Nat. Energy 6 (2021) 933, https://doi.org/10.1038/s41560-021-00860-3.

    123. [123]

      J. Li, Z.-F. Ma, Chem 5 (2019) 3, https://doi.org/10.1016/j.chempr.2018.12.012.J. Li, Z.-F. Ma, Chem 5 (2019) 3, https://doi.org/10.1016/j.chempr.2018.12.012.

    124. [124]

      W. Zhu, W. Xu, D. Liu, L. He, X. Liu, Z. Zhao, Electrochim. Acta 475 (2024) 143519, https://doi.org/10.1016/j.electacta.2023.143519.W. Zhu, W. Xu, D. Liu, L. He, X. Liu, Z. Zhao, Electrochim. Acta 475 (2024) 143519, https://doi.org/10.1016/j.electacta.2023.143519.

    125. [125]

      P. Wang, S. Zhou, X. Yao, Y. Fu, S. Gu, J. Yu, Sep. Purif. Technol. 357 (2025) 130184, https://doi.org/10.1016/j.seppur.2024.130184.P. Wang, S. Zhou, X. Yao, Y. Fu, S. Gu, J. Yu, Sep. Purif. Technol. 357 (2025) 130184, https://doi.org/10.1016/j.seppur.2024.130184.

    126. [126]

      J. Gu, G. Zhou, L. Chen, X. Li, G. Luo, L. Fan, Y. Chao, H. Ji, W. Zhu, J. Electroanal. Chem. 940 (2023) 117487, https://doi.org/10.1016/j.jelechem.2023.117487.J. Gu, G. Zhou, L. Chen, X. Li, G. Luo, L. Fan, Y. Chao, H. Ji, W. Zhu, J. Electroanal. Chem. 940 (2023) 117487, https://doi.org/10.1016/j.jelechem.2023.117487.

    127. [127]

      D. Liu, W. Xu, J. Xiong, L. He, Z. Zhao, Sep. Purif. Technol. 270 (2021) 118809, https://doi.org/10.1016/j.seppur.2021.118809.D. Liu, W. Xu, J. Xiong, L. He, Z. Zhao, Sep. Purif. Technol. 270 (2021) 118809, https://doi.org/10.1016/j.seppur.2021.118809.

    128. [128]

      Z.-Y. Guo, Z.-Y. Ji, H.-Y. Chen, J. Liu, Y.-Y. Zhao, F. Li, J.-S. Yuan, ACS Sustainable Chem. Eng. 8 (2020) 11834, https://doi.org/10.1021/acssuschemeng.0c04359.Z.-Y. Guo, Z.-Y. Ji, H.-Y. Chen, J. Liu, Y.-Y. Zhao, F. Li, J.-S. Yuan, ACS Sustainable Chem. Eng. 8 (2020) 11834, https://doi.org/10.1021/acssuschemeng.0c04359.

    129. [129]

      Z.-Y. Guo, Z.-Y. Ji, J. Wang, H.-Y. Chen, J. Liu, Y.-Y. Zhao, F. Li, J.-S. Yuan, Sep. Purif. Technol. 259 (2021) 118154, https://doi.org/10.1016/j.seppur.2020.118154.Z.-Y. Guo, Z.-Y. Ji, J. Wang, H.-Y. Chen, J. Liu, Y.-Y. Zhao, F. Li, J.-S. Yuan, Sep. Purif. Technol. 259 (2021) 118154, https://doi.org/10.1016/j.seppur.2020.118154.

    130. [130]

      H. Zhan, Z. Qian, Y. Qiao, B. Lv, R. Liu, H. Chen, Z. Liu, ACS Nano 18 (2024) 31204, https://doi.org/10.1021/acsnano.4c09379.H. Zhan, Z. Qian, Y. Qiao, B. Lv, R. Liu, H. Chen, Z. Liu, ACS Nano 18 (2024) 31204, https://doi.org/10.1021/acsnano.4c09379.

    131. [131]

      L. He, W. Xu, Y. Song, Y. Luo, X. Liu, Z. Zhao, Global Challenges 2 (2018) 1700079, https://doi.org/10.1002/gch2.201700079.L. He, W. Xu, Y. Song, Y. Luo, X. Liu, Z. Zhao, Global Challenges 2 (2018) 1700079, https://doi.org/10.1002/gch2.201700079.

    132. [132]

      J. Xiong, L. He, Z. Zhao, Desalination 535 (2022) 115822, https://doi.org/10.1016/j.desal.2022.115822.J. Xiong, L. He, Z. Zhao, Desalination 535 (2022) 115822, https://doi.org/10.1016/j.desal.2022.115822.

    133. [133]

      L. Wang, Y. Zhou, W. Chen, J.-L. Jiang, Z.-H. Guo, Sep. Purif. Technol. 306 (2023) 122605, https://doi.org/10.1016/j.seppur.2022.122605.L. Wang, Y. Zhou, W. Chen, J.-L. Jiang, Z.-H. Guo, Sep. Purif. Technol. 306 (2023) 122605, https://doi.org/10.1016/j.seppur.2022.122605.

    134. [134]

      Z. Huang, W. Xu, Z. Zhao, D. Liu, L. He, X. Liu, Chem. Eng. J. 467 (2023) 143247, https://doi.org/10.1016/j.cej.2023.143247.Z. Huang, W. Xu, Z. Zhao, D. Liu, L. He, X. Liu, Chem. Eng. J. 467 (2023) 143247, https://doi.org/10.1016/j.cej.2023.143247.

    135. [135]

      S. Sun, X. Yu, M. Li, J. Duo, Y. Guo, T. Deng, J. Cleaner Prod. 247 (2020) 119178, https://doi.org/10.1016/j.jclepro.2019.119178.S. Sun, X. Yu, M. Li, J. Duo, Y. Guo, T. Deng, J. Cleaner Prod. 247 (2020) 119178, https://doi.org/10.1016/j.jclepro.2019.119178.

    136. [136]

      J. Yang, X. Shang, B. Hu, B. Zhang, Y. Wang, J. Yang, J. Liu, J. Solid State Electrochem. 27 (2023) 2029, https://doi.org/10.1007/s10008-023-05461-6.J. Yang, X. Shang, B. Hu, B. Zhang, Y. Wang, J. Yang, J. Liu, J. Solid State Electrochem. 27 (2023) 2029, https://doi.org/10.1007/s10008-023-05461-6.

    137. [137]

      X. Zhao, Y. Gong, K. Gao, Y. Wang, H. Y. Yang, Chem. Eng. J. 474 (2023) 145975, https://doi.org/10.1016/j.cej.2023.145975.X. Zhao, Y. Gong, K. Gao, Y. Wang, H. Y. Yang, Chem. Eng. J. 474 (2023) 145975, https://doi.org/10.1016/j.cej.2023.145975.

    138. [138]

      G. Tan, S. Wan, J.-J. Chen, H.-Q. Yu, Y. Yu, Adv. Mater. 36 (2024) 2310657, https://doi.org/10.1002/adma.202310657.G. Tan, S. Wan, J.-J. Chen, H.-Q. Yu, Y. Yu, Adv. Mater. 36 (2024) 2310657, https://doi.org/10.1002/adma.202310657.

    139. [139]

      G. Tian, J. Gao, M. Wang, X. Wen, Y. Liu, J. Xiang, L. Zhang, P. Cheng, J. Zhang, N. Tang, Electrochim. Acta 475 (2024) 143361, https://doi.org/10.1016/j.electacta.2023.143361.G. Tian, J. Gao, M. Wang, X. Wen, Y. Liu, J. Xiang, L. Zhang, P. Cheng, J. Zhang, N. Tang, Electrochim. Acta 475 (2024) 143361, https://doi.org/10.1016/j.electacta.2023.143361.

    140. [140]

      J. Gu, L. Chen, X. Li, G. Luo, L. Fan, Y. Chao, H. Ji, W. Zhu, J. Energy Chem. 89 (2024) 410, https://doi.org/10.1016/j.jechem.2023.10.005.J. Gu, L. Chen, X. Li, G. Luo, L. Fan, Y. Chao, H. Ji, W. Zhu, J. Energy Chem. 89 (2024) 410, https://doi.org/10.1016/j.jechem.2023.10.005.

    141. [141]

      G. Luo, X. Li, L. Chen, Y. Zhang, J. Gu, Y. Chao, W. Zhu, Z. Liu, C. Xu, Chem. Eng. J. 455 (2023) 140928, https://doi.org/10.1016/j.cej.2022.140928.G. Luo, X. Li, L. Chen, Y. Zhang, J. Gu, Y. Chao, W. Zhu, Z. Liu, C. Xu, Chem. Eng. J. 455 (2023) 140928, https://doi.org/10.1016/j.cej.2022.140928.

    142. [142]

      J. Gu, L. Chen, L. Fan, G. Luo, X. Li, X. Chen, H. Ji, Y. Chao, W. Zhu, Desalination 586 (2024) 117828, https://doi.org/10.1016/j.desal.2024.117828.J. Gu, L. Chen, L. Fan, G. Luo, X. Li, X. Chen, H. Ji, Y. Chao, W. Zhu, Desalination 586 (2024) 117828, https://doi.org/10.1016/j.desal.2024.117828.

    143. [143]

      G. Luo, M. Zhou, Y. Chao, P. Cui, X. Li, L. Chen, G. Jiang, W. Zhu, Z. Liu, C. Xu, Sep. Purif. Technol. 354 (2025) 128683, https://doi.org/10.1016/j.seppur.2024.128683.G. Luo, M. Zhou, Y. Chao, P. Cui, X. Li, L. Chen, G. Jiang, W. Zhu, Z. Liu, C. Xu, Sep. Purif. Technol. 354 (2025) 128683, https://doi.org/10.1016/j.seppur.2024.128683.

    144. [144]

      Z. Li, I.-C. Chen, L. Cao, X. Liu, K.-W. Huang, Z. Lai, Science 385 (2024) 1438, https://doi.org/10.1126/science.adg8487.Z. Li, I.-C. Chen, L. Cao, X. Liu, K.-W. Huang, Z. Lai, Science 385 (2024) 1438, https://doi.org/10.1126/science.adg8487.

    145. [145]

      X. Zhao, S. Yang, X. Song, Y. Wang, H. Zhang, M. Li, Y. Wang, Adv. Sci. 11 (2024) 2405176, https://doi.org/10.1002/advs.202405176.X. Zhao, S. Yang, X. Song, Y. Wang, H. Zhang, M. Li, Y. Wang, Adv. Sci. 11 (2024) 2405176, https://doi.org/10.1002/advs.202405176.

    146. [146]

      D. Chen, Z. Zhang, T. Ma, Q. Luo, X. Du, X. Ye, X. Hao, Z. Wu, X. Wang, J. Li, Process Safety and Environmental Protection 191 (2024) 112, https://doi.org/10.1016/j.psep.2024.08.113.D. Chen, Z. Zhang, T. Ma, Q. Luo, X. Du, X. Ye, X. Hao, Z. Wu, X. Wang, J. Li, Process Safety and Environmental Protection 191 (2024) 112, https://doi.org/10.1016/j.psep.2024.08.113.

    147. [147]

      G. Liao, L. Yu, Y. Xia, Z. Wang, Z. Lu, J. Mei, H. Liu, C. Liu, Water Res. 274 (2025) 123131, https://doi.org/10.1016/j.watres.2025.123131.G. Liao, L. Yu, Y. Xia, Z. Wang, Z. Lu, J. Mei, H. Liu, C. Liu, Water Res. 274 (2025) 123131, https://doi.org/10.1016/j.watres.2025.123131.

    148. [148]

      Z. Hui, J. An, J. Zhou, W. Huang, G. Sun, Exploration 2 (2022) 20210237, https://doi.org/10.1002/EXP.20210237.Z. Hui, J. An, J. Zhou, W. Huang, G. Sun, Exploration 2 (2022) 20210237, https://doi.org/10.1002/EXP.20210237.

    149. [149]

      R.-X. Yin, W.-G. Zhu, Z.-W. Zhao, W.-H. Xu, X.-H. Liu, L.-H. He, Sep. Purif. Technol. 338 (2024) 126375, https://doi.org/10.1016/j.seppur.2024.126375.R.-X. Yin, W.-G. Zhu, Z.-W. Zhao, W.-H. Xu, X.-H. Liu, L.-H. He, Sep. Purif. Technol. 338 (2024) 126375, https://doi.org/10.1016/j.seppur.2024.126375.

    150. [150]

      J. Wang, J.-W. Fang, Z.-Y. Ji, Z.-Y. Guo, X.-W. Li, J. Liu, Y.-Y. Zhao, Z. Liu, F.-F. Gao, Y. Zhong, J.-S. Yuan, J. Environ. Chem. Eng. 11 (2023) 110878, https://doi.org/10.1016/j.jece.2023.110878.J. Wang, J.-W. Fang, Z.-Y. Ji, Z.-Y. Guo, X.-W. Li, J. Liu, Y.-Y. Zhao, Z. Liu, F.-F. Gao, Y. Zhong, J.-S. Yuan, J. Environ. Chem. Eng. 11 (2023) 110878, https://doi.org/10.1016/j.jece.2023.110878.

    151. [151]

      Y. Mu, C. Zhang, W. Zhang, Y. Wang, Desalination 511 (2021) 115112, https://doi.org/10.1016/j.desal.2021.115112.Y. Mu, C. Zhang, W. Zhang, Y. Wang, Desalination 511 (2021) 115112, https://doi.org/10.1016/j.desal.2021.115112.

    152. [152]

      G. Ma, Y. Xu, A. Cai, H. Mao, X. Zhang, D.-M. Shin, L. Wang, H. Zhou, Small 20 (2024) 2306530, https://doi.org/10.1002/smll.202306530.G. Ma, Y. Xu, A. Cai, H. Mao, X. Zhang, D.-M. Shin, L. Wang, H. Zhou, Small 20 (2024) 2306530, https://doi.org/10.1002/smll.202306530.

    153. [153]

      H. Zhang, L. Zhao, Z. Guo, L. Wang, Y. Ma, P. Zhang, J. Wang, Z.-Y. Ji, Environ. Sci. Technol. 59 (2025) 6881, https://doi.org/10.1021/acs.est.4c13308.H. Zhang, L. Zhao, Z. Guo, L. Wang, Y. Ma, P. Zhang, J. Wang, Z.-Y. Ji, Environ. Sci. Technol. 59 (2025) 6881, https://doi.org/10.1021/acs.est.4c13308.

    154. [154]

      M. Nakayama, H. Taki, T. Nakamura, S. Tokuda, R. Jalem, T. Kasuga, J. Phys. Chem. C 118 (2014) 27245, https://doi.org/10.1021/jp509232m.M. Nakayama, H. Taki, T. Nakamura, S. Tokuda, R. Jalem, T. Kasuga, J. Phys. Chem. C 118 (2014) 27245, https://doi.org/10.1021/jp509232m.

    155. [155]

      G. Zhou, L. Chen, X. Li, G. Luo, Z. Yu, J. Yin, L. Fan, Y. Chao, L. Jiang, W. Zhu, Green Energy Environ. 8 (2023) 1081, https://doi.org/10.1016/j.gee.2021.12.002.G. Zhou, L. Chen, X. Li, G. Luo, Z. Yu, J. Yin, L. Fan, Y. Chao, L. Jiang, W. Zhu, Green Energy Environ. 8 (2023) 1081, https://doi.org/10.1016/j.gee.2021.12.002.

    156. [156]

      L. Peng, X. Zhang, Z. Fang, Y. Zhu, Y. Xie, J. J. Cha, G. Yu, Chem. Mater. 29 (2017) 10526, https://doi.org/10.1021/acs.chemmater.7b04514.L. Peng, X. Zhang, Z. Fang, Y. Zhu, Y. Xie, J. J. Cha, G. Yu, Chem. Mater. 29 (2017) 10526, https://doi.org/10.1021/acs.chemmater.7b04514.

    157. [157]

      Y. Zhao, L. Peng, B. Liu, G. Yu, Nano Lett. 14 (2014) 2849, https://doi.org/10.1021/nl5008568.Y. Zhao, L. Peng, B. Liu, G. Yu, Nano Lett. 14 (2014) 2849, https://doi.org/10.1021/nl5008568.

    158. [158]

      A. Yamada, H. Koizumi, S. I. Nishimura, N. Sonoyama, R. Kanno, M. Yonemura, T. Nakamura, Y. Kobayashi, Nat. Mater. 5 (2006) 357, https://doi.org/10.1038/nmat1634.A. Yamada, H. Koizumi, S. I. Nishimura, N. Sonoyama, R. Kanno, M. Yonemura, T. Nakamura, Y. Kobayashi, Nat. Mater. 5 (2006) 357, https://doi.org/10.1038/nmat1634.

    159. [159]

      X.-C. Tang, L.-X. Li, Q.-L. Lai, X.-W. Song, L.-H. Jiang, Electrochim. Acta 54 (2009) 2329, https://doi.org/10.1016/j.electacta.2008.10.065.X.-C. Tang, L.-X. Li, Q.-L. Lai, X.-W. Song, L.-H. Jiang, Electrochim. Acta 54 (2009) 2329, https://doi.org/10.1016/j.electacta.2008.10.065.

    160. [160]

      P. P. Prosini, M. Lisi, D. Zane, M. Pasquali, Solid State Ionics 148 (2002) 45, https://doi.org/10.1016/S0167-2738(02)00134-0.P. P. Prosini, M. Lisi, D. Zane, M. Pasquali, Solid State Ionics 148 (2002) 45, https://doi.org/10.1016/S0167-2738(02)00134-0.

    161. [161]

      G. Yan, G. Kim, R. Yuan, E. Hoenig, F. Shi, W. Chen, Y. Han, Q. Chen, J.-M. Zuo, W. Chen, C. Liu, Nat. Commun. 13 (2022) 4579, https://doi.org/10.1038/s41467-022-32369-y.G. Yan, G. Kim, R. Yuan, E. Hoenig, F. Shi, W. Chen, Y. Han, Q. Chen, J.-M. Zuo, W. Chen, C. Liu, Nat. Commun. 13 (2022) 4579, https://doi.org/10.1038/s41467-022-32369-y.

    162. [162]

      Y. Wu, P. Shi, Y. Zhong, R. Cai, Energy & Fuels 37 (2023) 4083, https://doi.org/10.1021/acs.energyfuels.2c04113.Y. Wu, P. Shi, Y. Zhong, R. Cai, Energy & Fuels 37 (2023) 4083, https://doi.org/10.1021/acs.energyfuels.2c04113.

    163. [163]

      C. Cai, G. M. Koenig, Electrochim. Acta 401 (2022) 139484, https://doi.org/10.1016/j.electacta.2021.139484.C. Cai, G. M. Koenig, Electrochim. Acta 401 (2022) 139484, https://doi.org/10.1016/j.electacta.2021.139484.

    164. [164]

      Y. K. Lee, J. Park, W. Lu, J. Electrochem. Soc. 163 (2016) A1359, https://doi.org/10.1149/2.0991607jes.Y. K. Lee, J. Park, W. Lu, J. Electrochem. Soc. 163 (2016) A1359, https://doi.org/10.1149/2.0991607jes.

    165. [165]

      X. Sun, R. Xiao, X. Yu, H. Li, ACS Appl. Mater. Interfaces 14 (2022) 10353, https://doi.org/10.1021/acsami.1c23478.X. Sun, R. Xiao, X. Yu, H. Li, ACS Appl. Mater. Interfaces 14 (2022) 10353, https://doi.org/10.1021/acsami.1c23478.

    166. [166]

      Z. Ahaliabadeh, X. Kong, E. Fedorovskaya, T. Kallio, J. Power Sources 540 (2022) 231633, https://doi.org/10.1016/j.jpowsour.2022.231633.Z. Ahaliabadeh, X. Kong, E. Fedorovskaya, T. Kallio, J. Power Sources 540 (2022) 231633, https://doi.org/10.1016/j.jpowsour.2022.231633.

    167. [167]

      J. Choi, S.-Y. Lee, S. Yoon, K.-H. Kim, M. Kim, S.-H. Hong, ChemSusChem 12 (2019) 2439, https://doi.org/10.1002/cssc.201900500.J. Choi, S.-Y. Lee, S. Yoon, K.-H. Kim, M. Kim, S.-H. Hong, ChemSusChem 12 (2019) 2439, https://doi.org/10.1002/cssc.201900500.

    168. [168]

      S.-Y. Chung, J. T. Bloking, Y.-M. Chiang, Nat. Mater. 1 (2002) 123, https://doi.org/10.1038/nmat732.S.-Y. Chung, J. T. Bloking, Y.-M. Chiang, Nat. Mater. 1 (2002) 123, https://doi.org/10.1038/nmat732.

    169. [169]

      P. S. Herle, B. Ellis, N. Coombs, L. F. Nazar, Nat. Mater. 3 (2004) 147, https://doi.org/10.1038/nmat1063.P. S. Herle, B. Ellis, N. Coombs, L. F. Nazar, Nat. Mater. 3 (2004) 147, https://doi.org/10.1038/nmat1063.

    170. [170]

      M. Wagemaker, B. L. Ellis, D. Lützenkirchen-Hecht, F. M. Mulder, L. F. Nazar, Chem. Mater. 20 (2008) 6313, https://doi.org/10.1021/cm801781k.M. Wagemaker, B. L. Ellis, D. Lützenkirchen-Hecht, F. M. Mulder, L. F. Nazar, Chem. Mater. 20 (2008) 6313, https://doi.org/10.1021/cm801781k.

    171. [171]

      M. D. Johannes, K. Hoang, J. L. Allen, K. Gaskell, Phys. Rev. B 85 (2012) 115106, https://doi.org/10.1103/PhysRevB.85.115106.M. D. Johannes, K. Hoang, J. L. Allen, K. Gaskell, Phys. Rev. B 85 (2012) 115106, https://doi.org/10.1103/PhysRevB.85.115106.

    172. [172]

      C. Ban, W.-J. Yin, H. Tang, S.-H. Wei, Y. Yan, A. C. Dillon, Adv. Energy Mater. 2 (2012) 1028, https://doi.org/10.1002/aenm.201200085.C. Ban, W.-J. Yin, H. Tang, S.-H. Wei, Y. Yan, A. C. Dillon, Adv. Energy Mater. 2 (2012) 1028, https://doi.org/10.1002/aenm.201200085.

    173. [173]

      K. Hoang, M. D. Johannes, J. Power Sources 206 (2012) 274, https://doi.org/10.1016/j.jpowsour.2012.01.126.K. Hoang, M. D. Johannes, J. Power Sources 206 (2012) 274, https://doi.org/10.1016/j.jpowsour.2012.01.126.

    174. [174]

      Y. Zhang, J. A. Alarco, J. Y. Nerkar, A. S. Best, G. A. Snook, P. C. Talbot, B. C. C. Cowie, ACS Appl. Energy Mater. 3 (2020) 9158, https://doi.org/10.1021/acsaem.0c01536.Y. Zhang, J. A. Alarco, J. Y. Nerkar, A. S. Best, G. A. Snook, P. C. Talbot, B. C. C. Cowie, ACS Appl. Energy Mater. 3 (2020) 9158, https://doi.org/10.1021/acsaem.0c01536.

    175. [175]

      F. Bizzotto, W. Dachraoui, R. Grissa, W. Zhao, F. Pagani, E. Querel, R.-S. Kühnel, C. Battaglia, Electrochim. Acta 462 (2023) 142758, https://doi.org/10.1016/j.electacta.2023.142758.F. Bizzotto, W. Dachraoui, R. Grissa, W. Zhao, F. Pagani, E. Querel, R.-S. Kühnel, C. Battaglia, Electrochim. Acta 462 (2023) 142758, https://doi.org/10.1016/j.electacta.2023.142758.

    176. [176]

      F. Schipper, H. Bouzaglo, M. Dixit, E. M. Erickson, T. Weigel, M. Talianker, J. Grinblat, L. Burstein, M. Schmidt, J. Lampert, C. Erk, B. Markovsky, D. T. Major, D. Aurbach, Adv. Energy Mater. 8 (2018) 1701682, https://doi.org/10.1002/aenm.201701682.F. Schipper, H. Bouzaglo, M. Dixit, E. M. Erickson, T. Weigel, M. Talianker, J. Grinblat, L. Burstein, M. Schmidt, J. Lampert, C. Erk, B. Markovsky, D. T. Major, D. Aurbach, Adv. Energy Mater. 8 (2018) 1701682, https://doi.org/10.1002/aenm.201701682.

    177. [177]

      U. Nisar, N. Muralidharan, R. Essehli, R. Amin, I. Belharouak, Energy Storage Mater. 38 (2021) 309, https://doi.org/10.1016/j.ensm.2021.03.015.U. Nisar, N. Muralidharan, R. Essehli, R. Amin, I. Belharouak, Energy Storage Mater. 38 (2021) 309, https://doi.org/10.1016/j.ensm.2021.03.015.

    178. [178]

      P. Zhu, Z. Yang, H. Zhang, J. Yu, Z. Zhang, J. Cai, C. Li, J. Alloys Compd. 745 (2018) 164, https://doi.org/10.1016/j.jallcom.2018.02.119.P. Zhu, Z. Yang, H. Zhang, J. Yu, Z. Zhang, J. Cai, C. Li, J. Alloys Compd. 745 (2018) 164, https://doi.org/10.1016/j.jallcom.2018.02.119.

    179. [179]

      B. Xiao, B. Wang, J. Liu, K. Kaliyappan, Q. Sun, Y. Liu, G. Dadheech, M. P. Balogh, L. Yang, T.-K. Sham, R. Li, M. Cai, X. Sun, Nano Energy 34 (2017) 120, https://doi.org/10.1016/j.nanoen.2017.02.015.B. Xiao, B. Wang, J. Liu, K. Kaliyappan, Q. Sun, Y. Liu, G. Dadheech, M. P. Balogh, L. Yang, T.-K. Sham, R. Li, M. Cai, X. Sun, Nano Energy 34 (2017) 120, https://doi.org/10.1016/j.nanoen.2017.02.015.

    180. [180]

      Y. He, H. Pham, X. Liang, J. Park, Chem. Eng. J. 440 (2022) 135565, https://doi.org/10.1016/j.cej.2022.135565.Y. He, H. Pham, X. Liang, J. Park, Chem. Eng. J. 440 (2022) 135565, https://doi.org/10.1016/j.cej.2022.135565.

    181. [181]

      X. Li, J. Liu, M. N. Banis, A. Lushington, R. Li, M. Cai, X. Sun, Energy Environ. Sci. 7 (2014) 768, https://doi.org/10.1039/C3EE42704H.X. Li, J. Liu, M. N. Banis, A. Lushington, R. Li, M. Cai, X. Sun, Energy Environ. Sci. 7 (2014) 768, https://doi.org/10.1039/C3EE42704H.

    182. [182]

      P. Guan, L. Zhou, Z. Yu, Y. Sun, Y. Liu, F. Wu, Y. Jiang, D. Chu, J. Energy Chem. 43 (2020) 220, https://doi.org/10.1016/j.jechem.2019.08.022.P. Guan, L. Zhou, Z. Yu, Y. Sun, Y. Liu, F. Wu, Y. Jiang, D. Chu, J. Energy Chem. 43 (2020) 220, https://doi.org/10.1016/j.jechem.2019.08.022.

    183. [183]

      J. Li, Q. Wu, J. Wu, Synthesis of Nanoparticles via Solvothermal and Hydrothermal Methods. In Handbook of Nanoparticles; M. Aliofkhazraei, Eds.; Springer Cham: Switzerland, 2016; pp. 295–328.J. Li, Q. Wu, J. Wu, Synthesis of Nanoparticles via Solvothermal and Hydrothermal Methods. In Handbook of Nanoparticles; M. Aliofkhazraei, Eds.; Springer Cham: Switzerland, 2016; pp. 295–328.

    184. [184]

      H.-H. Ryu, H.-W. Lim, S. G. Lee, Y.-K. Sun, Nat. Energy 9 (2023) 47, https://doi.org/10.1038/s41560-023-01403-8.H.-H. Ryu, H.-W. Lim, S. G. Lee, Y.-K. Sun, Nat. Energy 9 (2023) 47, https://doi.org/10.1038/s41560-023-01403-8.

    185. [185]

      Y. Lin, Y. Lin, T. Zhou, G. Zhao, Y. Huang, Z. Huang, J. Power Sources 226 (2013) 20, https://doi.org/10.1016/j.jpowsour.2012.10.074.Y. Lin, Y. Lin, T. Zhou, G. Zhao, Y. Huang, Z. Huang, J. Power Sources 226 (2013) 20, https://doi.org/10.1016/j.jpowsour.2012.10.074.

    186. [186]

      Y. Liu, X.-J. Lin, Y.-G. Sun, Y.-S. Xu, B.-B. Chang, C.-T. Liu, A.-M. Cao, L.-J. Wan, Small 15 (2019) 1901019, https://doi.org/10.1002/smll.201901019.Y. Liu, X.-J. Lin, Y.-G. Sun, Y.-S. Xu, B.-B. Chang, C.-T. Liu, A.-M. Cao, L.-J. Wan, Small 15 (2019) 1901019, https://doi.org/10.1002/smll.201901019.

    187. [187]

      Y.-F. Deng, S.-X. Zhao, Y.-H. Xu, C.-W. Nan, J. Mater. Chem. A 2 (2014) 18889, https://doi.org/10.1039/C4TA03772C.Y.-F. Deng, S.-X. Zhao, Y.-H. Xu, C.-W. Nan, J. Mater. Chem. A 2 (2014) 18889, https://doi.org/10.1039/C4TA03772C.

    188. [188]

      F. Xiong, Z. Chen, C. Huang, T. Wang, W. Zhang, Z. Yang, F. Chen, Inorg. Chem. 58 (2019) 15498, https://doi.org/10.1021/acs.inorgchem.9b02533.F. Xiong, Z. Chen, C. Huang, T. Wang, W. Zhang, Z. Yang, F. Chen, Inorg. Chem. 58 (2019) 15498, https://doi.org/10.1021/acs.inorgchem.9b02533.

    189. [189]

      Z.-X. Chi, W. Zhang, X.-S. Wang, F.-Q. Cheng, J.-T. Chen, A.-M. Cao, L.-J. Wan, ACS Appl. Mater. Interfaces 6 (2014) 22719, https://doi.org/10.1021/am506860e.Z.-X. Chi, W. Zhang, X.-S. Wang, F.-Q. Cheng, J.-T. Chen, A.-M. Cao, L.-J. Wan, ACS Appl. Mater. Interfaces 6 (2014) 22719, https://doi.org/10.1021/am506860e.

    190. [190]

      Y. Kwon, Y. Lee, S.-O. Kim, H.-S. Kim, K. J. Kim, D. Byun, W. Choi, ACS Appl. Mater. Interfaces 10 (2018) 29457, https://doi.org/10.1021/acsami.8b08200.Y. Kwon, Y. Lee, S.-O. Kim, H.-S. Kim, K. J. Kim, D. Byun, W. Choi, ACS Appl. Mater. Interfaces 10 (2018) 29457, https://doi.org/10.1021/acsami.8b08200.

    191. [191]

      Q. Wang, Y. Lei, Y. Wang, Y. Liu, C. Song, J. Zeng, Y. Song, X. Duan, D. Wang, Y. Li, Energy Environ. Sci. 13 (2020) 1593, https://doi.org/10.1039/D0EE00450B.Q. Wang, Y. Lei, Y. Wang, Y. Liu, C. Song, J. Zeng, Y. Song, X. Duan, D. Wang, Y. Li, Energy Environ. Sci. 13 (2020) 1593, https://doi.org/10.1039/D0EE00450B.

    192. [192]

      I. Gómez-Palos, M. Vazquez-Pufleau, R. S. Schäufele, A. Mikhalchan, A. Pendashteh, Á. Ridruejo, J. J. Vilatela, Nanoscale 15 (2023) 6052, https://doi.org/10.1039/D3NR00289F.I. Gómez-Palos, M. Vazquez-Pufleau, R. S. Schäufele, A. Mikhalchan, A. Pendashteh, Á. Ridruejo, J. J. Vilatela, Nanoscale 15 (2023) 6052, https://doi.org/10.1039/D3NR00289F.

    193. [193]

      Q. Hou, G. Cao, P. Wang, D. Zhao, X. Cui, S. Li, C. Li, J. Alloys Compd. 747 (2018) 796, https://doi.org/10.1016/j.jallcom.2018.03.115.Q. Hou, G. Cao, P. Wang, D. Zhao, X. Cui, S. Li, C. Li, J. Alloys Compd. 747 (2018) 796, https://doi.org/10.1016/j.jallcom.2018.03.115.

    194. [194]

      C. Gao, J. Zhou, G. Liu, L. Wang, Appl. Surf. Sci. 433 (2018) 35, https://doi.org/10.1016/j.apsusc.2017.10.034.C. Gao, J. Zhou, G. Liu, L. Wang, Appl. Surf. Sci. 433 (2018) 35, https://doi.org/10.1016/j.apsusc.2017.10.034.

    195. [195]

      Q. Gong, Y.-S. He, Y. Yang, X.-Z. Liao, Z.-F. Ma, J. Solid State Electrochem. 16 (2012) 1383, https://doi.org/10.1007/s10008-011-1538-x.Q. Gong, Y.-S. He, Y. Yang, X.-Z. Liao, Z.-F. Ma, J. Solid State Electrochem. 16 (2012) 1383, https://doi.org/10.1007/s10008-011-1538-x.

    196. [196]

      Q. Liu, Y.-T. Liu, C. Zhao, Q.-S. Weng, J. Deng, I. Hwang, Y. Jiang, C. Sun, T. Li, W. Xu, K. Du, A. Daali, G.-L. Xu, K. Amine, G. Chen, ACS Nano 16 (2022) 14527, https://doi.org/10.1021/acsnano.2c04959.Q. Liu, Y.-T. Liu, C. Zhao, Q.-S. Weng, J. Deng, I. Hwang, Y. Jiang, C. Sun, T. Li, W. Xu, K. Du, A. Daali, G.-L. Xu, K. Amine, G. Chen, ACS Nano 16 (2022) 14527, https://doi.org/10.1021/acsnano.2c04959.

    197. [197]

      L. Sun, G. Yuan, L. Gao, J. Yang, M. Chhowalla, M. H. Gharahcheshmeh, K. K. Gleason, Y. S. Choi, B. H. Hong, Z. Liu, Nat. Rev. Methods Primers 1 (2021) 5, https://doi.org/10.1038/s43586-020-00005-y.L. Sun, G. Yuan, L. Gao, J. Yang, M. Chhowalla, M. H. Gharahcheshmeh, K. K. Gleason, Y. S. Choi, B. H. Hong, Z. Liu, Nat. Rev. Methods Primers 1 (2021) 5, https://doi.org/10.1038/s43586-020-00005-y.

    198. [198]

      R. W. Johnson, A. Hultqvist, S. F. Bent, Mater. Today 17 (2014) 236, https://doi.org/10.1016/j.mattod.2014.04.026.R. W. Johnson, A. Hultqvist, S. F. Bent, Mater. Today 17 (2014) 236, https://doi.org/10.1016/j.mattod.2014.04.026.

    199. [199]

      S. M. George, Chem. Rev. 110 (2010) 111, https://doi.org/10.1021/cr900056b.S. M. George, Chem. Rev. 110 (2010) 111, https://doi.org/10.1021/cr900056b.

    200. [200]

      M. Zhang, N. Garcia-Araez, Electrochim. Acta 499 (2024) 144686, https://doi.org/10.1016/j.electacta.2024.144686.M. Zhang, N. Garcia-Araez, Electrochim. Acta 499 (2024) 144686, https://doi.org/10.1016/j.electacta.2024.144686.

    201. [201]

      X. Zhao, L. Zheng, Y. Hou, Y. Wang, L. Zhu, Chem. Eng. J. 450 (2022) 138454, https://doi.org/10.1016/j.cej.2022.138454.X. Zhao, L. Zheng, Y. Hou, Y. Wang, L. Zhu, Chem. Eng. J. 450 (2022) 138454, https://doi.org/10.1016/j.cej.2022.138454.

    202. [202]

      T. Han, X. Yu, Y. Guo, M. Li, J. Duo, T. Deng, Electrochim. Acta 350 (2020) 136385, https://doi.org/10.1016/j.electacta.2020.136385.T. Han, X. Yu, Y. Guo, M. Li, J. Duo, T. Deng, Electrochim. Acta 350 (2020) 136385, https://doi.org/10.1016/j.electacta.2020.136385.

    203. [203]

      J. Zhang, W. Pan, Y. Zhou, C. Hai, Y. Xu, Y. Zhao, Y. Sun, S. Dong, X. He, Q. Xu, J. Chen, H. Su, L. Ma, Chemosphere 360 (2024) 142325, https://doi.org/10.1016/j.chemosphere.2024.142325.J. Zhang, W. Pan, Y. Zhou, C. Hai, Y. Xu, Y. Zhao, Y. Sun, S. Dong, X. He, Q. Xu, J. Chen, H. Su, L. Ma, Chemosphere 360 (2024) 142325, https://doi.org/10.1016/j.chemosphere.2024.142325.

    204. [204]

      J. Zhang, Y. Zhou, C. Hai, H. Su, Y. Zhao, Y. Sun, S. Dong, X. He, Q. Xu, T. Chen, J. Xiang, S. Huang, L. Ma, Sep. Purif. Technol. 334 (2024) 126010, https://doi.org/10.1016/j.seppur.2023.126010.J. Zhang, Y. Zhou, C. Hai, H. Su, Y. Zhao, Y. Sun, S. Dong, X. He, Q. Xu, T. Chen, J. Xiang, S. Huang, L. Ma, Sep. Purif. Technol. 334 (2024) 126010, https://doi.org/10.1016/j.seppur.2023.126010.

    205. [205]

      J. Zhang, Y. Zhou, C. Hai, Y. Gao, Y. Zhao, Y. Sun, S. Dong, X. He, Q. Xu, J. Chen, H. Su, L. Ma, Desalination 579 (2024) 117457, https://doi.org/10.1016/j.desal.2024.117457.J. Zhang, Y. Zhou, C. Hai, Y. Gao, Y. Zhao, Y. Sun, S. Dong, X. He, Q. Xu, J. Chen, H. Su, L. Ma, Desalination 579 (2024) 117457, https://doi.org/10.1016/j.desal.2024.117457.

    206. [206]

      B. Hu, X. Shang, P. Nie, B. Zhang, J. Yang, J. Liu, J. Colloid Interface Sci. 612 (2022) 392, https://doi.org/10.1016/j.jcis.2021.12.181.B. Hu, X. Shang, P. Nie, B. Zhang, J. Yang, J. Liu, J. Colloid Interface Sci. 612 (2022) 392, https://doi.org/10.1016/j.jcis.2021.12.181.

    207. [207]

      X. Du, G. Guan, X. Li, A. D. Jagadale, X. Ma, Z. Wang, X. Hao, A. Abudula, J. Mater. Chem. A 4 (2016) 13989, https://doi.org/10.1039/C6TA05985F.X. Du, G. Guan, X. Li, A. D. Jagadale, X. Ma, Z. Wang, X. Hao, A. Abudula, J. Mater. Chem. A 4 (2016) 13989, https://doi.org/10.1039/C6TA05985F.

    208. [208]

      X. Zhao, G. Li, M. Feng, Y. Wang, Electrochim. Acta 331 (2020) 135285, https://doi.org/10.1016/j.electacta.2019.135285.X. Zhao, G. Li, M. Feng, Y. Wang, Electrochim. Acta 331 (2020) 135285, https://doi.org/10.1016/j.electacta.2019.135285.

    209. [209]

      B. Hu, Y. Wang, B. Zhang, X. Song, H. Jiang, J. Ma, J. Liu, Sep. Purif. Technol. 348 (2024) 127693, https://doi.org/10.1016/j.seppur.2024.127693.B. Hu, Y. Wang, B. Zhang, X. Song, H. Jiang, J. Ma, J. Liu, Sep. Purif. Technol. 348 (2024) 127693, https://doi.org/10.1016/j.seppur.2024.127693.

    210. [210]

      B. Mojtahedi, M. Askari, A. Dolati, N. Shahcheraghi, M. Ghorbanzadeh, Energy & Fuels 38 (2024) 19878, https://doi.org/10.1021/acs.energyfuels.4c03409.B. Mojtahedi, M. Askari, A. Dolati, N. Shahcheraghi, M. Ghorbanzadeh, Energy & Fuels 38 (2024) 19878, https://doi.org/10.1021/acs.energyfuels.4c03409.

    211. [211]

      L. Gou, Y.-F. Zhang, W. Wang, J.-Y. Ying, X.-Y. Fan, Z.-Z. Zhang, Chem. Eng. J. 498 (2024) 155755, https://doi.org/10.1016/j.cej.2024.155755.L. Gou, Y.-F. Zhang, W. Wang, J.-Y. Ying, X.-Y. Fan, Z.-Z. Zhang, Chem. Eng. J. 498 (2024) 155755, https://doi.org/10.1016/j.cej.2024.155755.

    212. [212]

      N. Xue, X. Wu, H. Shi, Y. Zhang, Y. Zhang, Y. Lv, X. Zhang, X. Chen, Y. Yu, W. Liu, ACS Nano 18 (2024) 33743, https://doi.org/10.1021/acsnano.4c15473.N. Xue, X. Wu, H. Shi, Y. Zhang, Y. Zhang, Y. Lv, X. Zhang, X. Chen, Y. Yu, W. Liu, ACS Nano 18 (2024) 33743, https://doi.org/10.1021/acsnano.4c15473.

    213. [213]

      J. Li, L. Han, R. Wang, T. Wang, L. Pan, X. Zhang, C. Wang, Desalination 591 (2024) 118035, https://doi.org/10.1016/j.desal.2024.118035.J. Li, L. Han, R. Wang, T. Wang, L. Pan, X. Zhang, C. Wang, Desalination 591 (2024) 118035, https://doi.org/10.1016/j.desal.2024.118035.

    214. [214]

      G. Luo, X. Li, L. Chen, J. Gu, Y. Huang, J. Sun, H. Liu, Y. Chao, W. Zhu, Z. Liu, Appl. Energy 337 (2023) 120890, https://doi.org/10.1016/j.apenergy.2023.120890.G. Luo, X. Li, L. Chen, J. Gu, Y. Huang, J. Sun, H. Liu, Y. Chao, W. Zhu, Z. Liu, Appl. Energy 337 (2023) 120890, https://doi.org/10.1016/j.apenergy.2023.120890.

    215. [215]

      L. Chen, L. Fan, D. Lan, J. Gu, C. Xiaojun, H. Ji, Y. Chao, P. Wu, W. Zhu, Chem. Eng. J. 505 (2025) 159815, https://doi.org/10.1016/j.cej.2025.159815.L. Chen, L. Fan, D. Lan, J. Gu, C. Xiaojun, H. Ji, Y. Chao, P. Wu, W. Zhu, Chem. Eng. J. 505 (2025) 159815, https://doi.org/10.1016/j.cej.2025.159815.

    216. [216]

      Y. Bao, Z. Ji, H. Zhou, C. Zhang, S. Song, F. Jia, J. Li, M. Quintana, Small (2024) 2406951, https://doi.org/10.1002/smll.202406951.Y. Bao, Z. Ji, H. Zhou, C. Zhang, S. Song, F. Jia, J. Li, M. Quintana, Small (2024) 2406951, https://doi.org/10.1002/smll.202406951.

    217. [217]

      Y. Chen, H. Zhan, Y. Qiao, Z. Qian, B. Lv, Z. Wu, Z. Liu, Chem. Eng. J. 477 (2023) 147136, https://doi.org/10.1016/j.cej.2023.147136.Y. Chen, H. Zhan, Y. Qiao, Z. Qian, B. Lv, Z. Wu, Z. Liu, Chem. Eng. J. 477 (2023) 147136, https://doi.org/10.1016/j.cej.2023.147136.

    218. [218]

      G. T. Hill, F. Shi, H. Zhou, Y. Han, C. Liu, Matter 4 (2021) 1611, https://doi.org/10.1016/j.matt.2021.02.005.G. T. Hill, F. Shi, H. Zhou, Y. Han, C. Liu, Matter 4 (2021) 1611, https://doi.org/10.1016/j.matt.2021.02.005.

    219. [219]

      V. C. E. Romero, K. Llano, E. J. Calvo, Electrochem. Commun. 125 (2021) 106980, https://doi.org/10.1016/j.elecom.2021.106980.V. C. E. Romero, K. Llano, E. J. Calvo, Electrochem. Commun. 125 (2021) 106980, https://doi.org/10.1016/j.elecom.2021.106980.

    220. [220]

      E. N. Guyes, A. N. Shocron, A. Simanovski, P. M. Biesheuvel, M. E. Suss, Desalination 415 (2017) 8, https://doi.org/10.1016/j.desal.2017.03.013.E. N. Guyes, A. N. Shocron, A. Simanovski, P. M. Biesheuvel, M. E. Suss, Desalination 415 (2017) 8, https://doi.org/10.1016/j.desal.2017.03.013.

    221. [221]

      Z.-Y. Guo, Z.-Y. Ji, J. Wang, X.-F. Guo, J.-S. Liang, Desalination 533 (2022) 115767, https://doi.org/10.1016/j.desal.2022.115767.Z.-Y. Guo, Z.-Y. Ji, J. Wang, X.-F. Guo, J.-S. Liang, Desalination 533 (2022) 115767, https://doi.org/10.1016/j.desal.2022.115767.

    222. [222]

      D. Liu, Z. Zhao, W. Xu, J. Xiong, L. He, Desalination 519 (2021) 115302, https://doi.org/10.1016/j.desal.2021.115302.D. Liu, Z. Zhao, W. Xu, J. Xiong, L. He, Desalination 519 (2021) 115302, https://doi.org/10.1016/j.desal.2021.115302.

    223. [223]

      J. Xiong, L. He, D. Liu, W. Xu, Z. Zhao, Desalination 520 (2021) 115326, https://doi.org/10.1016/j.desal.2021.115326.J. Xiong, L. He, D. Liu, W. Xu, Z. Zhao, Desalination 520 (2021) 115326, https://doi.org/10.1016/j.desal.2021.115326.

    224. [224]

      C. Liu, Y. Li, D. Lin, P.-C. Hsu, B. Liu, G. Yan, T. Wu, Y. Cui, S. Chu, Joule 4 (2020) 1459, https://doi.org/10.1016/j.joule.2020.05.017.C. Liu, Y. Li, D. Lin, P.-C. Hsu, B. Liu, G. Yan, T. Wu, Y. Cui, S. Chu, Joule 4 (2020) 1459, https://doi.org/10.1016/j.joule.2020.05.017.

    225. [225]

      M. S. Palagonia, D. Brogioli, F. La Mantia, J. Electrochem. Soc. 166 (2019) E286, https://doi.org/10.1149/2.0221910jes.M. S. Palagonia, D. Brogioli, F. La Mantia, J. Electrochem. Soc. 166 (2019) E286, https://doi.org/10.1149/2.0221910jes.

    226. [226]

      S. Kim, J. Lee, S. Kim, S. Kim, J. Yoon, Energy Technol. 6 (2018) 340, https://doi.org/10.1002/ente.201700488.S. Kim, J. Lee, S. Kim, S. Kim, J. Yoon, Energy Technol. 6 (2018) 340, https://doi.org/10.1002/ente.201700488.

    227. [227]

      A. Zhao, J. Liu, X. Ai, H. Yang, Y. Cao, ChemSusChem 12 (2019) 1361, https://doi.org/10.1002/cssc.201803045.A. Zhao, J. Liu, X. Ai, H. Yang, Y. Cao, ChemSusChem 12 (2019) 1361, https://doi.org/10.1002/cssc.201803045.

    228. [228]

      C.-T. Hsieh, C.-T. Pai, Y.-F. Chen, P.-Y. Yu, R.-S. Juang, Electrochim. Acta 115 (2014) 96, https://doi.org/10.1016/j.electacta.2013.10.082.C.-T. Hsieh, C.-T. Pai, Y.-F. Chen, P.-Y. Yu, R.-S. Juang, Electrochim. Acta 115 (2014) 96, https://doi.org/10.1016/j.electacta.2013.10.082.

    229. [229]

      Z. Wang, Z. Chen, Y. Li, X. Ren, X. Xiong, Z. Lu, L. Deng, Nano Energy 131 (2024) 110249, https://doi.org/10.1016/j.nanoen.2024.110249.Z. Wang, Z. Chen, Y. Li, X. Ren, X. Xiong, Z. Lu, L. Deng, Nano Energy 131 (2024) 110249, https://doi.org/10.1016/j.nanoen.2024.110249.

    230. [230]

      C. P. Graettinger, S. Garcia, J. Siviy, R. J. Schenk, P. J. Van Syckle, Using the Technology Readiness Levels Scale to Support Technology Management in the DoD's ATD/STO Environments. [2025-04-01]. https://insights.sei.cmu.edu/library/using-the-technology-readiness-levels-scale-to-support-technology-management-in-the-dods-atdsto-environments-a-findings-and-recommendations-report-conducted-for-army-cecom/.C. P. Graettinger, S. Garcia, J. Siviy, R. J. Schenk, P. J. Van Syckle, Using the Technology Readiness Levels Scale to Support Technology Management in the DoD's ATD/STO Environments. [2025-04-01]. https://insights.sei.cmu.edu/library/using-the-technology-readiness-levels-scale-to-support-technology-management-in-the-dods-atdsto-environments-a-findings-and-recommendations-report-conducted-for-army-cecom/.

    231. [231]

      L. Wu, C. Zhang, S. Kim, T. A. Hatton, H. Mo, T. D. Waite, Water Res. 221 (2022) 118822, https://doi.org/10.1016/j.watres.2022.118822.L. Wu, C. Zhang, S. Kim, T. A. Hatton, H. Mo, T. D. Waite, Water Res. 221 (2022) 118822, https://doi.org/10.1016/j.watres.2022.118822.

    232. [232]

      H. Joo, S. Kim, S. Kim, M. Choi, S.-H. Kim, J. Yoon, Environ. Sci. Water Res. Technol. 6 (2020) 290, https://doi.org/10.1039/C9EW00756C.H. Joo, S. Kim, S. Kim, M. Choi, S.-H. Kim, J. Yoon, Environ. Sci. Water Res. Technol. 6 (2020) 290, https://doi.org/10.1039/C9EW00756C.

    233. [233]

      J. Zhang, S. Dong, X. He, Q. Xu, C. Hai, Y. Zhou, X. Zhang, L. Ma, Chemistry 86 (2023) 1044, https://doi.org/10.14159/j.cnki.0441-3776.2023.09.013.J. Zhang, S. Dong, X. He, Q. Xu, C. Hai, Y. Zhou, X. Zhang, L. Ma, Chemistry 86 (2023) 1044, https://doi.org/10.14159/j.cnki.0441-3776.2023.09.013.

    234. [234]

      National Engineering Research Center of Low-carbon Nonferrous Metallurgy (Central South University). 中南大学赵中伟教授团队“电化学脱嵌法盐湖提锂”获阶段性进展. [2025-04-01]. https://rnmlab.csu.edu.cn/info/1009/1067.htm

  • 加载中
计量
  • PDF下载量:  1
  • 文章访问数:  7
  • HTML全文浏览量:  3
文章相关
  • 发布日期:  2025-06-30
  • 收稿日期:  2025-04-29
  • 修回日期:  2025-06-11
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章