BiVO4/WO3-x S型异质结通过增强内建电场提升光热催化活性

龙子洋 李全政 张成亮 史海峰

引用本文: 龙子洋, 李全政, 张成亮, 史海峰. BiVO4/WO3-x S型异质结通过增强内建电场提升光热催化活性[J]. 物理化学学报, 2025, 41(10): 100122. doi: 10.1016/j.actphy.2025.100122 shu
Citation:  Ziyang Long, Quanzheng Li, Chengliang Zhang, Haifeng Shi. BiVO4/WO3-x S-scheme heterojunctions with amplified internal electric field for boosting photothermal-catalytic activity[J]. Acta Physico-Chimica Sinica, 2025, 41(10): 100122. doi: 10.1016/j.actphy.2025.100122 shu

BiVO4/WO3-x S型异质结通过增强内建电场提升光热催化活性

    通讯作者: 史海峰, hfshi@jiangnan.edu.cn
  • 基金项目:

    国家自然科学基金 52271175

    南京大学固体微结构国家重点实验室开放课题 M34047

    江苏省青蓝工程项目 

摘要: 增强S型异质结光催化剂中的内建电场(IEF)的强度对于解决环境问题具有独特的优势。于此,本文通过水热法成功制备了BiVO4/WO3-x S型异质结光热催化材料,并通过在可见光照射下同时降解四环素(TC)和六价铬(Cr(Ⅵ))系统地研究了BiVO4/WO3-x的催化活性。实验结果表明,在单一污染物的降解中,BiVO4/WO3-x相较于两种单质材料表现出明显增强的催化活性:在可见光照射60 min后,对TC和Cr(Ⅵ)的降解效率分别达到了78.5%和85.3%。同时,复合材料在TC和Cr(Ⅵ)的混合体系中的协同光催化活性得到了提高,Cr(Ⅵ)和TC的去除能力分别提高了1.29倍和1.32倍。红外热成像仪的分析结果表明了WO3-x的光热效应可以提高反应体系的温度。DFT计算的结果表明,氧空位的引入增强了两种材料间的费米能级差,从而促进了光生载流子的分离。利用绿豆种子的生长实验和液相色谱-质谱仪(LC-MS)的检测结果对TC的降解路径和中间产物的毒性进行了详细的分析。本研究为设计和开发用于协同去除含有Cr(Ⅵ)和TC的水体的S型光热催化材料提供了新的思路。

English

    1. [1]

      T. Han, H. Shi, Y. Chen, J. Mater. Sci. Technol. 174 (2024) 30, https://doi.org/10.1016/j.jmst.2023.03.053. doi: 10.1016/j.jmst.2023.03.053

    2. [2]

      R. Chen, J. Xia, Y. Chen, H. Shi, Acta Phys. -Chim. Sin. 39 (2023) 2209012, https://doi.org/10.3866/PKU.WHXB202209012. doi: 10.3866/PKU.WHXB202209012

    3. [3]

      X. Liu, L. Wang, S. Li, H. Liu, D. Zhang, M. Jiang, W. Chen, F. Jiao, X. Zhang, W. Hu, Adv. Funct. Mater. 33 (2023) 2306871, https://doi.org/10.1002/adfm.202306871. doi: 10.1002/adfm.202306871

    4. [4]

      H. Ren, F. Qi, A. Labidi, J. Zhao, H. Wang, Y. Xin, J. Luo, C. Wang, Appl. Catal. B 330 (2023) 122587, https://doi.org/10.1016/j.apcatb.2023.122587. doi: 10.1016/j.apcatb.2023.122587

    5. [5]

      C. Liu, H. Yu, J. Li, X. Yu, Z. Yu, Y. Song, F. Zhang, Q. Zhang, Z. Zou, Acta Phys. -Chim. Sin. 41 (2025) 100075, https://doi.org/10.1016/j.actphy.2025.100075. doi: 10.1016/j.actphy.2025.100075

    6. [6]

      R. Chen, H. Zhang, Y. Dong, H. Shi, J. Mater. Sci. Technol. 170 (2024) 11, https://doi.org/10.1016/j.jmst.2023.07.005. doi: 10.1016/j.jmst.2023.07.005

    7. [7]

      G. Yuan, K. Li, J. Zhang, L. Dong, Y. Li, G. Yang, L. Huang, F. Li, H. Zhang, S. Zhang, Chem. Eng. J. 488 (2024) 150766, https://doi.org/10.1016/j.cej.2024.150766. doi: 10.1016/j.cej.2024.150766

    8. [8]

      J. Wu, Q. Xie, C. Zhang, H. Shi, Acta Phys. -Chim. Sin. 41 (2025) 100050, https://doi.org/10.1016/j.actphy.2025.100050. doi: 10.1016/j.actphy.2025.100050

    9. [9]

      F. Liu, B. Sun, Z. Liu, Y. Wei, T. Gao, G. Zhou. Chin. J. Catal. 64 (2024) 152, https://doi.org/10.1016/S1872-2067(24)60099-9. doi: 10.1016/S1872-2067(24)60099-9

    10. [10]

      J. Kang, Y. Tang, M. Wang, C. Jin, J. Liu, S. Li, Z. Li, J. Zhu, J. Environ. Chem. Eng. 9 (2021) 105524, https://doi.org/10.1016/j.jece.2021.105524. doi: 10.1016/j.jece.2021.105524

    11. [11]

      M. Lv, S. Wang, H. Shi, J. Mater. Sci. Technol. 201 (2024) 21, https://doi.org/10.1016/j.jmst.2024.02.073. doi: 10.1016/j.jmst.2024.02.073

    12. [12]

      X. Wang, N. Su, X. Wang, D. Cao, C. Xu, X. Wang, Q. Yan, C. Lu, H. Zhao, J. Colloid Interface Sci. 661 (2024) 943, https://doi.org/10.1016/j.jcis.2024.01.209. doi: 10.1016/j.jcis.2024.01.209

    13. [13]

      Y. Sun, J. Suriyaprakash, L. Shan, H. Xu, J. Zhang, G. Chen, Y. Zhang, H. Wu, X. Li, L. Dong, M. Pang, D. Li, J. Li, Appl. Catal. B 355 (2024) 124209, https://doi.org/10.1016/j.apcatb.2024.124209. doi: 10.1016/j.apcatb.2024.124209

    14. [14]

      Q. Yang, G. Tan, L. Yin, W. Liu, B. Zhang, S. Feng, Y. Bi, Y. Liu, T. Liu, Z. Wang, H. Ren, A. Xia, Chem. Eng. J. 467 (2023) 143450, https://doi.org/10.1016/j.cej.2023.143450. doi: 10.1016/j.cej.2023.143450

    15. [15]

      L. Zheng, J. Chen, J. Yu, T. Lei, D. Wang, T. Dai, Y. Chen, Q. Fu, J. Zou, Appl. Catal. B 371 (2025) 125162, https://doi.org/10.1016/j.apcatb.2025.125162. doi: 10.1016/j.apcatb.2025.125162

    16. [16]

      V. Bui, T. P. Tran, T. Vu, T. Dao, T. Aminabhavi, Y. Vasseghian, S. Joo, Appl. Catal. B 365 (2025) 124924, https://doi.org/10.1016/j.apcatb.2024.124924. doi: 10.1016/j.apcatb.2024.124924

    17. [17]

      W. Guo, H. Luo, Z. Jiang, W. Shangguan, Chin. J. Catal. 43 (2022) 316, https://doi.org/10.1016/S1872-2067(21)63846-9. doi: 10.1016/S1872-2067(21)63846-9

    18. [18]

      W. Wang, B. Li, J. Shi, K. Zhu, Y. Zhang, X. Liu, C. Li, F. Hu, X. Xi, S. Kawi, Appl. Catal. B 362 (2025) 124766, https://doi.org/10.1016/j.apcatb.2024.124766. doi: 10.1016/j.apcatb.2024.124766

    19. [19]

      X. Deng, J. Zhang, K. Qi, G. Liang, F. Xu, J. Yu, Nat. Commun. 15 (2024) 4807, https://doi.org/10.1038/s41467-024-49004-7. doi: 10.1038/s41467-024-49004-7

    20. [20]

      L. Zhang, J. Zhang, H. Yu, J. Yu, Adv. Mater. 34 (2022) 2107668, https://doi.org/10.1002/adma.202107668. doi: 10.1002/adma.202107668

    21. [21]

      F. Xu, Y. He, J. Zhang, G. Liang, C. Liu, J. Yu, Angew. Chem. Int. Ed. 64 (2025) 202414672, https://doi.org/10.1002/anie.202414672. doi: 10.1002/anie.202414672

    22. [22]

      C. Wang, C. You, K. Rong, C. Shen, F. Yang, S. Li, Acta Phys. -Chim. Sin. 40 (2024) 2307045, https://doi.org/10.3866/PKU.WHXB202307045. doi: 10.3866/PKU.WHXB202307045

    23. [23]

      S. Wan, W. Wang, B. Cheng, G. Luo, Q. Shen, J. Yu, J. Zhang, S. Cao, L. Zhang, Nat. Commun. 15 (2024) 9612, https://doi.org/10.1038/s41467-024-53951-6. doi: 10.1038/s41467-024-53951-6

    24. [24]

      H. Li, S. Tao, S. Wan, G. Qiu, Q. Long, J. Yu, S. Cao, Chin. J. Catal. 46 (2023) 167, https://doi.org/10.1016/S1872-2067(22)64201-3. doi: 10.1016/S1872-2067(22)64201-3

    25. [25]

      J. Luo, K. Wang, Y. Qiu, X. Zhou, X. Ning, L. Zhan, X. Zhou, J. Alloy. Compd. 1008 (2024) 176572, https://doi.org/10.1016/j.jallcom.2024.176572. doi: 10.1016/j.jallcom.2024.176572

    26. [26]

      P. Lia, Y. Cui, Z. Wang, G. Dawsonc, C. Shao, K. Dai, Acta Phys. -Chim. Sin. 41 (2025) 100065, https://doi.org/10.1016/j.actphy.2025.100065. doi: 10.1016/j.actphy.2025.100065

    27. [27]

      Y. Cui, J. Zhang, H. Chu, L. Sun, K. Dai, Acta Phys. -Chim. Sin. 40 (2024) 2405016, https://doi.org/10.3866/PKU.WHXB202405016. doi: 10.3866/PKU.WHXB202405016

    28. [28]

      C. Chen, J. Zhan, H. Chu, L. Sun, G. Dawson, K. Dai, Chin. J. Catal. 63 (2024) 81, https://doi.org/10.1016/S1872-2067(24)60072-0. doi: 10.1016/S1872-2067(24)60072-0

    29. [29]

      C. Nie, X. Wang, P. Lu, Y. Zhu, X. Li, H. Tang, J. Mater. Sci. Technol. 169 (2024) 182, https://doi.org/10.1016/j.jmst.2023.06.011. doi: 10.1016/j.jmst.2023.06.011

    30. [30]

      H. Ding, R. Shen, K. Huang, C. Huang, G. Liang, P. Zhang, X. Li, Adv. Funct. Mater. 34 (2024) 2400065, https://doi.org/10.1002/adfm.202400065. doi: 10.1002/adfm.202400065

    31. [31]

      S. Li, C. Wang, K. Dong, P. Zhang, X. Chen, X. Li, Chin. J. Catal. 51 (2023) 101, https://doi.org/10.1016/S1872-2067(23)64479-1. doi: 10.1016/S1872-2067(23)64479-1

    32. [32]

      T. Yang, J. Wang, Z. Wang, J. Zhang, K. Dai, Chin. J. Catal. 58 (2024) 157, https://doi.org/10.1016/S1872-2067(23)64607-8. doi: 10.1016/S1872-2067(23)64607-8

    33. [33]

      R. Gao, R. Shen, C. Huang, K. Huang, G. Liang, P. Zhang, X. Li, Angew. Chem. Int. Ed. 64 (2025) e202414229, https://doi.org/10.1002/ange.202414229. doi: 10.1002/ange.202414229

    34. [34]

      A. Bahadoran, S. Masudy-Panah, J. Lile, J. Li, J. Gu, B. Sadeghi, S. Ramakrishna, Q. Liu, Int. J. Hydrog. Energy 46 (2021) 24094, https://doi.org/10.1016/j.ijhydene.2021.04.208. doi: 10.1016/j.ijhydene.2021.04.208

    35. [35]

      K. Dong, C. Shen, R. Yan, Y. Liu, C. Zhuang, S. Li, Acta Phys. -Chim. Sin. 40 (2024) 2310013, https://doi.org/10.3866/PKU.WHXB202310013. doi: 10.3866/PKU.WHXB202310013

    36. [36]

      G. Sun, Z. Tai, F. Li, Q. Ye, T. Wang, Z. Fang, L. Jia, W. Liu, H. Wang, Small 19 (2023) 2207758, https://doi.org/10.1002/smll.202207758. doi: 10.1002/smll.202207758

    37. [37]

      C. Wang, K. Rong, Y. Liu, F. Yang, S. Li, Sci. China Mater. 67 (2024) 562, https://doi.org/10.1007/s40843-023-2764-8. doi: 10.1007/s40843-023-2764-8

    38. [38]

      T. Liu, Y. Wang, P. Shan, Y. Chen, X. Zhao, W. Tian, Y. Zhang, R. Feng, H. Yuan, H. Cui, Appl. Surf. Sci. 564 (2021) 150117, https://doi.org/10.1016/j.apsusc.2021.150117. doi: 10.1016/j.apsusc.2021.150117

    39. [39]

      X. Zhang, J. Wang, P. Li, Z. Tan, J. Zeng, Y. He, N. Habibul, Chem. Eng. J. 428 (2022) 131209, https://doi.org/10.1016/j.cej.2021.131209. doi: 10.1016/j.cej.2021.131209

    40. [40]

      Y. Shang, X. Cheng, R. Shi, Q. Ma, Y. Wang, P. Yang, Mater. Sci. Eng. B 262 (2020) 114724, https://doi.org/10.1016/j.mseb.2020.114724. doi: 10.1016/j.mseb.2020.114724

    41. [41]

      S. Li, R. Yan, M. Cai, W. Jiang, M. Zhang, X. Li, J. Mater. Sci. Technol. 164 (2023) 59, https://doi.org/10.1016/j.jmst.2023.05.009. doi: 10.1016/j.jmst.2023.05.009

    42. [42]

      N. Lin, Y. Lin, X. Qian, X. Wang, W. Su, ACS Sustain. Chem. Eng. 9 (2021) 13686, https://doi.org/10.1021/acssuschemeng.1c05356. doi: 10.1021/acssuschemeng.1c05356

    43. [43]

      C. Wang, X. Li, X. Lv, X. Huang, Y. Zhao, T. Deng, J. Zhang, J. Wan, Y. Zhen, T. Wang, J. Clean. Prod. 472 (2024) 143521, https://doi.org/10.1016/j.jclepro.2024.143521. doi: 10.1016/j.jclepro.2024.143521

    44. [44]

      K. Huang, D. Chen, X. Zhang, R. Shen, P. Zhang, D. Xu, X. Li, Acta Phys. Chim. Sin. 40 (2024) 2407020, https://doi.org/10.3866/PKU.WHXB202407020. doi: 10.3866/PKU.WHXB202407020

    45. [45]

      X. Li, B. Kang, F. Dong, Z. Zhang, X. Luo, L. Han, J. Huang, Z. Feng, Z. Chen, J. Xu, B. Peng, Z. Wang, Nano Energy 81 (2021) 11, https://doi.org/10.1016/j.nanoen.2020.105671. doi: 10.1016/j.nanoen.2020.105671

    46. [46]

      Y. Liu, C. Zhang, J. Feng, X. Wang, Z. Ding, L. He, Q. Zhang, J. Chen, Y. Yin, Angew. Chem. Int. Ed. 62 (2023) e202308930, https://doi.org/10.1002/ange.202308930. doi: 10.1002/ange.202308930

    47. [47]

      H. Wei, F. Meng, H. Zhang, W. Yu, J. Li, S. Yao, J. Mater. Sci. Technol. 185 (2024) 107, https://doi.org/10.1016/j.jmst.2023.11.007. doi: 10.1016/j.jmst.2023.11.007

    48. [48]

      Q. Zhu, Y. Wang, J. Wang, J. Luo, J. Xu, C. Wang, Appl. Catal. B 346 (2024) 123734, https://doi.org/10.1016/j.apcatb.2024.123734. doi: 10.1016/j.apcatb.2024.123734

    49. [49]

      C. Liu, S. Mao, M. Shi, X. Hong, D. Wang, F. Wang, M. Xia, Q. Chen, Chem. Eng. J. 449 (2022) 137757, https://doi.org/10.1016/j.cej.2022.137757. doi: 10.1016/j.cej.2022.137757

    50. [50]

      Z. Zhang, X. Wang, J. Qian, J. Xu, J. Energy Chem. 92 (2024) 521, https://doi.org/10.1016/j.jechem.2024.01.006. doi: 10.1016/j.jechem.2024.01.006

    51. [51]

      R. Chen, W. Gan, J. Guo, Y. Lu, S. Ding, R. Liu, M. Zhang, Z. Sun, Chem. Eng. J. 489 (2024) 151260, https://doi.org/10.1016/j.cej.2024.151260. doi: 10.1016/j.cej.2024.151260

    52. [52]

      J. Wang, Z. Wang, K. Dai, J. Zhang, J. Mater. Sci. Technol. 165 (2023) 187, https://doi.org/10.1016/j.jmst.2023.03.067. doi: 10.1016/j.jmst.2023.03.067

    53. [53]

      X. Zhu, Y. Zhang, Y. Wang, Y. Liu, Z. Wu, Chem. Eng. J. 491 (2024) 152193, https://doi.org/10.1016/j.cej.2024.152193. doi: 10.1016/j.cej.2024.152193

    54. [54]

      W. Zhou, X. Wang, F. Lin, S. Xue, W. Lin, Y. Hou, Z. Yu, M. Anpo, J. C. Yu, J. Zhang, X. Wang, Angew. Chem. Int. Ed. 64 (2024) e202417703, https://doi.org/10.1002/ange.202417703. doi: 10.1002/ange.202417703

    55. [55]

      S. Yan, L. Wang, Y. Wu, T. Hou, Y. Li, K. Shen, Appl. Catal. B 357 (2024) 124337.https://doi.org/10.1016/j.apcatb.2024.124337. doi: 10.1016/j.apcatb.2024.124337

    56. [56]

      S. Cui, Y. Cong, W. Zhao, R. Guo, X. Wang, B. Lv, H. Liu, Y. Liu, Q. Zhang, J. Colloid. Interf. Sci. 654 (2024) 356, https://doi.org/10.1016/j.jcis.2023.10.051. doi: 10.1016/j.jcis.2023.10.051

    57. [57]

      W. Zeng, X. Ye, Y. Dong, Y. Zhang, C. Sun, T. Zhang, X. Guan, L. Guo, Coord. Chem. Rev. 508 (2024) 215753, https://doi.org/10.1016/j.ccr.2024.215753. doi: 10.1016/j.ccr.2024.215753

    58. [58]

      W. Yang, Z. Yang, L. Shao, S. Li, Y. Liu, X. Xia, J. Environ. Sci. 107 (2021) 194, https://doi.org/10.1016/j.jes.2021.02.006. doi: 10.1016/j.jes.2021.02.006

    59. [59]

      Z. Long, H. Shi, Y. Chen, J. Colloid. Interf. Sci. 678 (2024) 1169, https://doi.org/10.1016/j.jcis.2024.09.112. doi: 10.1016/j.jcis.2024.09.112

    60. [60]

      I. Gul, M. Sayed, N. Shah, J. Ali Khan, K. Polychronopoulou, J. Iqbal, F. Rehman, Chem. Eng. J. 384 (2020) 123255, https://doi.org/10.1016/j.cej.2019.123255. doi: 10.1016/j.cej.2019.123255

    61. [61]

      Z. Long, X, Zheng, H. Shi, Sci. China Mater. 67 (2024) 550, https://doi.org/10.1007/s40843-023-2773-9. doi: 10.1007/s40843-023-2773-9

    62. [62]

      Y. Wang, L. Ding, C. Liu, Y. Lu, Q. Wu, C. Wang, Q. Hu, Sep. Purif. Technol. 283 (2022) 120164, https://doi.org/10.1016/j.seppur.2021.120164. doi: 10.1016/j.seppur.2021.120164

    63. [63]

      X. Wang, J. Luo, Q. Yan, Y. Shen, Z. Liu, S. Lu, C. Lu, W. Shi, J. Colloid Interface Sci. 687 (2025) 105, https://doi.org/10.1016/j.jcis.2025.02.054. doi: 10.1016/j.jcis.2025.02.054

    64. [64]

      F. Li, G. Zhu, J. Jiang, L. Yang, F. Deng, Arramel, X. Li, J. Mater. Sci. Technol. 177 (2024) 142, https://doi.org/10.1016/j.jmst.2023.08.038. doi: 10.1016/j.jmst.2023.08.038

    65. [65]

      G. Yang, Y. Liang, J. Yang, X. Zhang, Z. Zeng, Z. Xiong, J. Jia, K. Sa, J. Environ. Chem. Eng. 11 (2023) 109328, https://doi.org/10.1016/j.jece.2023.109328. doi: 10.1016/j.jece.2023.109328

    66. [66]

      X. Huang, N. Zhu, F. Mao, Y. Ding, S. Zhang, H. Liu, F. Li, P. Wu, Z. Dang, Y. Ke, Chem. Eng. J. 392 (2020) 123636, https://doi.org/10.1016/j.cej.2019.123636. doi: 10.1016/j.cej.2019.123636

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  22
  • HTML全文浏览量:  2
文章相关
  • 发布日期:  2025-10-15
  • 收稿日期:  2025-05-13
  • 接受日期:  2025-06-15
  • 修回日期:  2025-06-13
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章