电催化氯代芳香烃脱氯催化剂的合成策略、应用与挑战

王琪 刘宇庆 王洁菲 马媛媛 都京 韩占刚

引用本文: 王琪, 刘宇庆, 王洁菲, 马媛媛, 都京, 韩占刚. 电催化氯代芳香烃脱氯催化剂的合成策略、应用与挑战[J]. 物理化学学报, 2025, 41(10): 100120. doi: 10.1016/j.actphy.2025.100120 shu
Citation:  Qi Wang, Yuqing Liu, Jiefei Wang, Yuan-Yuan Ma, Jing Du, Zhan-Gang Han. Catalysts for electrocatalytic dechlorination of chlorinated aromatic hydrocarbons: synthetic strategies, applications, and challenges[J]. Acta Physico-Chimica Sinica, 2025, 41(10): 100120. doi: 10.1016/j.actphy.2025.100120 shu

电催化氯代芳香烃脱氯催化剂的合成策略、应用与挑战

    通讯作者: 马媛媛, mayy334@hebtu.edu.cn; 都京, duj622@hebtu.edu.cn; 韩占刚, hanzg116@hebtu.edu.cn
  • 基金项目:

    国家自然科学基金 22471056

    国家自然科学基金 22301058

    国家自然科学基金 22371065

    河北省自然科学基金 B2024205033

    河北省自然科学基金 B2024205007

    河北省自然科学基金 B2022205005

    河北省教育厅科学技术研究项目 QN2023049

    中国博士后科学基金资助项目 2021TQ0095

    河北省科技厅项目 22567622H

    河北师范大学科研基金 L2023B51

    河北师范大学化学博士后科研流动站 

摘要: 电催化脱氯(EHDC)因其高效率、无二次污染及反应条件温和等特点,被认为是极具前景的污染物降解技术。在EHDC过程中,活性氢的生成、C―Cl键的断裂以及氯代芳香烃或反应中间体的吸附/脱附是核心步骤。该技术依赖高活性电催化剂以提升催化效率与成本效益。本文首先系统总结了EHDC中催化剂活性与稳定性的评价方法和指标,分别从贵金属与非贵金属基催化剂体系出发,综述了近年来低成本、高性能电催化剂的前沿进展。重点探讨了催化剂构效关系及提高催化剂活性的关键策略,如构建异质界面和设计合金结构优化活性组分的电子结构特性以及调控催化剂局域微环境改善电荷转移效率等。此外,还探讨了氯代芳香烃的结构对电催化脱氯活性的影响关系。最后分析了当前电催化加氢脱氯技术面临的挑战与未来发展方向,为含氯有机物的高效脱氯转化研究提供理论和技术参考。

English

    1. [1]

      M. Chen, S. Shu, J. X. Li, X. S. Lv, F. Dong, G. M. Jiang, J. Hazard. Mater. 389 (2020) 121876, https://doi.org/10.1016/j.jhazmat.2019.121876. doi: 10.1016/j.jhazmat.2019.121876

    2. [2]

      M. Y. Mao, J. Wu, Y. Wang, Y. Long, G. Y. Fan, Appl. Surf. Sci. 600 (2022) 153988, https://doi.org/10.1016/j.apsusc.2022.153988. doi: 10.1016/j.apsusc.2022.153988

    3. [3]

      T. Wu, Y. Zuo, H. Chen, Z. Xu, S. Zheng, Appl. Catal. A-Gen. 666 (2023) 119407, https://doi.org/10.1016/j.apcata.2023.119407. doi: 10.1016/j.apcata.2023.119407

    4. [4]

      G. M. Jiang, K. F. Wang, J. Y. Li, W. Y. Fu, Z. Y. Zhang, G. Johnson, X. S. Lv, Y. Zhang, S. Zhang, F. Dong, Chem. Eng. J. 348 (2018) 26, https://doi.org/10.1016/j.cej.2018.04.173. doi: 10.1016/j.cej.2018.04.173

    5. [5]

      B. Yang, G. Yu, D. M. Shuai, Chemosphere 67 (2007) 1361, https://doi.org/10.1016/j.chemosphere.2006.10.046. doi: 10.1016/j.chemosphere.2006.10.046

    6. [6]

      Y. Gao, D. He, L. Wu, Z. P. Wang, Y. Yao, Z. -H. Huang, H. Yang, M. -X. Wang, Chem. Eng. J. 420 (2021) 127411, https://doi.org/10.1016/j.cej.2020.127411. doi: 10.1016/j.cej.2020.127411

    7. [7]

      Z. T. Liu, Z. Zhou, W. Xiong, Q. Zhang, Langmuir 34 (2018) 10389, https://doi.org/10.1021/acs.langmuir.8b02156. doi: 10.1021/acs.langmuir.8b02156

    8. [8]

      Z. W. Cheng, D. Shou, P. Zhao, J. M. Chen, J. K. Zhao, J. M. Yu, S. H. Zhang, Y. H. Guan, Int. Biodeterior. Biodegrad. 180 (2023) 105585, https://doi.org/10.1016/j.ibiod.2023.105585. doi: 10.1016/j.ibiod.2023.105585

    9. [9]

      X. Zhou, H. P. Luo, Q. Y. Chen, X. Cao C. S., Shen, J. Zhou, Chem. Eng. J. 402 (2020) 126175, https://doi.org/10.1016/j.cej.2020.126175. doi: 10.1016/j.cej.2020.126175

    10. [10]

      Y. Xue, Z. H. Wang, R. Bush, F. Yang, R. X. Yuan, J. S. Liu, N. Smith, M. H. Huang, R. Dharmarajan, P. Annamalai, Chem. Eng. J. 415 (2021) 129041, https://doi.org/10.1016/j.cej.2021.129041. doi: 10.1016/j.cej.2021.129041

    11. [11]

      Q. Wang, Q. Liu, Y. -Y. Ma, H. -X. Bi, J. Du, Z. -G. Han, Inorg. Chem. Front. 11 (2024) 1238, https://doi.org/10.1039/D3QI02130K. doi: 10.1039/D3QI02130K

    12. [12]

      J. Liu, D. D. Han, P. J. Chen, L. P. Zhai, Y. J. Wang, W. H. Chen, L. W. Mi, L. P. Yang, Chem. Eng. J. 418 (2021) 129492, https://doi.org/10.1016/j.cej.2021.129492. doi: 10.1016/j.cej.2021.129492

    13. [13]

      X. Y. Yu, D. Cabooter, R. Dewil, J. Hazard. Mater. 357 (2018) 81, https://doi.org/10.1016/j.jhazmat.2018.05.049. doi: 10.1016/j.jhazmat.2018.05.049

    14. [14]

      Z. Zhang, N. Cissoko, J. J. Wo, X. H. Xu, J. Hazard. Mater. 165 (2009) 78, https://doi.org/10.1016/j.jhazmat.2008.09.080. doi: 10.1016/j.jhazmat.2008.09.080

    15. [15]

      J. X. Li, Y. Y. Peng, W. D. Zhang, X. L. Shi, M. Chen, P. Wang, X. M. Zhang, H. L. Fu, X. Lv, F. Dong, Appl. Surf. Sci. 509 (2020) 145369, https://doi.org/10.1016/j.apsusc.2020.145369. doi: 10.1016/j.apsusc.2020.145369

    16. [16]

      W. Y. Fu, S. Shu, J. X. Li, X. L. X. S. Shi, Y. X. Lv, Huang, F. Dong, G. M. Jiang, Nanoscale 11 (2019) 15892, https://doi.org/10.1039/C9NR04634H. doi: 10.1039/C9NR04634H

    17. [17]

      Y. -H. Xu, H. -X. Ma, Q. -Q. Cai, Y. -H. Zhu, C. -A. Ma, Acta Phys. -Chim. Sin. 29 (2013) 973, https://doi.org/10.3866/PKU.WHXB201302283. doi: 10.3866/PKU.WHXB201302283

    18. [18]

      H. X. Ma, T. J. Ge, Q. Q. Cai, Y. H. Xu, C. A. Ma, Acta Phys. -Chim. Sin. 32 (2016) 1715, https://doi.org/10.3866/PKU.WHXB20160412. doi: 10.3866/PKU.WHXB20160412

    19. [19]

      Z. C. Mao, L. H. Liu, H. B. Yang, Y. L. Zhang, Z. Q. Yao, H. Wu, Y. Q. Huang, Y. H. Xu, B. Liu, Electrochim. Acta 391 (2021) 138886, https://doi.org/10.1016/j.electacta.2021.138886. doi: 10.1016/j.electacta.2021.138886

    20. [20]

      H. Wu, H. X. Chen, C. C. Yu, R. F. Qu, M. Q. Shi, Z. M. Lou, J. Q. Zhu, J. M. Yu, Y. H. Xu, Chem. Eng. J. 463 (2023) 142484, https://doi.org/10.1016/j.cej.2023.142484. doi: 10.1016/j.cej.2023.142484

    21. [21]

      H. Wu, Z. C. Mao, B. Q. Liu, D. Y. Chen, M. Q. Shi, B. S. Lv, Y. H. Xu, L. B. Wang, Appl. Catal. B-Environ. 337 (2023) 122978, https://doi.org/10.1016/j.apcatb.2023.122978. doi: 10.1016/j.apcatb.2023.122978

    22. [22]

      Y. H. Xu, Z. C. Mao, R. F. Qu, J. S. Wang, J. M. Yu, X. Y. Luo, M. Q. Shi, X. B. Mao, J. Ding, B. Liu, Nat. Water 1 (2023) 95, https://doi.org/10.1038/s44221-022-00002-3. doi: 10.1038/s44221-022-00002-3

    23. [23]

      H. Wu, L. Q. Chen, C. Tang, X. Y. Fan, Q. Liu, Y. H. Xu, Sep. Purif. Technol. 331 (2024) 125647, https://doi.org/10.1016/j.seppur.2023.125647. doi: 10.1016/j.seppur.2023.125647

    24. [24]

      Y. Y. Peng, M. Y. Cui, Z. Y. Zhang, S. Shu, X. L. Shi, J. T. Brosnahan, C. Liu, Y. L. Zhang, P. Godbold, X. M. Zhang, F. Dong, G. M. Jiang, S. Zhang, ACS Catal. 9 (2019) 10803, https://doi.org/10.1021/acscatal.9b02282. doi: 10.1021/acscatal.9b02282

    25. [25]

      Z. M. Lou, J. S. Zhou, M. Sun, J. Xu, K. L. Yang, D. Lv, Y. P. Zhao, X. H. Xu, Chem. Eng. J. 352 (2018) 549, https://doi.org/10.1016/j.cej.2018.07.057. doi: 10.1016/j.cej.2018.07.057

    26. [26]

      A. Winkel, G. Proske, Ber. Dtsch. Chem. Ges. 69 (1936) 1917, https://doi.org/10.1002/cber.19360690823. doi: 10.1002/cber.19360690823

    27. [27]

      M. Stackelberg, W. Z. Stracke, Elektrochem. Angew. Phys. Chem. 53 (2010) 118, https://doi.org/10.1002/bbpc.19490530308. doi: 10.1002/bbpc.19490530308

    28. [28]

      G. M. Jiang, M. N. Lan, Z. Y. Zhang, X. S. Lv, Z. M. Lou, X. H. Xu, F. Dong, S. Zhang, Environ. Sci. Technol. 51 (2017) 7599, https://doi.org/10.1021/acs.est.7b01128. doi: 10.1021/acs.est.7b01128

    29. [29]

      Z. M. Lou, Z. N. Wang, J. S. Zhou, C. C. Zhou, J. Xu, X. H. Xu, Environ. Sci-Nano. 7 (2020) 1566, https://doi.org/10.1039/D0EN00182A. doi: 10.1039/D0EN00182A

    30. [30]

      Q. Wang, L. X. Zhou, Q. Chen, M. Y. Mao, W. D. Jiang, Y. Long, G. Y. Fan, J. Hazard. Mater. 408 (2021) 124456, https://doi.org/10.1016/j.jhazmat.2020.124456. doi: 10.1016/j.jhazmat.2020.124456

    31. [31]

      Z. M. Zhang, R. Cheng, J. Nan, X. Q. Chen, C. Huang, D. Cao, C. H. Bai, J. L. Han, B. Liang, Z. L. Li, A. J. Wang, Chin. Chem. Lett. 33 (2022) 3823, https://doi.org/10.1016/j.cclet.2021.11.068. doi: 10.1016/j.cclet.2021.11.068

    32. [32]

      K. F. Wang, S. Shu, M. Chen, J. Li, K. Zhou, J. Pan, X. L. Wang, X. J. Li, J. P. Sheng, F. Dong, Chem. Eng. J. 381 (2020) 122673, https://doi.org/10.1016/j.cej.2019.122673. doi: 10.1016/j.cej.2019.122673

    33. [33]

      Q. Wang, J. Du, Y. Y. Ma, X. Y. Yin, Z. Y. Tian, Z. G. Han, Chem. Eng. J. 451 (2023) 139107, https://doi.org/10.1016/j.cej.2022.139107. doi: 10.1016/j.cej.2022.139107

    34. [34]

      P. Wang, X. L. Shi, C. H. Fu, X. J. Li, J. X. Li, X. S. Lv, Y. H. Chu, F. Dong, G. M. Jiang, Nanoscale 12 (2020) 843, https://doi.org/10.1039/C9NR07528C. doi: 10.1039/C9NR07528C

    35. [35]

      A. A. Isse, B. B. Huang, C. Durante, A. Gennaro, Appl. Catal. B-Environ. 126 (2012) 347, https://doi.org/10.1016/j.apcatb.2012.07.004. doi: 10.1016/j.apcatb.2012.07.004

    36. [36]

      F. Wang, Z. Q. Fan, X. H. Wu, M. C. Li, C. A. Ma, Int. J. Electrochem. Sci. 10 (2015) 5101, https://doi.org/10.1016/S1452-3981(23)06690-7. doi: 10.1016/S1452-3981(23)06690-7

    37. [37]

      J. Halász, B. Imre, I. Hannus, Appl. Catal. A-Gen. 271 (2004) 47, https://doi.org/10.1016/j.apcata.2004.02.045. doi: 10.1016/j.apcata.2004.02.045

    38. [38]

      L. V. Romashov, L. L. Khemchyan, E. G. Gordeev, I. O. Koshevoy, S. P. Tunik, V. P. Ananikov, Organometallics 33 (2014) 6003, https://doi.org/10.1021/om500620u. doi: 10.1021/om500620u

    39. [39]

      S. X. Wang, M. D. Yang, C. Y. Cui, Q. Z. Zheng, C. Z. Zhou, Y. J. Xin, Electrochim. Acta. 462 (2023) 142707, https://doi.org/10.1016/j.electacta.2023.142707. doi: 10.1016/j.electacta.2023.142707

    40. [40]

      H. H. Qian, Y. T. Su, S. Yan, W. J. Fang, K. Yang, X. L. Weng, Appl. Surf. Sci. 665 (2024) 160245, https://doi.org/10.1016/j.apsusc.2024.160245. doi: 10.1016/j.apsusc.2024.160245

    41. [41]

      J. M. Wang, X. F. Wei, P. P. Wang, J. Miao, R. C. Zhang, N. Zhang, X. Q. Zhou, H. Xu, J. Zhang, H. S. Li, S. G. Peng, Fuel 341 (2023) 127689, https://doi.org/10.1016/j.fuel.2023.127689. doi: 10.1016/j.fuel.2023.127689

    42. [42]

      J. J. Li, S. M. Ma, Z. Y. Qi, J. Ding, M. H. Yin, B. Zhao, Z. R. Zhang, Y. Wang, H. W. Zhang, L. Wang, D. D. Dionysious, Appl. Catal. B-Environ. 322 (2023) 122076, https://doi.org/10.1016/j.apcatb.2022.122076. doi: 10.1016/j.apcatb.2022.122076

    43. [43]

      Y. J. Chen, C. Feng, W. H. Wang, Z. Liu, J. X. Li, C. G. Liu, Y. Pan, Y. Q. Liu, Sep. Purif. Technol. 289 (2022) 120731, https://doi.org/10.1016/j.seppur.2022.120731. doi: 10.1016/j.seppur.2022.120731

    44. [44]

      Z. Y. Kong, D. H. Li, R. S. Cai, T. Li, L. P. Diao, X. K. Chen, X. X. Wang, H. J. Zheng, Y. Jia, D. J. Yang, J. Hazard. Mater. 463 (2024) 132964, https://doi.org/10.1016/j.jhazmat.2023.132964. doi: 10.1016/j.jhazmat.2023.132964

    45. [45]

      Z. F. Zhao, X. Y. Yao, R. P. Yu, X. Y. Luo, M. H. Chen, X. X. Zhang, Y. H. Xu, Y. Q. Chu, X. B. Mao, H. J. Zheng, Chem. Eng. J. 492 (2024) 152340, https://doi.org/10.1016/j.cej.2024.152340. doi: 10.1016/j.cej.2024.152340

    46. [46]

      J. W. Lu, S. N. Zhang, H. Z. Zhou, C. J. Huang, L. Xia, X. F. Liu, H. Luo, H. Wang, Acta Phys. -Chim. Sin. 39 (2023) 2302021, https://doi.org/10.3866/PKU.WHXB202302021. doi: 10.3866/PKU.WHXB202302021

    47. [47]

      C. M. Li, K. Chen, X. Y. Wang, N. Xue, H. Q. Yang, Acta Phys. -Chim. Sin. 37 (2021) 2009101, https://doi.org/10.3866/PKU.WHXB202009101. doi: 10.3866/PKU.WHXB202009101

    48. [48]

      J. X. Li, Y. J. Chen, R. Y. Bai, C. Chen, W. H. Wang, Y. Pan, Y. Q. Liu, Chem. Eng. J. 435 (2022) 134932, https://doi.org/10.1016/j.cej.2022.134932. doi: 10.1016/j.cej.2022.134932

    49. [49]

      P. Peng, A. Anastasopoulou, K. Brooks, H. Furukawa, M. E. Bowden, J. R. Long, T. Autrey, H. Breunig, Nat. Energy. 7 (2022) 448, https://doi.org/10.1038/s41560-022-01013-w. doi: 10.1038/s41560-022-01013-w

    50. [50]

      X. S. Lv, K. X. Jiang, H. Wu, L. Ao, L. Hu, X. Y. Li, F. Shen, L. Shi, F. Dong, G. M. Jiang, ACS ES & T. Water. 2 (2022) 1451, https://doi.org/10.1021/acsestwater.2c00205. doi: 10.1021/acsestwater.2c00205

    51. [51]

      X. Y. Shu, Q. Yang, F. B. Yao, Y. Zhong, W. C. Ren, F. Chen, J. Sun, Y. H. Ma, Z. Y. Fu, D. B. Wang, X. M. Li, Chem. Eng. J. 358 (2019) 903, https://doi.org/10.1016/j.cej.2018.10.095. doi: 10.1016/j.cej.2018.10.095

    52. [52]

      L. -Y. Liu, M. -H. Cui, S. -M. Niu, X. -D. Zhang, X. -H. Li, W. -L. Wang, H. Liu, G. -S. Liu, A. -J. Wang, ACS EST. Engg. 4 (2024) 1275, https://doi.org/10.1021/acsestengg.3c00493. doi: 10.1021/acsestengg.3c00493

    53. [53]

      J. J. Li, Y. Wang, B. Zhao, J. Ding, J. Zhang, M. H. Yin, Z. H. Zhang, S. M. Ma, Y. Q. Liu, Z. L. Tan, H. W. Zhang, L. Wang, D. D. Dionysiou, Appl. Catal. B-Environ. 332 (2023) 122754, https://doi.org/10.1016/j.apcatb.2023.122754. doi: 10.1016/j.apcatb.2023.122754

    54. [54]

      J. T. Tang, K. N. Liu, X. Y. Li, M. Y. Fu, W. T. Yu, L. X. Jiang, J. X. Ye, S. J. Song, Environ. Chem. Eng. 11 (2023) 109843, https://doi.org/10.1016/j.jece.2023.109843. doi: 10.1016/j.jece.2023.109843

    55. [55]

      Z. K. Wang, Y. Y. Wang, N. Zhang, L. X. Ma, J. Sun, C. Yu, S. J. Liu, R. B. Jiang, J. Mater. Chem. A 10 (2022) 10342, https://doi.org/10.1039/D2TA01931K. doi: 10.1039/D2TA01931K

    56. [56]

      F. F. Qin, X. D. Tian, Z. Y. Guo, W. Z. Shen, ACS Sustainable Chem. Eng. 6 (2018) 15708, https://doi.org/10.1021/acssuschemeng.8b04227. doi: 10.1021/acssuschemeng.8b04227

    57. [57]

      C. X. Fan, Y. D. Tian, S. Y. Bai, C. Y. Zhang, X. L. Wu, J. Energy Storage 44 (2021) 103492, https://doi.org/10.1016/j.est.2021.103492. doi: 10.1016/j.est.2021.103492

    58. [58]

      Y. Q. Wang, M. C. Zhang, W. Xu, X. Y. Shen, F. Gao, J. L. Zhu, X. Wan, X. J. Lian, J. G. Xu, Y. Tong, Acta Phys. -Chim. Sin. 38 (2022) 1907076, https://doi.org/10.3866/PKU.WHXB202211025. doi: 10.3866/PKU.WHXB202211025

    59. [59]

      Y. Liu, L. Liu, J. Shan, J. D. Zhang, J. Hazard. Mater. 290 (2015) 1, https://doi.org/10.1016/j.jhazmat.2015.02.016. doi: 10.1016/j.jhazmat.2015.02.016

    60. [60]

      J. J. Li, H. Wang, L. Wang, C. Ma, C. Luan, B. Zhao, Z. R. Zhang, H. W. Zhang, X. W. Cheng, J. L. Liu, Catalysts 8 (2018) 378, https://doi.org/10.3390/catal8090378. doi: 10.3390/catal8090378

    61. [61]

      K. Yang, Q. Sun, F. Xue, D. H. Lin, J. Hazard. Mater. 195 (2011) 124, https://doi.org/10.1016/j.jhazmat.2011.08.020. doi: 10.1016/j.jhazmat.2011.08.020

    62. [62]

      K. X. Jiang, X. L. Shi, M. Chen, X. S. Lv, H. F. Gong, Y. Shen, P. Wang, F. Dong, M. Liu, X. M. Zhang, G. M. Jiang, J. Hazard. Mater. 411 (2021) 125119, https://doi.org//10.1016/j.jhazmat.2021.125119. doi: 10.1016/j.jhazmat.2021.125119

    63. [63]

      G. L. Li, Y. Liu, Y. Shen, Q. L. Fang, F. Liu, Front. Chem. Eng. 3 (2021) 636439, https://doi.org/10.3389/fceng.2021.636439. doi: 10.3389/fceng.2021.636439

    64. [64]

      Y. Shen, Y. W. Tong, J. L. Xu, S. B. Wang, J. Wang, T. Zeng, Z. Q. He, W. Q. Yang, S. Song, Appl. Catal. B-Environ. 264 (2020) 118505, https://doi.org/10.1016/j.apcatb.2019.118505. doi: 10.1016/j.apcatb.2019.118505

    65. [65]

      C. C. Chen, L. J. Jin, H. L. Dong, J. Jiang, H. Feng, D. Y. Chen, N. J. Li, Q. F. Xu, J. M. Lu, Sep. Purif. Technol. 324 (2023) 124527, https://doi.org/10.1016/j.seppur.2023.124527. doi: 10.1016/j.seppur.2023.124527

    66. [66]

      G. P. Lei, D. K. Chen, Q. B. Li, H. T. Liu, Q. Shi, C. Li, Electrochim. Acta 413 (2022) 140143, https://doi.org/10.1016/j.electacta.2022.140143. doi: 10.1016/j.electacta.2022.140143

    67. [67]

      K. Y. Li, D. Guo, J. Y. Kang, B. Wei, X. T. Zhang, Y. J. Chen, ACS Sustainable Chem. Eng. 6 (2018) 14641, https://doi.org/10.1021/acssuschemeng.8b03232. doi: 10.1021/acssuschemeng.8b03232

    68. [68]

      C. Hu, C. Lv, S. Liu, Y. Shi, J. F. Song, Z. Zhang, J. G. Cai, A. Watanabe, Catalysis 10 (2020) 188, https://doi.org/10.3390/catal10020188. doi: 10.3390/catal10020188

    69. [69]

      H. B. Yu, M. Y. Wang, X. H. Wang, Mater. Res. Bull. 172 (2024) 112655, https://doi.org/10.1016/j.materresbull.2023.112655. doi: 10.1016/j.materresbull.2023.112655

    70. [70]

      Z. Qiu, Y. Ma, T. Edvinsson, Nano Energy 66 (2019) 104118, https://doi.org/10.1016/j.nanoen.2019.104118. doi: 10.1016/j.nanoen.2019.104118

    71. [71]

      Q. X. Liu, Y. T. Shen, S. Song, Z. Q. He, RSC Adv. 66 (2019) 104118, https://doi.org/10.1039/C9RA01843C. doi: 10.1039/C9RA01843C

    72. [72]

      J. Zhao, R. Urrego-Ortiz, N. Liao, F. Calle-Vallejo, J. Luo, Nat. Commun. 15 (2024) 6391, https://doi.org/10.1038/s41467-024-50691-5. doi: 10.1038/s41467-024-50691-5

    73. [73]

      F. F. Liu, X. Yang, D. Dang, X. L. Tian, ChemElectroChem 6 (2019) 2208, https://doi.org/10.1002/celc.201900252. doi: 10.1002/celc.201900252

    74. [74]

      C. X. Guo, Y. Jiao, Y. Zheng, J. Luo, K. Davey, S. -Z. Qiao, Chem 5 (2019) 2429, https://doi.org/10.1016/j.chempr.2019.06.016. doi: 10.1016/j.chempr.2019.06.016

    75. [75]

      M. J. Wang, Y. Xu, C. K. Peng, S. Y. Chen, Y. G. Lin, Z. W. Hu, L. Sun, S. Y. Ding, C. W. Pao, Q. Shao, X. Q. Huang, J. Am. Chem. Soc. 143 (2021) 16512, https://doi.org/10.1021/jacs.1c06006. doi: 10.1021/jacs.1c06006

    76. [76]

      Z. M. Lou, C. C. Yu, X. F. Wen, Y. H. Xu, J. M. Yu, X. H. Xu, Appl. Catal. B-Environ. 317 (2022) 121730, https://doi.org/10.1016/j.apcatb.2022.121730. doi: 10.1016/j.apcatb.2022.121730

    77. [77]

      F. Gao, Y. P. Zhang, P. P. Song, J. Wang, C. Q. Wang, J. Guo, Y. K. Du, J. Power Sources 418 (2019) 186, https://doi.org/10.1016/j.jpowsour.2019.02.031. doi: 10.1016/j.jpowsour.2019.02.031

    78. [78]

      Y. P. Zhang, F. Gao, P. P. Song, J. Wang, J. Guo, Y. Shiraishi, Y. K. Du, ACS Sustainable Chem. Eng. 7 (2019) 3176, https://doi.org/10.1021/acssuschemeng.8b05020. doi: 10.1021/acssuschemeng.8b05020

    79. [79]

      Z. Y. Xu, X. Tan, C. Chen, X. D. Wang, R. Sui, Z. B. Zhuang, C. Zhang, C. Chen, Natl. Sci. Rev. 11 (2024) nwae315, https://doi.org/10.1093/nsr/nwae315. doi: 10.1093/nsr/nwae315

    80. [80]

      G. M. Jiang, X. L. Shi, M. Y. Cui, W. L. Wang, P. Wang, G. Johnson, Y. D. Nie, X. S. Lv, X. M. Zhang, F. Dong, S. Zhang, ACS Appl. Mater. Interfaces 13 (2021) 4072, https://doi.org/10.1021/acsami.0c20994. doi: 10.1021/acsami.0c20994

    81. [81]

      Z. M. Fan, H. C. Zhao, K. F. Wang, W. Ran, J. F. Sun, J. F. Liu, R. Liu, Environ. Sci. Technol. 57 (2023) 1499, https://doi.org/10.1021/acs.est.2c07462. doi: 10.1021/acs.est.2c07462

    82. [82]

      X. F. Cheng, Q. Cao, Q. Liu, H. Y. Zhang, Q. F. Xu, J. M. Lu, Chin. J. Chem. 42 (2024) 2445, https://doi.org/10.1002/cjoc.202400293. doi: 10.1002/cjoc.202400293

    83. [83]

      J. J. Li, K. Z. Kong, Y. T. Chong, J. Ding, L. Wang, Z. C. Ba, J. Zhang, Sep. Purif. Technol. 323 (2023) 124452, https://doi.org/10.1016/j.seppur.2023.124452. doi: 10.1016/j.seppur.2023.124452

    84. [84]

      Q. H. Zhao, C. C. Chen, J. H. Fu, Y. P. Zhang, J. Y. Huo, H. B. Zeng, Q. F. Xu, J. M. Lu, Sep. Purif. Technol. 351 (2024) 128040, https://doi.org/10.1016/j.seppur.2024.128040. doi: 10.1016/j.seppur.2024.128040

    85. [85]

      W. T. Yu, H. Jiang, J. H. Fang, S. Song, Environ. Sci. Technol. 55 (2021) 10087, https://doi.org/10.1021/acs.est.1c01922. doi: 10.1021/acs.est.1c01922

    86. [86]

      T. Li, Z. Y. Kong, M. M. Liu, Y. Y. Sun, L. P. Diao, P. Lu, D. H. Li, D. J. Yang, Appl. Catal. B-Environ. 351 (2024) 123968, https://doi.org/10.1016/j.apcatb.2024.123968. doi: 10.1016/j.apcatb.2024.123968

    87. [87]

      Z. M. Lou, Y. Z. Li, J. S. Zhou, K. L. Yang, Y. L. Liu, S. A. Baig, X. H. Xu, J. Hazard. Mater. 362 (2019) 148, https://doi.org/10.1016/j.jhazmat.2018.08.066. doi: 10.1016/j.jhazmat.2018.08.066

    88. [88]

      S. Shu, X. Y. Tang, C. C. Huang, Y. N. Liu, J. J. Li, Ind. Eng. Chem. Res. 63 (2024), 7114, https://doi.org/10.1021/acs.iecr.3c04493. doi: 10.1021/acs.iecr.3c04493

    89. [89]

      J. Li, C. Feng, C. Chen, Y. Pan, Y. J. Liu, Environ. Sci. 149 (2025) 288, https://doi.org/10.1016/j.jes.2024.01.053. doi: 10.1016/j.jes.2024.01.053

    90. [90]

      Y. F. Wu, L. Gan, S. P. Zhang, H. O. Song, C. Lu, W. T. Li, Z. Wang, B. C. Jiang, A. J. Li, J. Hazard. Mater. 356 (2018) 17, https://doi.org/10.1016/j.jhazmat.2018.05.034. doi: 10.1016/j.jhazmat.2018.05.034

    91. [91]

      Y. L. Chen, L. Xiong, X. N. Song, W. K. Wang, Y. X. Huang, H. Q. Yu, Chemosphere 125 (2015) 57, https://doi.org/10.1016/j.chemosphere.2015.01.052. doi: 10.1016/j.chemosphere.2015.01.052

    92. [92]

      L. Y. Liu, M. H. Cui, J. J. Ambuchi, S. M. Niu, X. H. Li, W. L. Wang, H. Liu, G. S. Liu, A. J. Wang, Environ. Res. 252 (2024) 118859, https://doi.org/10.1016/j.envres.2024.118859. doi: 10.1016/j.envres.2024.118859

    93. [93]

      X. Z. Song, Q. Shi, H. Wang, S. L. Liu, C. Tai, Z. Y. Bian, Appl. Catal. B-Environ. 20 (2017) 442, https://doi.org/10.1016/j.apcatb.2016.10.036. doi: 10.1016/j.apcatb.2016.10.036

    94. [94]

      N. Li, X. Song, L. Wang, X. Geng, H. Wang, H. Tang, Z. Y. Bian, ACS Appl. Mater. Interfaces 12 (2020) 24019, https://doi.org/10.1021/acsami.0c05159. doi: 10.1021/acsami.0c05159

    95. [95]

      J. L. Xie, Y. X. Li, X. Yan, Z. H. Yu, H. Chen, F. Jiang, Appl. Mater. Interfaces 16 (2024) 44817, https://doi.org/10.1021/acsami.4c08043. doi: 10.1021/acsami.4c08043

    96. [96]

      P. Rugira, S. Pan, Z. M. Liang, R. Boutaleb, W. Q. Huang, N. B. Ullah, X. Zhao, C. Wang, Sep. Purif. Technol. 361 (2025) 131573, https://doi.org/10.1016/j.seppur.2025.131573. doi: 10.1016/j.seppur.2025.131573

    97. [97]

      Y. Pan, C. Zhang, Y. Lin, Z. Liu, M. M. Wang, C. Chen, Sci. China Mater. 63 (2020) 921, https://doi.org/10.1007/s40843-019-1242-1. doi: 10.1007/s40843-019-1242-1

    98. [98]

      X. Zhao, D. Luo, Y. Wang, Z. -H. Liu, Nano Res. 12 (2019) 2872, https://doi.org/10.1007/s12274-019-2529-y. doi: 10.1007/s12274-019-2529-y

    99. [99]

      J. J. Li, K. Z. Kong, S. M. Ma, J. Ding, L. Wang, J. Crittenden, Appl. Catal. B-Environ. 356 (2024) 124245, https://doi.org/10.1016/j.apcatb.2024.124245. doi: 10.1016/j.apcatb.2024.124245

    100. [100]

      J. J. Li, H. Yu, Y. J. Ding, L. J. Wang, Environ. Chem. Eng. 13 (2025) 115548, https://doi.org/10.1016/j.jece.2025.115548. doi: 10.1016/j.jece.2025.115548

    101. [101]

      J. Wang, C. Y. Cui, Y. J. Xin, Q. Z. Zheng, X. Zhang, Electrochim. Acta 296 (2019) 874, https://doi.org/10.1016/j.electacta.2018.11.115. doi: 10.1016/j.electacta.2018.11.115

    102. [102]

      S. L. Xu, W. Wang, H. T. Li, Y. X. Gao, Y. Min, P. Liu, X. Zheng, D. -F. Liu, J. J. Chen, H. Q. Yu, X. Zhou, Y. Wu, Adv. Mater. 37 (2025) 2500371, https://doi.org/10.1002/adma.202500371. doi: 10.1002/adma.202500371

    103. [103]

      B. Yang, G. Yu, J. Huang, Environ. Sci. Technol. 41 (2007) 7503, https://doi.org/10.1021/es071168o. doi: 10.1021/es071168o

    104. [104]

      J. Han, R. L. Deming, F. -M. Tao, J. Phys. Chem. A 108 (2004) 7736, https://doi.org/10.1021/jp047923r. doi: 10.1021/jp047923r

    105. [105]

      W. Y. He, S. Y. Yang, K. J. Ye, S. Y. Bai, S. Xu, A. Amrane, M. Zhang, H. Wang, H. Q. Wang, Q. Yuan, X. L. Shi, Chem. Eng. J. 487 (2024) 150460, https://doi.org/10.1016/j.cej.2024.150460. doi: 10.1016/j.cej.2024.150460

    106. [106]

      Z. J. Liu, E. A. Betterton, R. G. Arnold, Environ. Sci. Technol. 34 (2000) 804, https://doi.org/10.1021/es991049b. doi: 10.1021/es991049b

    107. [107]

      C. Durante, V. Perazzolo, A. A. Isse, M. Favaro, G. Granozzi, A. Gennaro, ChemElectroChem 1 (2014) 1370, https://doi.org/10.1002/celc.201402032. doi: 10.1002/celc.201402032

    108. [108]

      X. F. Wei, J. M. Wang, J. Miao, R. C. Zhang, W. W. Lu, N. Zhang, X. Q. Zhou, H. Xu, J. Zhang, S. G. Peng, Colloids Surf. A Physicochem. Eng. Asp. 648 (2022) 129320, https://doi.org/10.1016/j.colsurfa.2022.129320. doi: 10.1016/j.colsurfa.2022.129320

    109. [109]

      Z. R. Sun, X. F. Wei, Y. B. Han, S. Tong, X. Hu, J. Hazard. Mater. 244-245 (2013) 287, https://doi.org/10.1016/j.jhazmat.2012.11.017. doi: 10.1016/j.jhazmat.2012.11.017

    110. [110]

      S. Shu, W. Y. Fu, P. Wang, W. L. Cen, Y. H. Chu, F. S. Wei, X. M. Zhang, F. Dong, G. M. Jiang, Appl. Catal. A Gen. 583 (2019) 117146, https://doi.org/10.1016/j.apcata.2019.117146. doi: 10.1016/j.apcata.2019.117146

    111. [111]

      A. L. Tang, L. M. Wang, R. H. Zhou, Comput. Theor. Chem. 960 (2010) 31, https://doi.org/10.1016/j.theochem.2010.08.021. doi: 10.1016/j.theochem.2010.08.021

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  46
  • HTML全文浏览量:  4
文章相关
  • 发布日期:  2025-10-15
  • 收稿日期:  2025-04-16
  • 接受日期:  2025-06-11
  • 修回日期:  2025-05-25
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章