基于选择性化学刻蚀的低缺陷炭导电网络原位构筑及其对活性炭比表面积与导电性的协同增强

张晶 张苏 李齐齐 纪麟肯 李禹彤 任宇康 臧小蓓 曹宁 胡涵 梁鹏 范壮军

引用本文: 张晶, 张苏, 李齐齐, 纪麟肯, 李禹彤, 任宇康, 臧小蓓, 曹宁, 胡涵, 梁鹏, 范壮军. 基于选择性化学刻蚀的低缺陷炭导电网络原位构筑及其对活性炭比表面积与导电性的协同增强[J]. 物理化学学报, 2025, 41(10): 100114. doi: 10.1016/j.actphy.2025.100114 shu
Citation:  Jing Zhang, Su Zhang, Qiqi Li, Linken Ji, Yutong Li, Yukang Ren, Xiaobei Zang, Ning Cao, Han Hu, Peng Liang, Zhuangjun Fan. Integrating high surface area and electric conductivity in activated carbon by in situ formation of the less-defective carbon network during selective chemical etching[J]. Acta Physico-Chimica Sinica, 2025, 41(10): 100114. doi: 10.1016/j.actphy.2025.100114 shu

基于选择性化学刻蚀的低缺陷炭导电网络原位构筑及其对活性炭比表面积与导电性的协同增强

    通讯作者: 张苏, suzhangs@163.com; 胡涵, hhu@upc.edu.cn; 梁鹏, liangpeng202@hotmail.com
  • 基金项目:

    国家自然科学基金 52062046

    国家自然科学基金 52302336

    国家自然科学基金 22179145

    山东省泰山学者项目 tsqn202306131

    山东省泰山学者项目 tsqn202312123

    山东省自然科学基金重点基础研究项目 ZR2019ZD51

摘要: 导电性是影响活性炭的电化学性能的重要因素,但活性炭发达的孔隙结构通常会破坏连续导电网络。本研究以沥青/聚丙烯腈(PAN)混合前驱体为原料,提出一种简单的选择性化学蚀刻策略制备兼具高比表面积与高导电性的活性炭。研究发现,PAN衍生炭包含无定形与结晶炭;在活化过程中,高反应活性的无定形炭被优先刻蚀,促使低缺陷炭骨架原位重构为连续导电网络。优化样品的比表面积达2773 m2·g−1,电导率提升了2.6倍(912 S·m−1),性能优于大多数活性炭。此外,沥青和PAN分子之间通过预氧化产生的强交联效应使制备的活性炭的产率(58%)显著高于纯沥青基活性炭(34%)。组装的对称超级电容器在10 mg·cm−2高负载量下仍表现出优异的面电容(1 A·g−1时为2.8 F·cm−2)、良好的倍率性能(50 A·g¹时电容保持率为41%)、高的能量密度(10.9 Wh·kg−1)及卓越的循环稳定性(50000次循环后容量无衰减),本工作显示了高导电活性炭在实际应用中的巨大潜力,为先进储能器件用导电活性炭的制备提供了新思路。

English

    1. [1]

      Y. M. Xiao, S. Yi, Z. L. Yan, X. Y. Qiu, P. P. Ning, D. R. Yang, N. Du, Small. 20 (2024) 2404440, https://doi.org/10.1002/smll.202404440 doi: 10.1002/smll.202404440

    2. [2]

      H. Shao, Y. C. Wu, Z. F. Lin, P. L. Taberna, P. Simon, Chem. Soc. Rev. 49 (2020) 3005, https://doi.org/10.1039/D0CS00059K doi: 10.1039/D0CS00059K

    3. [3]

      W. Guo, C. Yu, S. F. Li, J. S. Qiu, Energy Environ. Sci. 14 (2021) 576, https://doi.org/10.1039/D0EE02649B doi: 10.1039/D0EE02649B

    4. [4]

      Z. F. Lin, E. Goikolea, A. Balducci, K. Naoi, P. L. Taberna, M. Salanne, G. Yushin, P. Simon, Mater. Today 21 (2018) 419, https://doi.org/10.1016/j.mattod.2018.01.035 doi: 10.1016/j.mattod.2018.01.035

    5. [5]

      Z. F. Lin, E. Goikolea, A. Balducci, K. Naoi, P. L. Taberna, M. Salanne, G. Yushin, P. Simon, Small Methods 4 (2020) 1900853, https://doi.org/10.1002/smtd.201900853 doi: 10.1002/smtd.201900853

    6. [6]

      Y. Qing, Y. T. Jiang, H. Lin, L. X. Wang, A. J. Liu, Y. L. Cao, R. Sheng, Y. Guo, C. W. Fan, S. Zhang, D. Z. Jia, Z. J. Fan, J. Mater. Chem. A 7 (2019) 6021, https://doi.org/10.1039/C8TA11620B doi: 10.1039/C8TA11620B

    7. [7]

      L. Y. Liu, X. H. Wang, V. Izotov, D. Havrykov, I. Koltsov, W. Han, Y. Zozulya, O. Linyucheva, V. Zahorodna, O. Gogotsi, Y. Gogotsi, Electrochim. Acta 302 (2019) 38, https://doi.org/10.1016/j.electacta.2019.02.004 doi: 10.1016/j.electacta.2019.02.004

    8. [8]

      R. Saha, C. J. Gómez García, Chem. Soc. Rev. 53 (2024) 9490, https://doi.org/10.1039/D4CS00141A doi: 10.1039/D4CS00141A

    9. [9]

      P. Mao, Y. G. Guo, T. Wang, L. Q. He, W. J. Li, Z. Y. Liu, B. Xie, K. Guo, L. L. Shu, J. H. Gao, ACS Appl. Mater. Inter. 17 (2024) 1485, https://doi.org/10.1021/acsami.4c15339 doi: 10.1021/acsami.4c15339

    10. [10]

      Z. Wang, Q. H. Hu, S. B. Wang, Z. R. Liu, C. Y Tang, L. L. Li, J. Mater. Chem. A., 13 (2025) 2642, https://doi.org/10.1039/d4ta06337f doi: 10.1039/d4ta06337f

    11. [11]

      S. Suman, D. K. Sharma, O. Szabo, B. Rakesh, M. Marton, M. Vojs, K. J. Sankaran, A. Kromka, Small 21 (2024) 2407514, https://doi.org/10.1002/smll.202407514 doi: 10.1002/smll.202407514

    12. [12]

      J. Y. Wu, X. Zhang, Z. Y. Ju, L. Wang, Z. Y. Hui, K. Mayilvahanan, K. J. Takeuchi, A. C. Marschilok, A. C. West, E. S. Takeuchi, G. H. Yu, Adv. Mater. 33 (2021) 2101275, https://doi.org/10.1002/adma.202101275 doi: 10.1002/adma.202101275

    13. [13]

      P. Ye, L. S. Qin, M. Y. He, F. F. Wu, Z. Y. Chen, M. X. Liang, L. B. Deng, Acta Phys. Chim. Sin., 41 (2025) 100023, https://doi.org/10.3866/PKU.WHXB202311032 doi: 10.3866/PKU.WHXB202311032

    14. [14]

      Q. Q. Li, Y. T. Jiang, Z. M. Jiang, J. Y. Zhu, X. M. Gan, F. W. Qin, T. T. Tang, W. X. Luo, N. N. Guo, Z. Liu, L. X. Wang, S. Zhang, D. Z. Jia, Z. J. Fan, Carbon 191 (2022) 19, https://doi.org/10.1016/j.carbon.2022.01.042 doi: 10.1016/j.carbon.2022.01.042

    15. [15]

      M. Yu, X. H. Ning, Chem. Eng. J. 503 (2025) 158554, https://doi.org/10.1016/j.cej.2024.158554 doi: 10.1016/j.cej.2024.158554

    16. [16]

      X. X. Yang, G. X. Sun, F. Wang, X. Li, Z. Z. Zhang, Y. Z. Zhen, D. J. Wang, X. M. Gao, F. Fu, R. A. Chi, J. Colloid Interface Sci. 646 (2023) 228, https://doi.org/10.1016/j.jcis.2023.04.179 doi: 10.1016/j.jcis.2023.04.179

    17. [17]

      J. X. Cheng, Z. J. Lu, X. F. Zhao, X. X. Chen, Y. H. Liu, J. Power Sources. 494 (2021) 229770, https://doi.org/10.1016/j.jpowsour.2021.229770 doi: 10.1016/j.jpowsour.2021.229770

    18. [18]

      Y. Xiao, D. Dong, J. W. Wang, J. N. Liu, T. Wang, Y. S. Zhang, Chem. Eng. J. 500 (2024) 157084, https://doi.org/10.1016/j.cej.2024.157084 doi: 10.1016/j.cej.2024.157084

    19. [19]

      G. L. Zhang, T. T. Guan, N. Wang, J. C. Wu, J. L. Wang, J. L. Qiao, K. X. Li, Chem. Eng. J. 399 (2020) 125818, https://doi.org/10.1016/j.cej.2020.125818

    20. [20]

      X. Y. Liu, D. Lyu, C. Merlet, M. J. A. Leesmith, X. Hua, Z. Xu, Grey C. P., Forse A. C., Science 384 (2024) 321, https://doi.org/10.1126/science.adn6242 doi: 10.1126/science.adn6242

    21. [21]

      W. H. Chi, G. W. Wang, Z. P. Qiu, Q. Q. Li, Z. Xu, Z. Y. Li, B. Qi, K. Cao, C. L. Chi, T. Wei, Z. J. Fan, Batteries. 10 (2024) 5, https://doi.org/10.3390/batteries10010005 doi: 10.3390/batteries10010005

    22. [22]

      M. Majumder, R. B. Choudhary, S. P. Koiry, A. K. Thakur, U. Kumar, Electrochim. Acta 248 (2017) 98, https://doi.org/10.1016/j.electacta.2017.07.107 doi: 10.1016/j.electacta.2017.07.107

    23. [23]

      S. J. Zhu, M. H. Sun, J. Y. Jiang, X. F. Zhan, C. Y. Du, C. Ding, D. H. Wei, X. C. Huang, ACS Appl. Nano Mater. 7 (2024) 28593, https://doi.org/10.1021/acsanm.4c05742 doi: 10.1021/acsanm.4c05742

    24. [24]

      T. D. Silva, C. Damery, R. Alkhaldi, R. Karunanithy, D. H. Gallaba, P. D. Patil, M. Wasala, P. Sivakumar, A. Migone, S. Talapatra, ACS Appl. Mater. Interfaces 13 (2021) 56004, https://doi.org/10.1021/acsami.1c12551 doi: 10.1021/acsami.1c12551

    25. [25]

      S. Zhu, J. F. Ni, Y. Li, Nano Res. 13 (2020) 1825, https://doi.org/10.1007/s12274-020-2729-5 doi: 10.1007/s12274-020-2729-5

    26. [26]

      J. Tian, S. Wu, X. L. Yin, W. Wu, Appl. Surf. Sci. 496 (2019) 143696, https://doi.org/10.1016/j.apsusc.2019.143696 doi: 10.1016/j.apsusc.2019.143696

    27. [27]

      S. Y. Lu, M. Jin, Y. Zhang, Y. B. Niu, J. C. Gao, C. M. Li, Adv. Energy Mater. 8 (2018) 1702545, https://doi.org/10.1002/aenm.201702545 doi: 10.1002/aenm.201702545

    28. [28]

      J. Y. Zhu, L. X. Wang, X. M. Gan, T. T. Tang, F. W. Qin, W. X. Luo, Q. Q. Li, N. N. Guo, S. Zhang, D. Z. Jia, H. H. Song, Energy Storage Mater. 47 (2022) 158, https://doi.org/10.1016/j.ensm.2022.02.015 doi: 10.1016/j.ensm.2022.02.015

    29. [29]

      J. Zhao, J. Y. Zhu, Y. Li, L. X. Wang, Y. Dong, Z. M. Jiang, C. W. Fan, Y. L. Cao, R. Sheng, A. J. Liu, S. Zhang, H. H. Song, D. Z. Jia, Z. J. Fan, ACS Appl. Mater. Interfaces. 12 (2020) 11669, https://doi.org/10.1021/acsami.9b22408 doi: 10.1021/acsami.9b22408

    30. [30]

      K. H. Lee, H. Park, W. Eom, D. J. Kang, S. H. Noh, T. H. Han, J. Mater. Chem. A 7 (2019) 23727, https://doi.org/10.1039/C9TA05242A doi: 10.1039/C9TA05242A

    31. [31]

      C. Shi, L. T. Hu, J. X. Hou, K. Guo, T. Y. Zhai, H. Q. Li, Energy Storage Mater. 15 (2018) 82, https://doi.org/10.1016/j.ensm.2018.03.010 doi: 10.1016/j.ensm.2018.03.010

    32. [32]

      F. Herold, S. Prosch, N. Oefner, K. Brunnengräber, O. Leubner, Y. Hermans, K. Hofmann, A. Drochner, J. P. Hofmann, W. Qi, B. J. M. Etzold, Angew. Chem. Int. Ed. 133 (2021) 5962, https://doi.org/10.1002/anie.202014862 doi: 10.1002/anie.202014862

    33. [33]

      G. H. Choi, M. G. Nam, S. J. Kwak, S. H. Kim, H. Chang, C. Shin, W. B. Lee, P. J. Yoo, Energy Environ. Sci. 14 (2021) 3203, https://doi.org/10.1039/D1EE00402F doi: 10.1039/D1EE00402F

    34. [34]

      Z. L. Yu, S. Xin, Y. You, L. Yu, Y. Lin, D. W. Xu, C. Qiao, Z. H. Huang, N. Yang, S. H. Yu, J. B. Goodenough, J. Am. Chem. Soc. 138 (2016) 14915, https://doi.org/10.1021/jacs.6b06673 doi: 10.1021/jacs.6b06673

    35. [35]

      Z. W. Li, S. Gao, H. Y. Mi, C. C. Lei, C. C. Ji, Z. L. Xie, C. Yu, J. S. Qiu, Carbon. 149 (2019) 273, https://doi.org/10.1016/j.carbon.2019.04.056 doi: 10.1016/j.carbon.2019.04.056

    36. [36]

      C. F. Liu, C. K. Zhang, H. Y. Fu, X. H. Nan, G. Z. Cao, Adv. Energy Mater. 7 (2017) 1601127, https://doi.org/10.1002/aenm.201601127 doi: 10.1002/aenm.201601127

    37. [37]

      Q. Wang, Y. X. Qu, J. Bai, Z. Y. Chen, Q. T. Luo, H. J. Li, J. Li, W. Q. Yang, Nano Energy. 120 (2024) 109147, https://doi.org/10.1016/j.nanoen.2023.109147 doi: 10.1016/j.nanoen.2023.109147

    38. [38]

      X. Y. Li, C. C. Cai, P. Hu, B. Zhang, P. J. Wu, H. Fan, Z. Chen, L. Zhou, L. Q. Mai, H. J. Fan, Adv. Mater. 36 (2024) 2400184, https://doi.org/10.1002/adma.202400184 doi: 10.1002/adma.202400184

    39. [39]

      Q. F. Peng, K. Wang, Y. Gong, X. D. Zhang, Y. N. Xu, Y. B. Ma, X. Zhang, X. Z. Sun, Y. W. Ma, Adv. Funct. Mater. 33 (2023) 2308284, https://doi.org/10.1002/adfm.202308284 doi: 10.1002/adfm.202308284

    40. [40]

      X. Y. Li, C. C. Cai, L. Zhou, L. Q. Mai, H. J. Fan, Adv. Mater. 36 (2024) 2404393, https://doi.org/10.1002/adma.202404393 doi: 10.1002/adma.202404393

    41. [41]

      M. Yuan, C. Y. Meng, A. Li, B. Cao, Y. Dong, D. K. Wang, X. W. Liu, X. H. Chen, H. H. Song, Small 18 (2022) 2105738, https://doi.org/10.1002/smll.202105738 doi: 10.1002/smll.202105738

    42. [42]

      P. Li, H. Li, D. L. Han, T. X. Shang, Y. Q. Deng, Y. Tao, W. Lv, Q. H. Yang, Adv. Sci. 6 (2019) 1802355, https://doi.org/10.1002/advs.201802355 doi: 10.1002/advs.201802355

    43. [43]

      T. Lv, X. M. Yang, Y. Zhang, X. F. Wang, J. S. Qiu, Small 20 (2024) 2310645, https://doi.org/10.1002/smll.202310645 doi: 10.1002/smll.202310645

    44. [44]

      G. Z. Wang, D. B. Ji, H. J. Wu, X. L. Ma, Adv. Powder Tech. 32 (2021) 4677, https://doi.org/10.1016/j.apt.2021.10.013 doi: 10.1016/j.apt.2021.10.013

    45. [45]

      H. Wu, W. Y. Yuan, X. W. Yuan, L. F. Cheng, Energy Storage Mater. 50 (2022) 514, https://doi.org/10.1016/j.ensm.2022.05.046 doi: 10.1016/j.ensm.2022.05.046

    46. [46]

      W. Q. Tian, Q. M. Gao, Y. L. Tan, K. Yang, L. H. Zhu, C. X. Yang, H. Zhang, J. Mater. Chem. A 3 (2015) 5656, https://doi.org/10.1039/C4TA06620K doi: 10.1039/C4TA06620K

    47. [47]

      W. H. Tian, J. Y. Zhu, Y. Dong, J. Zhao, J. Li, N. N. Guo, H. Lin, S. Zhang, D. Z. Jia, Carbon 161 (2020) 89, https://doi.org/10.1016/j.carbon.2020.01.044 doi: 10.1016/j.carbon.2020.01.044

    48. [48]

      C. W. Fan, Y. Dong, Y. F. Liu, L. H. Zhang, D. K. Wang, X. J. Lin, Y. Lv, S. Zhang, H. H. Song, D. Z. Jia, Carbon 160 (2020) 328, https://doi.org/10.1016/j.carbon.2020.01.034 doi: 10.1016/j.carbon.2020.01.034

    49. [49]

      E. B. Barros, N. S. Demir, A. G. Souza Filho, J. Mendes Filho, A. Jorio, G. Dresselhaus, M. S. Dresselhaus, Phys. Rev. B 71 (2005) 165422, https://doi.org/10.1103/PhysRevB.71.165422 doi: 10.1103/PhysRevB.71.165422

    50. [50]

      Y. Dong, S. Zhang, X. Du, S. Hong, S. N. Zhao, Y. X. Chen, X. H. Chen, H. H. Song, Adv. Funct. Mater. 29 (2019) 1901127, https://doi.org/10.1002/adfm.201901127 doi: 10.1002/adfm.201901127

    51. [51]

      H. F. Tian, Y. H. Ma, Z. J. Li, M. Y. Cheng, S. C. Ning, E. X. Han, M. Q. Xu, P. F. Zhang, K. X. Zhao, R. J. Li, Y. T. Zou, P. C. Liao, S. L. Yu, X. M. Li, J. L. Wang, S. Z. Liu, Y. F. Li, X. Y. Huang, Z. X. Yao, D. D. Ding, J. J. Guo, Y. Huang, J. M. Lu, Y. Y. Han, Z. S. Wang, Z. G. Cheng, J. X. Liu, Z. Xu, K. H. Liu, P. Gao, Y. Jiang, L. Lin, X. X. Zhao, L. F. Wang, X. D. Bai, W. Y. Fu, J. Y. Wang, M. Z. Li, T. Lei, Y. F. Zhang, Y. L. Hou, J. Pei, S. J. Pennycook, E. Wang, J. Chen, W. Zhou, L. Liu, Nature 615 (2023) 56, https://doi.org/10.1038/s41586-022-05617-w doi: 10.1038/s41586-022-05617-w

    52. [52]

      S. Li, E. T. Kang, K. G. Neoh, Z. H. Ma, K. L. Tan, W. Huang, Appl. Surf. Sci. 181 (2001) 201, https://doi.org/10.1016/S0169-4332(01)00397-X doi: 10.1016/S0169-4332(01)00397-X

    53. [53]

      J. Y. Zhu, Y. Dong, S. Zhang, Z. J. Fan, Acta Phys. Chim. Sin. 36 (2020) 1903052, https://doi.org/10.3866/pku.whxb201903052 doi: 10.3866/pku.whxb201903052

    54. [54]

      Q. Q. Li, S. Zhang, Y. T. Jiang, L. N. Zhu, N. N. Guo, J. Zhang, Y. T. Li, T. Wei, Z. J. Fan, Acta Phys. Chim. Sin. 41 (2025) 100028, https://doi.org/10.3866/PKU.WHXB202406009 doi: 10.3866/PKU.WHXB202406009

    55. [55]

      Y. X. Lu, C. L. Zhao, X. G. Qi, Y. Qi, H. Li, X. J. Huang, L. Q. Chen, Y. S. Hu, Adv. Energy Mater. 8 (2018) 1800108, https://doi.org/10.1002/aenm.201800108 doi: 10.1002/aenm.201800108

    56. [56]

      H. Y. Mao, J. Tang, J. Chen, J. Y. Wan, K. Hou, Y. Peng, D. M. Halat, L. G. Xiao, R. F. Zhang, X. D. Lv, A. K. Yang, Y. Cui, J. A. Reimer, Sci. Adv. 6 (2020) eabb0694, https://doi.org/10.1126/sciadv.abb0694 doi: 10.1126/sciadv.abb0694

    57. [57]

      S. Zhang, Y. T. Li, Y. Kang, Y. Dong, S. Hong, X. X. Chen, J. S. Zhou, Y. V. Fedoseeva, I. P. Asanov, L. G. Bulusheva, H. Song, A. V. Okotrub, Carbon 108 (2016) 461, https://doi.org/10.1016/j.carbon.2016.07.046 doi: 10.1016/j.carbon.2016.07.046

    58. [58]

      Y. P. Huang, F. L. Lai, L. S. Zhang, H. Y. Lu, Y. Miao, T. X. Liu, T. Sci. Rep. 6 (2016) 31541, https://doi.org/10.1038/srep31541 doi: 10.1038/srep31541

    59. [59]

      D. D. Zhang, C. He, Y. Z. Wang, J. H. Zhao, J. L. Wang, K. X. Li, J. Colloid Interface Sci. 540 (2019) 439, https://doi.org/10.1016/j.jcis.2019.01.038 doi: 10.1016/j.jcis.2019.01.038

    60. [60]

      E. Ismar, A. S. Sarac, Polym. Bull. 75 (2018) 485, https://doi.org/10.1007/s00289-017-2043-x doi: 10.1007/s00289-017-2043-x

    61. [61]

      S. Y. Li, Q. Y. Zhang, L. N. Liu, J. G. Wang, L. Zhang, M. J. Shi, X. C. Chen, J. Alloy. Compd. 941 (2023) 168963, https://doi.org/10.1016/j.jallcom.2023.168963 doi: 10.1016/j.jallcom.2023.168963

    62. [62]

      B. Zhang, F. Sun, Y. Li, D. Wu, C. Yang, Z. Wang, J. Gao, G. Zhao, S. Sun, Carbon 219 (2024) 118812, https://doi.org/10.1016/j.carbon.2024.118812 doi: 10.1016/j.carbon.2024.118812

    63. [63]

      Z. Tian, G. Duan, F. Wang, Y. Wang, H. Hou, C. Zhang, S. He, J. Han, X. Han, S. Jiang, Chem. Eng. J. 484 (2024) 149615, https://doi.org/10.1016/j.cej.2024.149615 doi: 10.1016/j.cej.2024.149615

    64. [64]

      H. Liu, S. Zhu, Y. Zhang, H. Song, Y. Zhang, Y. Chang, W. Hou, G. Han Small 19 (2023) 2204119, https://doi.org/10.1002/smll.202204119 doi: 10.1002/smll.202204119

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  22
  • HTML全文浏览量:  1
文章相关
  • 发布日期:  2025-10-15
  • 收稿日期:  2025-04-10
  • 接受日期:  2025-06-10
  • 修回日期:  2025-06-02
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章