Citation: Tiejin Chen, Xiaokuang Xue, Jian Li, Minhui Cui, Yongliang Hao, Mianqi Xue, Haihua Xiao, Jiechao Ge, Pengfei Wang. Membrane-anchoring nanoengineered carbon dots as a pyroptosis amplifier for robust tumor photodynamic-immunotherapy[J]. Acta Physico-Chimica Sinica, ;2025, 41(10): 100113. doi: 10.1016/j.actphy.2025.100113 shu

Membrane-anchoring nanoengineered carbon dots as a pyroptosis amplifier for robust tumor photodynamic-immunotherapy

  • Corresponding author: Haihua Xiao, hhxiao@iccas.ac.cn Jiechao Ge, jchge2010@mail.ipc.ac.cn
  • Received Date: 29 April 2025
    Revised Date: 5 June 2025
    Accepted Date: 8 June 2025

    Fund Project: the National Natural Science Foundation of China 52272052the National Key Research and Development Program of China 2022YFA1207600

  • Photodynamic therapy (PDT), as a Food and Drug Administration (FDA)-approved therapeutic modality, has witnessed substantial advancements in the field of oncology. However, the conventional PDT may suffer poor prognosis due to the transient nature of (Reactive Oxygen Species) ROS, excessive phototoxicity, and inducing traditional apoptosis. In this study, a nanoengineered carbon dots (NCDs) was constructed through electrostatic interaction between a positive-charged carbon dots photosensitizers (PCDs) and new indocyanine green (IR820). The introduction of IR820 at variable ratios could change the surface charge and amphiphilic characteristics of NCDs, thereby modulating the membrane-anchoring capability of NCDs. Besides, the J-aggregation of IR820 led to a redshift of fluorescence from NIR-Ⅰ to NIR-Ⅱ region, thereby achieving NIR-Ⅱ imaging. Furthermore, the photoactivity of PCDs was quenched by IR820, with subsequent restoration of PDT occurring contingent on the photobleaching of IR820 via 750 nm laser irradiation. Finally, both in vitro and in vivo studies had demonstrated that under a cascaded laser irradiation, the membrane-targeted NCDs could effectively induce cell pyroptosis, thereby eradicating tumors with minimal side effects while simultaneously activating immune responses to inhibit tumor lung metastasis. This study developed a multifunctional nanoengieering carbon dots and offered novel perspectives for tumor photodynamic-immunotherapy with enhanced controllability, improved efficacy and high security.
  • 加载中
    1. [1]

      Y. Wang, K. Ma, M. Kang, D. Yan, N. Niu, S. Yan, P. Sun, L. Zhang, L. Sun, D. Wang, et al., Chem. Soc. Rev. 53 (2024) 12014, https://doi.org/10.1039/D4CS00708E.  doi: 10.1039/D4CS00708E

    2. [2]

      E. Nestoros, A. Sharma, E. Kim, J. S. Kim, M. Vendrell, Nat. Rev. Chem. 9 (2025) 46, https://doi.org/10.1038/s41570-024-00662-7.  doi: 10.1038/s41570-024-00662-7

    3. [3]

      T. C. Pham, V. N. Nguyen, Y. Choi, S. Lee, J. Yoon, Chem. Rev. 121 (2021) 13454, https://doi.org/10.1021/acs.chemrev.1c00381.  doi: 10.1021/acs.chemrev.1c00381

    4. [4]

      J. Kang, H. Jeong, M. Jeong, J. Kim, S. Park, J. Jung, J. M. An, D. Kim, J. Am. Chem. Soc. 145 (2023) 27587, https://doi.org/10.1021/jacs.3c09339.  doi: 10.1021/jacs.3c09339

    5. [5]

      L. Li, X. Zhang, Y. Ren, Q. Yuan, Y. Wang, B. Bao, M. Li, Y. Tang, J. Am. Chem. Soc. 146 (2024) 5927, https://doi.org/10.1021/jacs.3c12132.  doi: 10.1021/jacs.3c12132

    6. [6]

      X. Qu, F. Yin, M. Pei, Q. Chen, Y. Zhang, S. Lu, X. Zhang, Z. Liu, X. Li, H. Chen, et al., ACS Nano 17 (2023) 11466, https://doi.org/10.1021/acsnano.3c01308.  doi: 10.1021/acsnano.3c01308

    7. [7]

      L. Feng, D. Tao, Z. Dong, Q. Chen, Y. Chao, Z. Liu, M. Chen, Biomaterials 127 (2017) 13, https://doi.org/10.1016/j.biomaterials.2016.11.027.  doi: 10.1016/j.biomaterials.2016.11.027

    8. [8]

      X. Zhang, J. Xiong, K. Wang, H. Yu, B. Sun, H. Ye, Z. Zhao, N. Wang, Y. Wang, S. Zhang, et al., Bioact. Mater. 6 (2021) 2291, https://doi.org/10.1016/j.bioactmat.2021.01.004.  doi: 10.1016/j.bioactmat.2021.01.004

    9. [9]

      M. Dirak, C. M. Yenici, S. Kolemen, Coord. Chem. Rev. 506 (2024) 215710, https://doi.org/10.1016/j.ccr.2024.215710.  doi: 10.1016/j.ccr.2024.215710

    10. [10]

      J. B. Zhuang, Z. D. Ma, N. Li, H. Chen, L. J. Yang, Y. Lu, K. Y. Guo, N. Zhao, B. Z. Tang, Adv. Mater. 36 (2024) 2309488, https://doi.org/10.1002/adma.202309488.  doi: 10.1002/adma.202309488

    11. [11]

      F. H. Igney, P. H. Krammer, Nat. Rev. Cancer 2 (2002) 277, https://doi.org/10.1038/nrc776.  doi: 10.1038/nrc776

    12. [12]

      K. Hadian, B. R. Stockwell, Nat. Rev. Drug Discov. 22 (2023) 723, https://doi.org/10.1038/s41573-023-00749-8.  doi: 10.1038/s41573-023-00749-8

    13. [13]

      X. Sun, M. Li, P. Wang, Q. Bai, X. Cao, D. Mao, Small Methods 7 (2023) 2201614, https://doi.org/10.1002/smtd.202201614.  doi: 10.1002/smtd.202201614

    14. [14]

      W. T. Gao, X. Y. Wang, Y. Zhou, X. Q. Wang, Y. Yu, Sig. Transdut. Target. Ther. 7 (2022) 196, https://doi.org/10.1038/s41392-022-01046-3.  doi: 10.1038/s41392-022-01046-3

    15. [15]

      P. Fontana, G. Du, Y. Zhang, H. Zhang, S. M. Vora, J. J. Hu, M. Shi, A. B. Tufan, L. B. Healy, S. Xia, et al., Cell 187 (2024) 6165, https://doi.org/10.1016/j.cell.2024.08.007.  doi: 10.1016/j.cell.2024.08.007

    16. [16]

      Q. Y. Wang, Y. P. Wang, J. J. Ding, C. H. Wang, X. H. Zhou, W. Q. Gao, H. W. Huang, F. Shao, Z. B. Liu, Nature 579 (2020) 421, https://doi.org/10.1038/s41586-020-2079-1.  doi: 10.1038/s41586-020-2079-1

    17. [17]

      Z. B. Zhang, Y. Zhang, S. Y. Xia, Q. Kong, S. Y. Li, X. Liu, C. Junqueira, K. F. Meza-Sosa, T. M. Y. Mok, J. Ansara, et al., Nature 579 (2020) 415, https://doi.org/10.1038/s41586-020-2071-9.  doi: 10.1038/s41586-020-2071-9

    18. [18]

      Z. He, D. Feng, C. Zhang, Z. Chen, H. Wang, J. Hou, S. Li, X. Wei, J. Control. Release 366 (2024) 375, https://doi.org/10.1016/j.jconrel.2023.12.023.  doi: 10.1016/j.jconrel.2023.12.023

    19. [19]

      M. Wu, X. G. Liu, H. Chen, Y. K. Duan, J. J. Liu, Y. T. Pan, B. Liu, Angew. Chem. Int. Ed. 60 (2021) 9093, https://doi.org/10.1002/anie.202016399.  doi: 10.1002/anie.202016399

    20. [20]

      M. Li, J. Kim, H. Rha, S. Son, M. S. Levine, Y. Xu, J. L. Sessler, J. S. Kim, J. Am. Chem. Soc. 145 (2023) 6007, https://doi.org/10.1021/jacs.3c01231.  doi: 10.1021/jacs.3c01231

    21. [21]

      M. Wang, M. Wu, X. Liu, S. Shao, J. Huang, B. Liu, T. Liang, Adv. Sci. 9 (2022) 2202914, https://doi.org/10.1002/advs.202202914.  doi: 10.1002/advs.202202914

    22. [22]

      Z. G. Yi, X. J. Qin, L. Zhang, H. Chen, T. L. Song, Z. C. Luo, T. Wang, J. Lau, Y. L. Wu, T. B. Toh, et al., J. Am. Chem. Soc. 146 (2024) 9413, https://doi.org/10.1021/jacs.4c01929.  doi: 10.1021/jacs.4c01929

    23. [23]

      Q. Liu, X. Yao, L. Zhou, W. Wu, J. Cheng, Z. Zhang, Z. Li, H. Sun, J. Jin, M. Zhang, et al., Adv. Mater. 36 (2024) 2401145, https://doi.org/10.1002/adma.202401145.  doi: 10.1002/adma.202401145

    24. [24]

      X. Wu, J. J. Hu, J. Yoon, Angew. Chem. Int. Ed. 63 (2024) e202400249, https://doi.org/10.1002/anie.202400249.  doi: 10.1002/anie.202400249

    25. [25]

      C. Xiang, Y. Liu, Q. Ding, T. Jiang, C. Li, J. Xiang, X. Yang, T. Yang, Y. Wang, Y. Tan, et al., Adv. Funct. Mater. 35 (2024) 2417979, https://doi.org/10.1002/adfm.202417979.  doi: 10.1002/adfm.202417979

    26. [26]

      Z. Li, F. Mo, Y. Wang, W. Li, Y. Chen, J. Liu, T. -J. Chen-Mayfield, Q. Hu, Nat. Commun. 13 (2022) 6321, https://doi.org/10.1038/s41467-022-34036-8.  doi: 10.1038/s41467-022-34036-8

    27. [27]

      Y. Q. Tang, H. K. Bisoyi, X. M. Chen, Z. Y. Liu, X. Chen, S. Zhang, Q. Li, Adv. Mater. 35 (2023) 2300232, https://doi.org/10.1002/adma.202300232.  doi: 10.1002/adma.202300232

    28. [28]

      Y. Liu, Z. Huang, X. Wang, Y. Hao, J. Yang, H. Wang, S. Qu, Adv. Funct. Mater. 35 (2025) 2420587, https://doi.org/10.1002/adfm.202420587.  doi: 10.1002/adfm.202420587

    29. [29]

      B. Y. Wang, S. Y. Lu, Matter 5 (2022) 110, https://doi.org/10.1016/j.matt.2021.10.016.  doi: 10.1016/j.matt.2021.10.016

    30. [30]

      L. Jiang, H. Cai, W. W. Zhou, Z. J. Li, L. Zhang, H. Bi, Adv. Mater. 35 (2023) 2210776, https://doi.org/10.1002/adma.202210776.  doi: 10.1002/adma.202210776

    31. [31]

      J. C. Ge, M. H. Lan, B. J. Zhou, W. M. Liu, L. Guo, H. Wang, Q. Y. Jia, G. L. Niu, X. Huang, H. Y. Zhou, et al., Nat. Commun. 5 (2014) 4596, https://doi.org/10.1038/ncomms5596.  doi: 10.1038/ncomms5596

    32. [32]

      S. H. Li, W. Su, H. Wu, T. Yuan, C. Yuan, J. Liu, G. Deng, X. C. Gao, Z. M. Chen, Y. M. Bao, et al. , Nat. Biomed. Eng. 4 (2020) 704, https://doi.org/10.1038/s41551-020-0540-y.  doi: 10.1038/s41551-020-0540-y

    33. [33]

      L. Ðorđević, F. Arcudi, M. Cacioppo, M. Prato, Nat. Nanotechnol. 17 (2022) 112, https://doi.org/10.1038/s41565-021-01051-7.  doi: 10.1038/s41565-021-01051-7

    34. [34]

      T. Han, Y. Wang, S. Ma, M. Li, N. Zhu, S. Tao, J. Xu, B. Sun, Y. Jia, Y. Zhang, et al., Adv. Sci. 9 (2022) 2203474, https://doi.org/10.1002/advs.202203474.  doi: 10.1002/advs.202203474

    35. [35]

      H. Sun, S. Sun, H. Wang, K. Cheng, Y. Zhou, X. Wang, S. Gao, J. Mo, S. Li, H. Lin, et al., Acta Biomater. 194 (2025) 352, https://doi.org/10.1016/j.actbio.2025.01.030.  doi: 10.1016/j.actbio.2025.01.030

    36. [36]

      Y. Zhang, Q. Jia, F. Nan, J. Wang, K. Liang, J. Li, X. Xue, H. Ren, W. Liu, J. Ge, et al., Biomaterials 293 (2023) 121953, https://doi.org/10.1016/j.biomaterials.2022.121953.  doi: 10.1016/j.biomaterials.2022.121953

    37. [37]

      X. Zhang, L. Li, B. Wang, Z. Cai, B. Zhang, F. Chen, G. Xing, K. Li, S. Qu, Angew. Chem. Int. Ed. 63 (2024) e202410522, https://doi.org/10.1002/anie.202410522.  doi: 10.1002/anie.202410522

    38. [38]

      B. Wang, G. I. N. Waterhouse, B. Yang, S. Lu, Acc. Chem. Res. 57 (2024) 2928, https://doi.org/10.1021/acs.accounts.4c00516.  doi: 10.1021/acs.accounts.4c00516

    39. [39]

      Q. Cheng, T. Zhang, Q. Wang, X. Wu, L. Li, R. Lin, Y. Zhou, S. Qu, Adv. Mater. 36 (2024) 2408685, https://doi.org/10.1002/adma.202408685.  doi: 10.1002/adma.202408685

    40. [40]

      T. Chen, K. Liang, J. Wang, J. Li, X. Xue, Y. Hao, H. Liang, H. Ren, H. Xiao, J. Ge, et al., Nano Lett. 24 (2024) 14709, https://doi.org/10.1021/acs.nanolett.4c03913.  doi: 10.1021/acs.nanolett.4c03913

    41. [41]

      J. Yang, B. Ren, X. Yin, L. Xiang, Y. Hua, X. Huang, H. Wang, Z. Mao, W. Chen, J. Deng, Adv. Mater. 36 (2024) 2402720, https://doi.org/10.1002/adma.202402720.  doi: 10.1002/adma.202402720

    42. [42]

      Y. J. Li, Y. C. Guo, K. X. Zhang, R. R. Zhu, X. Y. Chen, Z. Z. Zhang, W. J. Yang, Adv. Sci. 11 (2024) 2306580, https://doi.org/10.1002/advs.202306580.  doi: 10.1002/advs.202306580

    43. [43]

      J. Xu, X. Zheng, T. -B. Ren, L. Shi, X. Yin, L. Yuan, X. -B. Zhang, Coord. Chem. Rev. 528 (2025) 216379, https://doi.org/10.1016/j.ccr.2024.216379.  doi: 10.1016/j.ccr.2024.216379

    44. [44]

      Y. Li, D. Hu, M. Pan, Y. Qu, B. Chu, J. Liao, X. Zhou, Q. Liu, S. Cheng, Y. Chen, et al., Biomaterials 288 (2022) 121700, https://doi.org/10.1016/j.biomaterials.2022.121700.  doi: 10.1016/j.biomaterials.2022.121700

    45. [45]

      D. -T. Nguyen, M. -J. Baek, S. M. Lee, D. Kim, S. -Y. Yoo, J. -Y. Lee, D. -D. Kim, Nat. Nanotechnol. 19 (2024) 1723, https://doi.org/10.1038/s41565-024-01757-4.  doi: 10.1038/s41565-024-01757-4

    46. [46]

      M. Yu, S. Li, X. Ren, N. Liu, W. Guo, J. Xue, L. Tan, C. Fu, Q. Wu, M. Niu, et al., ACS Nano 18 (2024) 3636, https://doi.org/10.1021/acsnano.3c11433.  doi: 10.1021/acsnano.3c11433

    47. [47]

      H. Xia, W. Zhou, D. Li, F. Peng, L. Yu, Y. Sang, H. Liu, A. Hao, J. Qiu, Angew. Chem. Int. Ed. 63 (2024) e202312755, https://doi.org/10.1002/anie.202312755.  doi: 10.1002/anie.202312755

    48. [48]

      T. Zhang, X. Yang, X. Ou, M. M. S. Lee, J. Zhang, C. Xu, X. Yu, P. Gong, J. W. Y. Lam, P. Zhang, et al., Adv. Mater. 35 (2023) 2303186, https://doi.org/10.1002/adma.202303186.  doi: 10.1002/adma.202303186

    49. [49]

      L. H. Liu, W. X. Qiu, Y. H. Zhang, B. Li, C. Zhang, F. Gao, L. Zhang, X. Z. Zhang, Adv. Funct. Mater. 27 (2017) 1700220, https://doi.org/10.1002/adfm.201700220.  doi: 10.1002/adfm.201700220

    50. [50]

      S. J. Hao, Y. X. Zhu, F. G. Wu, J. Control. Release. 357 (2023) 222, https://doi.org/10.1016/j.jconrel.2023.03.038.  doi: 10.1016/j.jconrel.2023.03.038

    51. [51]

      K. Minton, Nat. Rev. Mmunol. 20 (2020) 274, https://doi.org/10.1038/s41577-020-0297-2.  doi: 10.1038/s41577-020-0297-2

  • 加载中
    1. [1]

      Xue WuYupeng LiuBingzhe WangLingyun LiZhenjian LiQingcheng WangQuansheng ChengGuichuan XingSongnan Qu . Rationally assembling different surface functionalized carbon dots for enhanced near-infrared tumor photothermal therapy. Acta Physico-Chimica Sinica, 2025, 41(9): 100109-0. doi: 10.1016/j.actphy.2025.100109

    2. [2]

      Wenli FENGLu ZHAOYunfeng BAIFeng FENG . Research progress on ultralong room temperature phosphorescent carbon dots. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 833-846. doi: 10.11862/CJIC.20240308

    3. [3]

      Yu LiuPengfei LiYize LiuZaicheng Sun . Recent advances in carbon dots as a single photocatalyst. Acta Physico-Chimica Sinica, 2026, 42(2): 100167-0. doi: 10.1016/j.actphy.2025.100167

    4. [4]

      Renyi ShaoKhurram AbbasVladimir Yu. OsipovHaimei ZhuYuan LiUsamaHong Bi . Red-emitting carbon dots prepared from Epipremnum Aureum leaves extract for biological imaging. Acta Physico-Chimica Sinica, 2026, 42(2): 100134-0. doi: 10.1016/j.actphy.2025.100134

    5. [5]

      Ting LiXiao ZengYuzhuo YangXinyi WenShurong DingLinlin ShiYongqiang ZhangSiyu Lu . Towards practical circularly polarized luminescence: carbon dots-based circularly polarized lasers. Acta Physico-Chimica Sinica, 2026, 42(4): 100191-0. doi: 10.1016/j.actphy.2025.100191

    6. [6]

      Qianli MaTianbing SongTianle HeXirong ZhangHuanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106

    7. [7]

      Zihan ChengKai JiangJun JiangHenggang WangHengwei Lin . Achieving thermal-stimulus-responsive dynamic afterglow from carbon dots by singlet-triplet energy gap engineering through covalent fixation. Acta Physico-Chimica Sinica, 2026, 42(2): 100169-0. doi: 10.1016/j.actphy.2025.100169

    8. [8]

      Chunyuan KangXiaoyu LiFan YangBai Yang . Ionic-bond crosslinked carbonized polymer dots for tunable and enhanced room temperature phosphorescence. Acta Physico-Chimica Sinica, 2026, 42(1): 100156-0. doi: 10.1016/j.actphy.2025.100156

    9. [9]

      Yinghao ZhangHuaxin LiuHanrui DingZhi ZhengWentao DengGuoqiang ZouLaiqiang XuHongshuai HouXiaobo Ji . The application of carbon dots in electrolytes of advanced batteries. Acta Physico-Chimica Sinica, 2026, 42(3): 100170-0. doi: 10.1016/j.actphy.2025.100170

    10. [10]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    11. [11]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    12. [12]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    13. [13]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    14. [14]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    15. [15]

      Yue WANGZhizhi GUJingyi DONGJie ZHUCunguang LIUGuohan LIMeichen LUJian HANShengnan CAOWei WANG . Effects of kelp-derived carbon dots on embryonic development of zebrafish. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1209-1217. doi: 10.11862/CJIC.20230423

    16. [16]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    17. [17]

      Shiyi ChenJialong FuJianping QiuGuoju ChangShiyou Hao . Waste medical mask-derived carbon quantum dots enhance the photocatalytic degradation of polyethylene terephthalate (PET) over BiOBr/g-C3N4 S-scheme heterojunction. Acta Physico-Chimica Sinica, 2026, 42(1): 100135-0. doi: 10.1016/j.actphy.2025.100135

    18. [18]

      Wei Li Han Xu Chuancan Gu Ziyan Liu Yan'an Li Yan Geng . Digital Experiment on Nano-COF Materials Modulating Intracellular Ca²⁺ Concentration to Enhance Photodynamic Therapy. University Chemistry, 2026, 41(1): 354-362. doi: 10.12461/PKU.DXHX202506001

    19. [19]

      Qi WANGYing CHENGYuyan WANGYibing XIAOHaozhe LUYansong ZHANGShengling LIJiazi TANTAINa SUNLifeng DINGJinqin GUOPeng JIN . "Shining dot" in vinegar—Extraction of carbon quantum dots and the fluorescence properties analysis. Chinese Journal of Inorganic Chemistry, 2026, 42(1): 87-96. doi: 10.11862/CJIC.20250127

    20. [20]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

Metrics
  • PDF Downloads(1)
  • Abstract views(306)
  • HTML views(46)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return