S型异质结g-C3N4/Bi2WO6高效降解左氧氟沙星:性能、机理及降解路径

韦梦兰 欧晓霞 王艺濛 张梦圆 滕飞 王凯旋

引用本文: 韦梦兰, 欧晓霞, 王艺濛, 张梦圆, 滕飞, 王凯旋. S型异质结g-C3N4/Bi2WO6高效降解左氧氟沙星:性能、机理及降解路径[J]. 物理化学学报, 2025, 41(9): 100105. doi: 10.1016/j.actphy.2025.100105 shu
Citation:  Menglan Wei, Xiaoxia Ou, Yimeng Wang, Mengyuan Zhang, Fei Teng, Kaixuan Wang. S-scheme heterojunction g-C3N4/Bi2WO6 highly efficient degradation of levofloxacin: performance, mechanism and degradation pathway[J]. Acta Physico-Chimica Sinica, 2025, 41(9): 100105. doi: 10.1016/j.actphy.2025.100105 shu

S型异质结g-C3N4/Bi2WO6高效降解左氧氟沙星:性能、机理及降解路径

    通讯作者: 欧晓霞, ouxiaoxia@dlnu.edu.cn
  • 基金项目:

    辽宁省科技计划联合项目 2023JH2/101800001

    辽宁省教育厅基础科研基金 LJKMZ20220396

    大连市科技人才创新支持政策实施计划 2024RQ056

摘要: 采用一步水热法合成了g-C3N4/Bi2WO6(MCN/BWO)异质结光催化剂,用于降解左氧氟沙星(LEV)。在模拟太阳光照射下,摩尔比为1 : 1的MCN/BWO对LEV的降解率达到98.14%,这归因于MCN和BWO之间形成了S型异质结。原位XPS分析和表面功函数测量证实了电子转移路径遵循S型异质结机制。MCN/BWO体系中S型异质结产生的内建电场(IEF)促进了光生电子(e)从BWO的导带(CB)直接转移到MCN的价带(VB)。这一过程实现了光生电子-空穴对(e-h+)的有效分离,h⁺在BWO的VB上积累,e在MCN的CB上积累。自由基捕获实验表明,超氧自由基(·O₂)和h⁺是主要的活性物种。除了表现出优异的光催化性能外,该催化剂在连续三个循环中保持了良好的稳定性。为了阐明降解机制,采用液相色谱-质谱(LC-MS)和定量构效关系(QSAR)分析来鉴定降解途径、中间产物和潜在毒性。本研究为废水处理应用提供了理论基础。

English

    1. [1]

      S. Arabian, A. Gordanshekan, M. Farhadian, A.R. Solaimany Nazar, S. Tangestaninejad, H. Sabzyan, Chem. Eng. J. 488 (2024) 150686, DOI: 10.1016/j.cej.2024.150686.

    2. [2]

      Y.Y. Wang, J.H. Yang, Z.X. Zhang, P.J. Zhao, Y.Q. Chen, Y. Guo, X.G. Luo, Int. J. Biol. Macromol. 269 (2024) 131885, DOI: 10.1016/j.ijbiomac.2024.131885.

    3. [3]

      Z.X. Huang, P.F. Zhu, M. Liu, X.Y. Xin, B. He, X.L. Li, Sep. Purif. Technol. 356 (2025) 129959, DOI: 10.1016/j.seppur.2024.129959.

    4. [4]

      F.Y. Yang, M. Du, K.L. Yin, Z. Qiu, Ing, J.W. Zhao, C.L. Liu, G.X. Zhang, Y.J. Gao, H. Pang, Small 18 (2022) 2105715, DOI: 10.1002/smll.202105715.

    5. [5]

      B. Erim, Z. Ciğeroğlu, S. Şahin, Y. Vasseghian, Chemosphere 291 (2022) 132929, DOI: 10.1016/j.chemosphere.2021.132929.

    6. [6]

      S.J. Li, C.C. Wang, Y.P. Liu, B. Xue, W. Jiang, Y. Liu, L.Y. Mo, X.B. Chen, Chem. Eng. J. 415 (2021) 128991, DOI: 10.1016/j.cej.2021.128991.

    7. [7]

      J.W. Yan, L. Gong, S.Y. Chai, C. Guo, W. Zhang, H.Y. Wan, Sep. Purif. Technol. 302 (2022) 122016, DOI: 10.1016/j.seppur.2022.122016.

    8. [8]

      Z.P. Xing, J.Q. Zhang, J.Y. Cui, J.W. Yin, T.Y. Zhao, J.Y. Kuang, Z.Y. Xiu, N. Wan, W. Zhou, Appl. Catal. B: Environ. 225 (2018) 452, DOI: 10.1016/j.apcatb.2017.12.005.

    9. [9]

      Y.Q. Bian, H.W. He, G. Dawson, J.F. Zhang, K. Dai, Sci. China Mater. 67 (2024) 514, DOI: 10.1007/s40843-023-2725-y.

    10. [10]

      D.L. Cao, N. Su, X.Y. Wang, X.Y. Wang, C.L. Xu, Z. Liu, J.T. Li, C.Y. Lu, J. Environ. Chem. Eng. 12 (2024) 112939, DOI: 10.1016/j.jece.2024.112939.

    11. [11]

      J.T. Shen, L. Qian, J.L. Huang, Y.F. Guo, Z.Z. Zhang, Sep. Purif. Technol. 275 (2021) 119239, DOI: 10.1016/j.seppur.2021.119239.

    12. [12]

      P. Li, Y.Y. Cui, Z.L. Wang, G. Dawson, C.F. Shao, K. Dai, Acta Phys. –Chim. Sin. 41 (2025) 100065, DOI: 10.1016/j.actphy.2025.100065.

    13. [13]

      T.T. Yang, J. Wang, Z.L. Wang, J.F. Zhang, K. Dai, Chin. J. Catal. 58 (2024) 157, DOI: 10.1016/S1872-2067(23)64607-8.

    14. [14]

      S.J. Li, K. Rong, X.Q. Wang, C.Q. Shen, F. Yang, Q.H. Zhang, Acta Phys. –Chim. Sin. 40 (2024) 2403005, DOI: 10.3866/PKU.WHXB202403005.

    15. [15]

      C.C. Wang, K. Rong, Y.P. Liu, F. Yang, S.J. Li, Sci. China Mater. 67 (2024) 562, DOI: 10.1007/s40843-023-2764-8.

    16. [16]

      S.J. Li, R.Y. Yan, M.J. Cai, W. Jiang, M.Y. Zhang, X. Li, J. Mater. Sci. & Technol. 164 (2023) 59, DOI: 10.1016/j.jmst.2023.05.009.

    17. [17]

      R. Liu, C.J. Zhang, R.J. Liu, Y. Sun, B.Q. Ren, Y.H. Tong, Y. Tao, J. Environ. Sci. 150 (2025) 657, DOI: 10.1016/j.jes.2024.03.033.

    18. [18]

      J.J. Wang, X.Y. Lian, S.H. Chen, H. Li, K.Z. Xu, J. Colloid Inter. Sci. 610 (2022) 842, DOI: 10.1016/j.jcis.2021.11.131.

    19. [19]

      X.B. Zhang, H.J. Liu, Y.Q. Wang, S.L. Yang, Q. Chen, Z.Y. Zhao, Y. Yang, Q. Kuang, Z.X. Xie, Chem. Eng. J. 443 (2022) 136482, DOI: 10.1016/j.cej.2022.136482.

    20. [20]

      L.H. Meng, C. Zhao, H.Y. Chu, Y.H. Li, H.F. Fu, P. Wang, C.C. Wang, H.W. Huang, Chin. J. Catal. 59 (2024) 346, DOI: 10.1016/S1872-2067(23)64629-7.

    21. [21]

      K.N. Van, H.T. Huu, V.N. Nguyen Thi, T.L. Le Thi, D.H. Truong, T.T. Truong, N.N. Dao, V. Vo, D.L. Tran, Y. Vasseghian, Chemosphere 289 (2022) 133120, DOI: 10.1016/j.chemosphere.2021.133120.

    22. [22]

      A. Alsulmi, N.N. Mohammed, M.M. Hassan, M.A. Eltawil, A.E. Amin, M. Fahmy, A. Sultan, M.A. Ahmed, Colloids and Surf. A: Physicochem. Eng. Asp. 689 (2024) 133683, DOI: 10.1016/j.colsurfa.2024.133683.

    23. [23]

      W.W. Cao, X. Zhu, Q. Li, R. Yuan, H.J. Wang, Chem. Eng. J. 475 (2023) 146225, DOI: 10.1016/j.cej.2023.146225.

    24. [24]

      E.E. Elemike, I.C. Onunkwo, O.E. Ididama, O.E. Okorodudu, I.P. Okogbenin, O.R. Egbele, L. Hitler, S.E. Anwani, O.E. Udowa, Z.O. Ushurhe, H. Awikpe-Harrison, I. Muazu, A.E. Aziza, Int. J. Hydrogen Energy 70 (2024) 212, DOI: 10.1016/j.ijhydene.2024.05.174.

    25. [25]

      C.S. Tang, M. Cheng, C. Lai, L. Li, X.F. Yang, L. Du, G.X. Zhang, G.F. Wang, L. Yang, Coord. Chem. Rev. 474 (2023) 214846, DOI: 10.1016/j.ccr.2022.214846.

    26. [26]

      N.F.F. Moreira, M.J. Sampaio, A.R. Ribeiro, C.G. Silva, J.L. Faria, A.M.T. Silva, Appl. Catal. B: Environ. 248 (2019) 184, DOI: 10.1016/j.apcatb.2019.02.001.

    27. [27]

      O. Aldaghri, K.H. Ibnaouf, H. Idriss, A. Modwi, M. Bououdina, G.Z. Kyzas, Sci. Total Environ. 906 (2024) 167685, DOI: 10.1016/j.scitotenv.2023.167685.

    28. [28]

      Y.Y. Wang, S. Zhao, Y.W. Zhang, J.S. Fang, W.X. Chen, S.H. Yuan, Y.M. Zhou, ACS Sustain. Chem. Eng. 6 (2018) 10200, DOI: 10.1021/acssuschemeng.8b01499.

    29. [29]

      Y.L. Song, Z.Y. Li, C.R. Yang, X.J. Zhang, Q. Wang, X.Y. Wen, H.Z. Zhang, L. Huang, Sep. Purif. Technol. 338 (2024) 126548, DOI: 10.1016/j.seppur.2024.126548.

    30. [30]

      H.Y. Sun, W.X. Jiang, N. Jiang, G.L. Yu, H. Guo, J. Li, Sep. Purif. Technol. 346 (2024) 127347, DOI: 10.1016/j.seppur.2024.127347.

    31. [31]

      S.D. Sun, J. Li, P. Song, J. Cui, Q. Yang, X. Zheng, Z.M. Yang, S.H. Liang, Appl. Surf. Sci. 500 (2020) 143985, DOI: 10.1016/j.apsusc.2019.143985.

    32. [32]

      X.H. Cong, A.M. Li, F. Guo, H.T. Qin, X.H. Zhang, W.Z. Wang, W.L. Xu, Sci. Total Environ. 913 (2024) 169777, DOI: 10.1016/j.scitotenv.2023.169777.

    33. [33]

      Y.Y. Cui, J.F. Zhang, H.L. Chu, L.X. Sun, K. Dai, Acta Phys. -Chim. Sin. 40 (2024) 2405016, DOI: 10.3866/PKU.WHXB202405016.

    34. [34]

      H. Yang, Z.L. Wang, J.F. Zhang, K. Dai, J.X. Low, J. Materiomics 11 (2025) 100996, DOI: 10.1016/j.jmat.2024.100996.

    35. [35]

      X.T. Xu, C.F. Shao, J.F. Zhang, Z.L. Wang, K. Dai, Acta Phys. -Chim. Sin. 40 (2024) 2309031, DOI: 10.3866/PKU.WHXB202309031.

    36. [36]

      C.J. You, C.C. Wang, M.J. Cai, Y.P. Liu, B.K. Zhu, S.J. Li, Acta Phys. -Chim. Sin. 40 (2024) 2407014, DOI: 10.3866/PKU.WHXB202407014.

    37. [37]

      S.J. Li, K.X. Dong, M.J. Cai, X.Y. Li, X.B. Chen, eScience 4 (2024) 100208, DOI: 10.1016/j.esci.2023.100208.

    38. [38]

      M.J. Cai, Y.P. Liu, K.X. Dong, X.B. Chen, S.J. Li, Chin. J. Catal. 52 (2023) 239, DOI: 10.1016/S1872-2067(23)64496-1.

    39. [39]

      S. Mohd, T.H. Alabdulaal, U. Mohd, R.M.R. Vasudeva, Chemosphere 338 (2023) 139432, DOI: 10.1016/j.chemosphere.2023.139432.

    40. [40]

      J.W. Fu, Q.L. Xu, J.X. Low, C.J. Jiang, J.G. Yu, Appl. Catal. B: Environ. 243 (2019) 556, DOI: 10.1016/j.apcatb.2018.11.011.

    41. [41]

      Y.J. Zhou, L.X. Zhang, W.M. Huang, Q.L. Kong, X.Q. Fan, M. Wang, J.L. Shi, Carbon 99 (2016) 111, DOI: 10.1016/j.carbon.2015.12.008.

    42. [42]

      Y. Hou, Z.H. Wen, S.M. Cui, X.R. Guo, J.H. Chen, Adv. Mater. 25 (2013) 6291, DOI: 10.1002/adma.201303116.

    43. [43]

      Y. Zhao, F. Zhao, X.P. Wang, C.Y. Xu, Z.P. Zhang, G.Q. Shi, L.T. Qu, Angew. Chem. Int. Ed. 53 (2014) 13934, DOI: 10.1002/anie.201409080.

    44. [44]

      P. Chen, X.X. Ou, C.J. Xia, K.X. Wang, M.Y. Zhang, M.L. Wei, Y.M. Wang, Sep. Purif. Technol. 349 (2024) 127866, DOI: 10.1016/j.seppur.2024.127866.

    45. [45]

      L. Yan, Y.F. Wang, H.D. Shen, Y. Zhang, J. Li, D.J. Wang, Appl. Surf. Sci. 393 (2017) 496, DOI: 10.1016/j.apsusc.2016.10.039.

    46. [46]

      J.J. Wang, L. Tang, G.M. Zeng, Y.C. Deng, Y.N. Liu, L.L. Wang, Y.Y. Zhou, Z. Guo, J.J. Wang, C. Zhang, Appl. Catal. B: Environ. 209 (2017) 285, DOI: 10.1016/j.apcatb.2017.03.019.

    47. [47]

      A. Gordanshekan, S. Arabian, A.R. Solaimany Nazar, M. Farhadian, S. Tangestaninejad, Chem. Eng. J. 451 (2023) 139067, DOI: 10.1016/j.cej.2022.139067.

    48. [48]

      Z.Y. Chen, Y.F. Li, F. Tian, X. Chen, Z.S. Wu, Sep. Purif. Technol. 287 (2022) 120507, DOI: 10.1016/j.seppur.2022.120507.

    49. [49]

      D.D. Zhu, Q.X. Zhou, Appl. Catal. B: Environ. 268 (2020) 118426, DOI: 10.1016/j.apcatb.2019.118426.

    50. [50]

      F.Y. Du, Z. Lai, H.Y. Tang, H.Y. Wang, C.X. Zhao, J. Environ. Sci. 124 (2023) 617, DOI: 10.1016/j.jes.2021.10.027.

    51. [51]

      C.Y. Yang, H. Chai, P. Xu, P. Wang, X.J. Wang, T.Y. Shen, Q.Z. Zheng, G.S. Zhang, Sep. Purif. Technol. 288 (2022) 120609, DOI: 10.1016/j.seppur.2022.120609.

    52. [52]

      S. Bai, F.P. Zhang, Y.F. Zhang, J. Alloy. Compd. 1005 (2024) 176137, DOI: 10.1016/j.jallcom.2024.176137.

    53. [53]

      H.Y. Wang, Y.F. Li, M.Y. Dou, G. Yang, R.X. Yang, X.S. Duan, L.Q. Kong, H.J. Zhu, H. Yang, J.M. Dou, J. Alloy. Compd. 1010 (2025) 177669, DOI: 10.1016/j.jallcom.2024.177669.

    54. [54]

      Y.Y. Zhao, X.H. Liang, Y.B. Wang, H.X. Shi, E.Z. Liu, J. Fan, X.Y. Hu, J. Colloid Inter. Sci. 523 (2018) 7, DOI: 10.1016/j.jcis.2018.03.078.

    55. [55]

      Y. Jing, A.D. Fan, J.X. Guo, T. Shen, S.D. Yuan, Y.H. Chu, Chem. Eng. J. 429 (2022) 132193, DOI: 10.1016/j.cej.2021.132193.

    56. [56]

      Z.F. Jiang, W.M. Wan, H.M. Li, S.Q. Yuan, H.J. Zhao, P.K. Wong, Adv. Mater. 30 (2018) 1706108, DOI: 10.1002/adma.201706108.(accessed2024/09/18).

    57. [57]

      Y.P. Li, H. Wang, L.Y. Huang, C.B. Wang, Q. Wang, F. Zhang, X.H. Fan, M. Xie, H.M. Li, J. Alloy. Compd. 816 (2020) 152665, DOI: 10.1016/j.jallcom.2019.152665.

    58. [58]

      L.Y. Huang, H. Xu, R.X. Zhang, X.N. Cheng, J.X. Xia, Y.G. Xu, H.M. Li, Appl. Surf. Sci. 283 (2013) 25, DOI: 10.1016/j.apsusc.2013.05.106.

    59. [59]

      H.W. He, Z.L. Wang, J.F. Zhang, C.F. Shao, K. Dai, K. Fan, Adv. Funct. Mater. 34 (2024) 2315426, DOI: 10.1002/adfm.202315426.(accessed2025/03/24).

    60. [60]

      Q.M. Qiao, Y.L. Xu, D.J. Zhong, X.H. Ke, Y.Q. Yang, H.L. Zeng, J. Mol. Liq. 414 (2024) 126208, DOI: 10.1016/j.molliq.2024.126208.

    61. [61]

      D.D. Chen, Z.L. Wang, J.W. Fu, J.F. Zhang, K. Dai, Sci. China Mater. 67 (2024) 541, DOI: 10.1007/s40843-023-2770-8.

    62. [62]

      Y.Z. Hong, Y.H. Jiang, C.S. Li, W.Q. Fan, X. Yan, M. Yan, W.D. Shi, Appl. Catal. B: Environ. 180 (2016) 663, DOI: 10.1016/j.apcatb.2015.06.057.

    63. [63]

      R.A. Rather, M. Khan, I.M.C. Lo, J. Catal. 366 (2018) 28, DOI: 10.1016/j.jcat.2018.07.027.

    64. [64]

      L.K. Ge, J.W. Chen, X.X. Wei, S.Y. Zhang, X.L. Qiao, X.Y. Cai, Q. Xie, Environ. Sci. Technol. 44 (2010) 2400, DOI: 10.1021/es902852v.

    65. [65]

      J. Rashid, A. Abbas, L.C. Chang, A. Iqbal, I.U. Haq, A. Rehman, S.U. Awan, M. Arshad, M. Rafique, M.A. Barakat, Sci. Total Environ. 665 (2019) 668, DOI: 10.1016/j.scitotenv.2019.02.145.

    66. [66]

      L.X. Wang, C.B. Bie, J.G. Yu, Trend Chem. 4 (2022) 973, DOI: 10.1016/j.trechm.2022.08.008.

    67. [67]

      Q.L. Xu, R.A. He, Y.J. Li, Acta Phys. Chim. Sin. 39 (2022) 2211009, DOI: 10.3866/pku.whxb202211009.

    68. [68]

      J.W. Yan, L. Gong, S.Y. Chai, C. Guo, W. Zhang, H.Y. Wan, Chem. Eng. J. 458 (2023) 141456, DOI: 10.1016/j.cej.2023.141456.

    69. [69]

      Y.X. Tian, S.C. Luo, E.H. Dawolo, B.F. Chen, N. Ding, H. Liu, J. Environ. Chem. Eng. 12 (2024) 114150, DOI: 10.1016/j.jece.2024.114150.

    70. [70]

      W.K. Pei, Y. Wang, Y.J. Liu, L. Zhou, J.Y. Lei, J.L. Zhang, Sep. Purif. Technol. 344 (2024) 127157, DOI: 10.1016/j.seppur.2024.127157.

    71. [71]

      L. Li, C.G. Niu, H. Guo, J. Wang, M. Ruan, L. Zhang, C. Liang, H.Y. Liu, Y.Y. Yang, Chem. Eng. J. 383 (2020) 123192, DOI: 10.1016/j.cej.2019.123192.

    72. [72]

      C.F. Gao, Y. Sun, S.S. Yu, L.F. Liu, C.Y. Liu, Y.H. Li, H.B. Wang, X.B. Chang, Chem. Eng. J. 500 (2024) 156944, DOI: 10.1016/j.cej.2024.156944.

    73. [73]

      C.S. Ding, Y.Q. Lu, J. Guo, W. Gan, S.H. Qi, Z.Z. Yin, M. Zhang, Z.Q. Sun, Chem. Eng. J. 450 (2022) 138271, DOI: 10.1016/j.cej.2022.138271.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  3
  • HTML全文浏览量:  0
文章相关
  • 发布日期:  2025-09-15
  • 收稿日期:  2025-03-05
  • 接受日期:  2025-05-12
  • 修回日期:  2025-05-09
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章