Citation: Jingping Li, Suding Yan, Jiaxi Wu, Qiang Cheng, Kai Wang. Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4[J]. Acta Physico-Chimica Sinica, ;2025, 41(9): 100104. doi: 10.1016/j.actphy.2025.100104 shu

Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4

  • Corresponding author: Suding Yan, yansd@hbnu.edu.cn Kai Wang, wangkai@hbnu.edu.cn
  • Received Date: 1 April 2025
    Revised Date: 5 May 2025
    Accepted Date: 11 May 2025

    Fund Project: the National Natural Science Foundation of China 22378104Hubei Provincial Natural Science Foundation of China 2025AFA093Hubei Provincial Natural Science Foundation of China 2022CFB504Outstanding Youth Science and Technology Innovation Team in Hubei Province T2023021

  • With the rapid development of new energy industries, the utilization of waste batteries has attracted the attention of researchers. Developing a hydrogen peroxide photosynthesis system with battery recycling materials as photocatalysts presents a significant challenge. In this study, an ultrasonic self-assembly technique is employed to integrate LiFePO4 (LFPO) nanoparticles, derived from spent batteries, with g-C3N4 (CN) nanosheets, thereby creating an inorganic/organic S-scheme photocatalyst for the production of H2O2. In situ analyses using X-ray photoelectron spectroscopy (XPS) and Kelvin probe force microscopy (KPFM) demonstrate that the interaction between LFPO and CN facilitates the development of an internal electric field (IEF), which in turn gives rise to a distinctive S-scheme charge transfer mechanism. Combining electron spin resonance spectroscopy, radical-trapping experiments, and in situ DRIFTS spectra, three pathways for H2O2 formation are identified. Benefited from enhanced carrier separation, strong redox power, and multichannel H2O2 formation, the optimal composite shows an impressive H2O2-production rate of 3.22 mol∙g−1∙h−1 under simulated solar irradiation. This research provides a potential method to investigate a sustainable H2O2 photosynthesis pathway by designing S-scheme heterojunctions from spent battery materials.
  • 加载中
    1. [1]

      C. Shao, Q. He, M. Zhang, L. Jia, Y. Ji, Y. Hu, Y. Li, W. Huang, Y. Li, Chin. J. Catal. 46 (2023) 28, https://doi.org/10.1016/S1872-2067(22)64205-0.  doi: 10.1016/S1872-2067(22)64205-0

    2. [2]

      X. Yin, H. Shi, Y. Wang, X. Wang, P. Wang, H. Yu, Acta Phys. -Chim. Sin. 40 (2024) 2312007, https://doi.org/10.3866/PKU.WHXB202312007.  doi: 10.3866/PKU.WHXB202312007

    3. [3]

      Y. Xu, W. Tai, Z. Wang, L. Zhang, D. Wang, J. Liao, Sci. China Mater. 67 (2024) 153, https://doi.org/10.1007/s40843-023-2659-9.  doi: 10.1007/s40843-023-2659-9

    4. [4]

      C. Ai, B. Luo, C. Zhang, Y. Wang, B. Wang, L. Ma, D. Jing, J. Mater. Sci. Technol. 196 (2024) 237, https://doi.org/10.1016/j.jmst.2024.01.065.  doi: 10.1016/j.jmst.2024.01.065

    5. [5]

      T. Zhou, X. Liu, L. Zhao, M. Qiao, W. Lei, Acta Phys. -Chim. Sin. 40 (2024) 2309020, https://doi.org/10.3866/PKU.WHXB202309020.  doi: 10.3866/PKU.WHXB202309020

    6. [6]

      H. Yu, X. Zhang, Q. Chen, P. Zhou, F. Xu, H. Wang, X. Chen, Chem. Res. Chin. Univ. (2025), https://doi.org/10.1007/s40242-024-4213-3.  doi: 10.1007/s40242-024-4213-3

    7. [7]

      Q. Zhang, H. Miao, J. Wang, T. Sun, E. Liu, Chin. J. Catal. 63 (2024) 176, https://doi.org/10.1016/S1872-2067(24)60077-X.  doi: 10.1016/S1872-2067(24)60077-X

    8. [8]

      Y. Zhang, J. Qiu, B. Zhu, G. Sun, B. Cheng, L. Wang, Chin. J. Catal. 57 (2024) 143, https://doi.org/10.1016/S1872-2067(23)64580-2.  doi: 10.1016/S1872-2067(23)64580-2

    9. [9]

      D. Yang, Y. Li, R. Chen, X. Wang, Z. Li, T. Xing, L. Wei, S. Xu, P. Dai, M. Wu, J. Mater. Sci. Technol. 183 (2024) 23, https://doi.org/10.1016/j.jmst.2023.09.049.  doi: 10.1016/j.jmst.2023.09.049

    10. [10]

      Q. Cheng, J. Li, Y. Huang, X. Liu, B. Zhou, Q. Xiong, K. Wang, Adv. Sci. (2025) 2500218, https://doi.org/10.1002/advs.202500218.  doi: 10.1002/advs.202500218

    11. [11]

      C. Bai, L. Liu, J. Chen, F. Chen, Z. Zhang, Y. Sun, X. Chen, Q. Yang, H. Yu, Nat. Commun. 15 (2024) 4718, https://doi.org/10.1038/s41467-024-49046-x.  doi: 10.1038/s41467-024-49046-x

    12. [12]

      K. Li, C. Liu, J. Li, G. Wang, K. Wang, Acta Phys. Chim. Sin. 40 (2024) 2403009, https://doi.org/10.3866/PKU.WHXB202403009.  doi: 10.3866/PKU.WHXB202403009

    13. [13]

      H. Ling, H. Sun, L. Lu, J. Zhang, L. Liao, J. Wang, X. Zhang, Y. Lan, R. Li, W. Lu, et al., Nat. Commun. 15 (2024) 9505, https://doi.org/10.1038/s41467-024-53896-w.  doi: 10.1038/s41467-024-53896-w

    14. [14]

      X. Zhang, D. Gao, B. Zhu, B. Cheng, J. Yu, H. Yu, Nat. Commun. 15 (2024) 3212, https://doi.org/10.1038/s41467-024-47624-7.  doi: 10.1038/s41467-024-47624-7

    15. [15]

      Y. Zhao, C. Yang, S. Zhang, G. Sun, B. Zhu, L. Wang, J. Zhang, Chin. J. Catal. 63 (2024) 258, https://doi.org/10.1016/S1872-2067(24)60069-0.  doi: 10.1016/S1872-2067(24)60069-0

    16. [16]

      K. Li, J. Mei, J. Li, Y. Liu, G. Wang, D. Hu, S. Yan, K. Wang, Sci. China Mater. 67 (2024) 484, https://doi.org/10.1007/s40843-023-2717-0.  doi: 10.1007/s40843-023-2717-0

    17. [17]

      T. Shan, Y. Wang, D. Luo, Z. Huang, F. Zhang, H. Wu, L. Huang, J. Li, L. Chen, H. Xiao, Appl. Catal. B Environ. 349 (2024) 123872, https://doi.org/10.1016/j.apcatb.2024.123872.  doi: 10.1016/j.apcatb.2024.123872

    18. [18]

      F. Chen, C. Bai, P. Duan, Z. Zhang, Y. Sun, X. Chen, Q. Yang, H. Yu, Nat. Commun. 15 (2024) 7783, https://doi.org/10.1038/s41467-024-52158-z.  doi: 10.1038/s41467-024-52158-z

    19. [19]

      K. Zhang, Y. Li, S. Yuan, L. Zhang, Q. Wang, Acta Phys. Chim. Sin. 39 (2023) 2212010, https://doi.org/10.3866/PKU.WHXB202212010.  doi: 10.3866/PKU.WHXB202212010

    20. [20]

      K. Wang, J. Li, X. Liu, Q. Cheng, Y. Du, D. Li, G. Wang, B. Liu, Appl. Catal. B Environ. 342 (2024), 123349, https://doi.org/10.1016/j.apcatb.2023.123349.  doi: 10.1016/j.apcatb.2023.123349

    21. [21]

      F. Liu, P. Zhou, Y. Hou, H. Tan, Y. Liang, J. Liang, Q. Zhang, S. Guo, M. Tong, J. Ni, Nat. Commun. 14 (2023) 4344, https://doi.org/10.1038/s41467-023-40007-4.  doi: 10.1038/s41467-023-40007-4

    22. [22]

      W. Zou, J. Li, R. Wang, J. Ma, Z. Chen, L. Duan, H. Mi, H. Chen, J. Hazard. Mater. 431 (2022) 128590, https://doi.org/10.1016/j.jhazmat.2022.128590.  doi: 10.1016/j.jhazmat.2022.128590

    23. [23]

      P. Wang, X. Lou, Q. Chen, Y. Liu, X. Sun, Y. Guo, X. Zhang, R. Wang, Z. Wang, S. Chen, et al., J. Environ. Res. 214 (2022) 113780, https://doi.org/10.1016/j.envres.2022.113780.  doi: 10.1016/j.envres.2022.113780

    24. [24]

      X. Yue, F. Zhang, Chem. Eng. J. 450 (2022) 138388, https://doi.org/10.1016/j.cej.2022.138388.  doi: 10.1016/j.cej.2022.138388

    25. [25]

      J. Guo, J. Zhang, C. Chen, Y. Lan, J. Taiwan. Inst. Chem. Eng. 62 (2016) 187, https://doi.org/10.1016/j.jtice.2016.02.003.  doi: 10.1016/j.jtice.2016.02.003

    26. [26]

      K. Wang, H. Qin, J. Li, Q. Cheng, Y. Zhu, H. Hu, J. Peng, S. Chen, G. Wang, S. Chou, et al., Appl. Catal. B Environ. 332 (2023) 122763, https://doi.org/10.1016/j.apcatb.2023.122763.  doi: 10.1016/j.apcatb.2023.122763

    27. [27]

      K. Wang, L. Jiang, T. Xin, Y. Li, X. Wu, G. Zhang, Chem. Eng. J. 429 (2022) 132229, https://doi.org/10.1016/j.cej.2021.132229.  doi: 10.1016/j.cej.2021.132229

    28. [28]

      J. Li, Q. Chai, R. Niu, W. Pan, Z. Chen, L. Wang, K. Wang, Z. Liu, Y. Liu, Y. Xiao, et al., Carbon Energy (2024) e598, https://doi.org/10.1002/cey2.598.  doi: 10.1002/cey2.598

    29. [29]

      W. Hou, H. Guo, K. Wang, T. Han, J. Zhang, M. Wu, L. Wang, Mater. Today 84 (2025) 1, https://doi.org/10.1016/j.mattod.2025.01.016.  doi: 10.1016/j.mattod.2025.01.016

    30. [30]

      K. Wang, H. Wang, Q. Cheng, C. Gao, G. Wang, X. Wu, J. Colloid. Interface Sci. 607 (2022) 1061, https://doi.org/10.1016/j.jcis.2021.09.034.  doi: 10.1016/j.jcis.2021.09.034

    31. [31]

      K. Wang, Q. Wang, K. Zhang, G. Wang, H. Wang, J. Mater. Sci. Technol. 124 (2022) 202, https://doi.org/10.1016/j.jmst.2021.10.059.  doi: 10.1016/j.jmst.2021.10.059

    32. [32]

      H. Liao, K. Huang, W. Hou, H. Guo, C. Lian, J. Zhang, Z. Liu, L. Wang, Adv. Powder Mater. 3 (2024) 100243, https://doi.org/10.1016/j.apmate.2024.100243.  doi: 10.1016/j.apmate.2024.100243

    33. [33]

      K. Wang, Y. Hu, X. Liu, J. Li, B. Liu, Nat. Commun. 16 (2025) 2094, https://doi.org/10.1038/s41467-025-57140-x.  doi: 10.1038/s41467-025-57140-x

    34. [34]

      C. Yang, Q. Zhang, W. Wang, B. Cheng, J. Yu, S. Cao, Sci. China Mater. 67 (2024) 1830, https://doi.org/10.1007/s40843-024-2789-0.  doi: 10.1007/s40843-024-2789-0

    35. [35]

      X. Shao, K. Wang, L. Peng, K. Li, H. Wen, X. Le, X. Wu, G. Wang, Colloid Surf. A 652 (2022) 129846, https://doi.org/10.1016/j.colsurfa.2022.129846.  doi: 10.1016/j.colsurfa.2022.129846

    36. [36]

      H. Ran, X. Liu, L. Ye, J. Fan, B. Zhu, Q. Xu, Y. Wei, J. Mater. Sci. Technol. 234 (2025) 24, https://doi.org/10.1016/j.jmst.2024.12.089.  doi: 10.1016/j.jmst.2024.12.089

    37. [37]

      K. Wang, C. Liu, J. Li, Q. Cheng, B. Liu, J. Li, Appl. Catal. B Environ. 361 (2025) 124560, https://doi.org/10.1016/j.apcatb.2024.124560.  doi: 10.1016/j.apcatb.2024.124560

    38. [38]

      M. Li, J. Wang, Z. Jin, Rare Met. 43 (2024) 1999, https://doi.org/10.1007/s12598-023-02539-y.  doi: 10.1007/s12598-023-02539-y

    39. [39]

      K. Wang, Q. Cheng, W. Hou, H. Guo, X. Wu, J. Wang, J. Li, Z. Liu, L. Wang, Adv. Funct. Mater. 34 (2023) 2309603, https://doi.org/10.1002/adfm.202309603.  doi: 10.1002/adfm.202309603

    40. [40]

      S. Wan, Y. Hou, W. Wang, G. Luo, C. Wang, R. Tu, S. Cao, Rare Met. 43 (2024) 5880, https://doi.org/10.1007/s12598-024-02861-z.  doi: 10.1007/s12598-024-02861-z

    41. [41]

      K. Meng, J. Zhang, B. Cheng, X. Ren, Z. Xia, F. Xu, L. Zhang, J. Yu, Adv. Mater. 36 (2024) 2406460, https://doi.org/10.1002/adma.202406460.  doi: 10.1002/adma.202406460

    42. [42]

      J. Qiu, K. Meng, Y. Zhang, B. Cheng, J. Zhang, L. Wang, J. Yu, Adv. Mater. 36 (2024) 2400288, https://doi.org/10.1002/adma.202400288.  doi: 10.1002/adma.202400288

    43. [43]

      Y. Wu, C. Cheng, K. Qi, B. Cheng, J. Zhang, J. Yu, L. Zhang, Acta Phys. -Chim. Sin. 40 (2024) 2406027, https://doi.org/10.3866/PKU.WHXB202406027.  doi: 10.3866/PKU.WHXB202406027

    44. [44]

      W. Yang, J. Zhang, Q. Xu, Y. Yang, L. Zhang, Acta Phys. -Chim. Sin. 40 (2024) 2312014, https://doi.org/10.3866/PKU.WHXB202312014.  doi: 10.3866/PKU.WHXB202312014

    45. [45]

      S. Jing, J. Zhao, A. Wang, Q. Ji, R. Cheng, H. Liang, F. Chen, P. Kannan, A. Brouzgou, P. Tsiakaras, Chem. Eng. J. 479 (2024) 147150, https://doi.org/10.1016/j.cej.2023.147150.  doi: 10.1016/j.cej.2023.147150

    46. [46]

      Y. Chen, L. Zhang, Appl. Catal. B Environ. 347 (2024) 123768, https://doi.org/10.1016/j.apcatb.2024.123768.  doi: 10.1016/j.apcatb.2024.123768

    47. [47]

      C. Wang, K. Rong, Y. Liu, F. Yang, S. Li, Sci. China Mater. 67 (2024) 562, https://doi.org/10.1007/s40843-023-2764-8.  doi: 10.1007/s40843-023-2764-8

    48. [48]

      W. Zhao, J. Cao, J. Liao, Y. Liu, X. Zeng, J. Shen, X. Hong, Y. Guo, H. Zeng, Y. Liu, Rare Met. 43 (2024) 3118, https://doi.org/10.1007/s12598024-02653-5.  doi: 10.1007/s12598024-02653-5

    49. [49]

      X. Shao, K. Li, J. Li, Q. Cheng, G. Wang, K. Wang, Chin. J. Catal. 51 (2023) 193, https://doi.org/10.1016/S1872-2067(23)64478-X.  doi: 10.1016/S1872-2067(23)64478-X

    50. [50]

      H. Ran, X. Liu, J. Fan, Y. Yang, L. Zhang, Q. Guo, B. Zhu, Q. Xu, J. Materiomics 11 (2025) 100918, https://doi.org/10.1016/j.jmat.2024.07.004.  doi: 10.1016/j.jmat.2024.07.004

    51. [51]

      K. Wang, H. Qin, X. Shao, L. Jiang, K. Li, J. Wang, L. Zhou, Q. Cheng, G. Wang, H. Wang, Sol. RRL 7 (2022) 2200963, https://doi.org/10.1002/solr.202200963.  doi: 10.1002/solr.202200963

    52. [52]

      R. Shen, C. Huang, L. Hao, G. Liang, P. Zhang, Q. Yue, X. Li, Nat. Commun. 16 (2025) 2457, https://doi.org/10.1038/s41467-025-57662-4.  doi: 10.1038/s41467-025-57662-4

    53. [53]

      B. Qi, R. Shen, Z. Ren, Y. Teng, H. Ding, X. Zhang, Y. Zhang, L. Hao, X. Li, J. Mater. Sci. Technol. 232 (2025) 65, https://doi.org/10.1016/j.jmst.2025.03.003.  doi: 10.1016/j.jmst.2025.03.003

    54. [54]

      R. Gao, R. Shen, C. Huang, K. Huang, G. Liang, P. Zhang, X. Li, Angew. Chem. Int. Ed. 64 (2025) e202414229, https://doi.org/10.1002/anie.202414229.  doi: 10.1002/anie.202414229

    55. [55]

      K. Huang, G. Liang, S. Sun, H. Hu, X. Peng, R. Shen, X. Li, J. Mater. Sci. Technol. 193 (2024) 98, https://doi.org/10.1016/j.jmst.2024.01.034.  doi: 10.1016/j.jmst.2024.01.034

    56. [56]

      K. Huang, D. Chen, X. Zhang, R. Shen, P. Zhang, D. Xu, X. Li, Acta Phys. -Chim. Sin. 40 (2024) 2407020, https://doi.org/10.3866/PKU.WHXB202407020.  doi: 10.3866/PKU.WHXB202407020

    57. [57]

      L. Hao, R. Shen, C. Qin, N. Li, H. Hu, G. Liang, X. Li, Sci. China Mater. 67 (2024) 504, https://doi.org/10.1007/s40843-023-2747-6.  doi: 10.1007/s40843-023-2747-6

    58. [58]

      H. Ding, R. Shen, K. Huang, C. Huang, G. Liang, P. Zhang, X. Li, Adv. Funct. Mater. 34 (2024) 2400065, https://doi.org/10.1002/adfm.202400065.  doi: 10.1002/adfm.202400065

    59. [59]

      R. Shen, C. Qin, L. Hao, X. Li, P. Zhang, X. Li, Adv. Mater. 35 (2023) 2305397, https://doi.org/10.1002/adma.202305397.  doi: 10.1002/adma.202305397

    60. [60]

      R. Shen, G. Liang, L. Hao, P. Zhang, X. Li, Adv. Mater. 35 (2023) 2303649, https://doi.org/10.1002/adma.202303649.  doi: 10.1002/adma.202303649

    61. [61]

      Y. Ma, S. Wang, Y. Zhang, B. Cheng, L. Zhang, J. Materiomics 11 (2025) 100978, https://doi.org/10.1016/j.jmat.2024.100978.  doi: 10.1016/j.jmat.2024.100978

    62. [62]

      Y. Zhang, Y. Wang, Y. Liu, S. Zhang, Y. Zhao, J. Zhang, J. Materiomics 11 (2025) 100985, https://doi.org/10.1016/j.jmat.2024.100985.  doi: 10.1016/j.jmat.2024.100985

    63. [63]

      X. Zhou, C. Ai, X. Wang, Z. Wu, J. Zhang, J. Materiomics 11 (2025) 100974, https://doi.org/10.1016/j.jmat.2024.100974.  doi: 10.1016/j.jmat.2024.100974

    64. [64]

      M. Gu, J. Zhang, I. Kurganskii, A. Poryvaev, M. Fedin, B. Cheng, J. Yu, L. Zhang, Adv. Mater. 37 (2025) 2414803, https://doi.org/10.1002/adma.202414803.  doi: 10.1002/adma.202414803

    65. [65]

      Y. Zhao, Y. Zhang, H. Tan, C. Ai, J. Zhang, J. Materiomics 11 (2025) 100970, https://doi.org/10.1016/j.jmat.2024.100970.  doi: 10.1016/j.jmat.2024.100970

    66. [66]

      Y. Yang, X. Zhou, M. Gu, B. Cheng, Z. Wu, J. Zhang, Acta Phys. -Chim. Sin. 41 (2025) 100064, https://doi.org/10.1016/j.actphy.2025.100064.  doi: 10.1016/j.actphy.2025.100064

    67. [67]

      C. Cheng, J. Yu, D. Xu, L. Wang, G. Liang, L. Zhang, M. Jaroniec, Nat. Commun. 15 (2024) 1313, https://doi.org/10.1038/s41467-024-45604-5.  doi: 10.1038/s41467-024-45604-5

    68. [68]

      M. Gu, Y. Yang, B. Cheng, L. Zhang, P. Xiao, T. Chen, Chin. J. Catal. 59 (2024) 185, https://doi.org/10.1016/S1872-2067(23)64610-8.  doi: 10.1016/S1872-2067(23)64610-8

    69. [69]

      J. Yan, L. Wei, Acta Phys. -Chim. Sin. 40 (2024) 2312024, https://doi.org/10.3866/PKU.WHXB202312024.  doi: 10.3866/PKU.WHXB202312024

    70. [70]

      L. Zhang, J. Zhang, J. Yu, H. García, Nat. Rev. Chem. 2025, https://doi.org/10.1038/s41570-025-00698-3.  doi: 10.1038/s41570-025-00698-3

    71. [71]

      B. Zhu, C. Jiang, J. Xu, Z. Zhang, J. Fu, J. Yu, Mater. Today 82 (2025) 251, https://doi.org/10.1016/j.mattod.2024.11.012.  doi: 10.1016/j.mattod.2024.11.012

    72. [72]

      W. Zhong, A. Meng, Y. Su, H. Yu, P. Han, J. Yu, Angew. Chem. Int. Ed. 64 (2025) e202425038, https://doi.org/10.1002/anie.202425038.  doi: 10.1002/anie.202425038

  • 加载中
    1. [1]

      Bowen LiuJianjun ZhangHan LiBei ChengChuanbiao Bie . MOF-derived ZnO/PANI S-scheme heterojunction for efficient photocatalytic phenol mineralization coupled with H2O2 generation. Acta Physico-Chimica Sinica, 2025, 41(10): 100121-0. doi: 10.1016/j.actphy.2025.100121

    2. [2]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    3. [3]

      Qishen WangChangzhao ChenMengqing LiLingmin WuKai Dai . Lignin derived carbon quantum dots and oxygen vacancies coregulated S-scheme LCQDs/Bi2WO6 heterojunction for photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(11): 100147-0. doi: 10.1016/j.actphy.2025.100147

    4. [4]

      Jiayao WangGuixu PanNing WangShihan WangYaolin ZhuYunfeng Li . Preparation of donor-π-acceptor type graphitic carbon nitride photocatalytic systems via molecular level regulation for high-efficient H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(12): 100168-0. doi: 10.1016/j.actphy.2025.100168

    5. [5]

      Xinyu YinHaiyang ShiYu WangXuefei WangPing WangHuogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-0. doi: 10.3866/PKU.WHXB202312007

    6. [6]

      Qiang ChengJingping LiZhendong KeJiaming LiKai Wang . Advanced oxidation technology synergistic photothermal degradation of antibiotics over inorganic/organic S-scheme heterojunction. Acta Physico-Chimica Sinica, 2026, 42(5): 100187-0. doi: 10.1016/j.actphy.2025.100187

    7. [7]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

    8. [8]

      Ze LuoYukun ZhuYadan LuoGuangmin RenYonghong WangHua Tang . Photocatalytic selective oxidation of 5-hydroxymethylfurfural coupled with H2 evolution over In2O3/ZnIn2S4 S-scheme heterojunction. Acta Physico-Chimica Sinica, 2026, 42(3): 100166-0. doi: 10.1016/j.actphy.2025.100166

    9. [9]

      Jingzhuo TianChaohong GuanHaobin HuEnzhou LiuDongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-0. doi: 10.1016/j.actphy.2025.100068

    10. [10]

      Yang XiaKangyan ZhangHeng YangLijuan ShiQun Yi . Improving Photocatalytic H2O2 Production over iCOF/Bi2O3 S-Scheme Heterojunction in Pure Water via Dual Channel Pathways. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-0. doi: 10.3866/PKU.WHXB202407012

    11. [11]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    12. [12]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    13. [13]

      Yanping QiuJiatong ZhangLinping LiYangqin GaoNing LiLei Ge . MOF-derived g-C3N4/ZnIn2S4 S-scheme heterojunction: interface-engineering enhanced photocatalytic NO conversion. Acta Physico-Chimica Sinica, 2026, 42(4): 100175-0. doi: 10.1016/j.actphy.2025.100175

    14. [14]

      Ziyi XiaoXinyi MaLinping WangHaobin HuEnzhou Liu . Efficient photocatalytic conversion H2S over NiS2/twinned-Mn0.5Cd0.5S Schottky/S-scheme homojunction in Na2S/Na2SO3 solution. Acta Physico-Chimica Sinica, 2026, 42(4): 100171-0. doi: 10.1016/j.actphy.2025.100171

    15. [15]

      Deyun MaFenglan LiangQingquan XueYanping LiuChunqiang ZhuangShijie Li . Interfacial engineering of Cd0.5Zn0.5S/BiOBr S-scheme heterojunction with oxygen vacancies for effective photocatalytic antibiotic removal. Acta Physico-Chimica Sinica, 2025, 41(12): 100190-0. doi: 10.1016/j.actphy.2025.100190

    16. [16]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . 具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    17. [17]

      Tong ZhouXue LiuLiang ZhaoMingtao QiaoWanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020

    18. [18]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    19. [19]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    20. [20]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

Metrics
  • PDF Downloads(8)
  • Abstract views(1380)
  • HTML views(161)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return