Citation: Fanpeng Meng, Fei Zhao, Jingkai Lin, Jinsheng Zhao, Huayang Zhang, Shaobin Wang. Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution[J]. Acta Physico-Chimica Sinica, ;2025, 41(8): 100095. doi: 10.1016/j.actphy.2025.100095 shu

Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution

  • Corresponding author: Jinsheng Zhao, j.s.zhao@163.com Huayang Zhang, huayang.zhang@adelaide.edu.au
  • The authors contributed equally to the work.
  • Received Date: 18 March 2025
    Revised Date: 2 April 2025
    Accepted Date: 15 April 2025

    Fund Project: the National Natural Science Foundation of China 22302085the National Natural Science Foundation of China 22172069the Natural Science Foundation of Shandong Province ZR2024QB046the Natural Science Foundation of Shandong Province ZR2021ME071the Research Projects of Liaocheng University 318052272H. Zhang and S. Wang acknowledges the support from Discovery Project DP230102406H. Zhang and S. Wang acknowledges the support from Discovery Project DP240102787Australian Laureate Fellowships from the Australian Research Council FL230100178

  • Designing heterojunctions based on carbon nitride offers a promising pathway for enhancing photocatalytic efficiency. This study develops an all-organic S-scheme metal-free heterojunction uniquely composed of carbon nitride nanosheets (GCNNS) and a donor-acceptor conjugated polymer, poly p-aminobenzylidene-so-aniline (PASO), synthesized through a simple yet effective ball-milling technique. This heterojunction demonstrates excellent photocatalytic efficiency for hydrogen (H2) evolution. The optimized GCNNS/PASO-10 sample attains an H2 evolution rate of 10.12 mmol·g−1·h−1, which is about 5.9 times and 19.5 times greater than those of pure GCNNS and PASO, respectively. This improvement is due to the unique interfacial bonding, increased visible-light absorption, and efficient charge carrier separation facilitated by a strong internal electric field within the S-scheme. Theoretical calculations and characterization reveal that this heterojunction's S-scheme mechanism optimally aligns energy bands and promotes spatial charge separation, driving superior photocatalytic activity. This work presents the unique advantage of all-organic materials for heterojunction construction and provides insights into designing advanced S-scheme systems for sustainable energy conversion.
  • 加载中
    1. [1]

      X. Wu, L. Tan, G. Chen, J. Kang, G. Wang, Sci. China Mater, 67 (2024) 444, https://doi.org/10.1007/s40843-023-2755-2.  doi: 10.1007/s40843-023-2755-2

    2. [2]

      X.H. Wu, G.Q. Chen, J. Wang, J. Li, G. Wang, Acta Phys. Chim. Sin, 39 (2023) 221201, https://doi.org/10.3866/PKU.WHXB202212016.  doi: 10.3866/PKU.WHXB202212016

    3. [3]

      S. Wan, W. Wang, B. Cheng, G. Luo, Q. Shen, J. Yu, J. Zhang, S. Cao, L. Zhang, Nat. Commun, 15 (2024) 9612, https://doi.org/10.1038/s41467-024-53951-6.  doi: 10.1038/s41467-024-53951-6

    4. [4]

      G. Zhang, Z.A. Lan, X. Wang, Angew. Chem. Int. Ed, 55 (2016) 15712, https://doi.org/10.1002/anie.201607375.  doi: 10.1002/anie.201607375

    5. [5]

      C. Sun, H. Zhang, H. Liu, X. Zheng, W. Zou, L. Dong, L. Qi, Appl. Catal. B Environ, 235 (2018) 66, https://doi.org/10.1016/j.apcatb.2018.04.050.  doi: 10.1016/j.apcatb.2018.04.050

    6. [6]

      F. Yu, Z. Wang, S. Zhang, K. Yun, H. Ye, X. Gong, J. Hua, H. Tian, Appl. Catal. B Environ, 237 (2018) 32, https://doi.org/10.1016/j.apcatb.2018.05.045.  doi: 10.1016/j.apcatb.2018.05.045

    7. [7]

      K. Sridharan, E. Jang, T.J. Park, Appl. Catal. B Environ, 142-143 (2013) 718, https://doi.org/10.1016/j.apcatb.2013.05.077.  doi: 10.1016/j.apcatb.2013.05.077

    8. [8]

      M. Gu, J. Zhang, I.V. Kurganskii, A.S. Poryvaev, M.V. Fedin, B. Cheng, J. Yu, L. Zhang, Adv. Mater, 37 (2025) 2414803, https://doi.org/10.1002/adma.202414803.  doi: 10.1002/adma.202414803

    9. [9]

      Q. Xu, L. Zhang, B. Cheng, J. Fan, J. Yu, Chem, 6 (2020) 1543, https://doi.org/10.1016/j.chempr.2020.06.010.  doi: 10.1016/j.chempr.2020.06.010

    10. [10]

      L. Zhang, J. Zhang, J. Yu, H. García, Nat. Rev. Chem, (2025) 1, https://doi.org/10.1038/s41570-025-00698-3.  doi: 10.1038/s41570-025-00698-3

    11. [11]

      W. Yu, C. Bie, Acta Phys. Chim. Sin, 40 (2024) 2307022, https://doi.org/10.3866/PKU.WHXB202307022.  doi: 10.3866/PKU.WHXB202307022

    12. [12]

      J. Cai, B. Liu, S. Zhang, L. Wang, Z. Wu, J. Zhang, B. Cheng, J. Mater. Sci. Technol, 197 (2024) 183, https://doi.org/10.1016/j.jmst.2024.02.012.  doi: 10.1016/j.jmst.2024.02.012

    13. [13]

      J. Cheng, S. Gao, B. Cheng, K. Yang, W. Wang, S. Cao, Acta Phys. Chim. Sin, 40 (2024) 2406026, https://doi.org/10.3866/PKU.WHXB202406026.  doi: 10.3866/PKU.WHXB202406026

    14. [14]

      S. Mao, R. He, S. Song, Chinese J. Catal, 64 (2024) 1, https://doi.org/10.1016/S1872-2067(24)60102-6.  doi: 10.1016/S1872-2067(24)60102-6

    15. [15]

      J. Yan, L. Wei, Acta Phys. Chim. Sin, 40 (2024) 2312024, https://doi.org/10.3866/PKU.WHXB202312024.  doi: 10.3866/PKU.WHXB202312024

    16. [16]

      M. Gu, Y. Yang, B. Cheng, L. Zhang, P. Xiao, T. Chen, Chinese J. Catal, 59 (2024) 185, https://doi.org/10.1016/S1872-2067(23)64610-8.  doi: 10.1016/S1872-2067(23)64610-8

    17. [17]

      S. Zhou, D. Wen, W. Zhong, J. Zhang, Y. Su, A. Meng, J. Mater. Sci. Technol, 199 (2024) 53, https://doi.org/10.1016/j.jmst.2024.02.048.  doi: 10.1016/j.jmst.2024.02.048

    18. [18]

      S. Cao, B. Zhong, C. Bie, B. Cheng, F. Xu, Acta Phys. Chim. Sin, 40 (2024) 2307016, https://doi.org/10.3866/PKU.WHXB202307016.  doi: 10.3866/PKU.WHXB202307016

    19. [19]

      P. Li, Y. Cui, Z. Wang, G. Dawson, C. Shao, K. Dai, Acta Phys. Chim. Sin, 41 (2025) 100065, https://doi.org/10.1016/j.actphy.2025.100065.  doi: 10.1016/j.actphy.2025.100065

    20. [20]

      H. He, Z. Wang, J. Zhang, C. Shao, K. Dai, K. Fan, Adv. Funct. Mater, 34 (2024) 2315426, https://doi.org/10.1002/adfm.202315426.  doi: 10.1002/adfm.202315426

    21. [21]

      K. Li, C. Liu, J. Li, G. Wang, K. Wang, Acta Phys. Chim. Sin, 40 (2024) 2403009, https://doi.org/10.3866/PKU.WHXB202403009.  doi: 10.3866/PKU.WHXB202403009

    22. [22]

      T. Yang, J. Wang, Z. Wang, J. Zhang, K. Dai, Chinese J. Catal, 58 (2024) 157, https://doi.org/10.1016/S1872-2067(23)64607-8.  doi: 10.1016/S1872-2067(23)64607-8

    23. [23]

      Y. Liu, C. Chen, G. Dawson, J. Zhang, C. Shao, K. Dai, J. Mater. Sci. Technol, 233 (2025) 10, https://doi.org/10.1016/j.jmst.2024.12.094.  doi: 10.1016/j.jmst.2024.12.094

    24. [24]

      J. Wang, S. Wang, Coord. Chem. Rev., 453 (2022) 214338, https://doi.org/10.1016/j.ccr.2021.214338.  doi: 10.1016/j.ccr.2021.214338

    25. [25]

      N. Chaoui, M. Trunk, R. Dawson, J. Schmidt, A. Thomas, Chem. Soc. Rev, 46 (2017) 3302, https://doi.org/10.1039/C7CS00071E.  doi: 10.1039/C7CS00071E

    26. [26]

      J. Zhu, S. Zhang, R. He, Chinese J. Catal, 59 (2024) 4, https://doi.org/10.1016/S1872-2067(24)60011-2.  doi: 10.1016/S1872-2067(24)60011-2

    27. [27]

      R.S. Sprick, J.X. Jiang, B. Bonillo, S. Ren, T. Ratvijitvech, P. Guiglion, M.A. Zwijnenburg, D.J. Adams, A.I. Cooper, J. Am. Chem. Soc, 137 (2015) 3265, https://doi.org/10.1021/ja511552k.  doi: 10.1021/ja511552k

    28. [28]

      F. Guo, B. Hu, C. Yang, J. Zhang, Y. Hou, X. Wang, Adv. Mater, 33 (2021) 2101466, https://doi.org/10.1002/adma.202101466.  doi: 10.1002/adma.202101466

    29. [29]

      P. Dong, A. Zhang, J. Pan, K. Gao, Z. Wang, X. Xi, Appl. Surf. Sci, 615 (2023) 156414, https://doi.org/10.1016/j.apsusc.2023.156414.  doi: 10.1016/j.apsusc.2023.156414

    30. [30]

      F. Lan, Q. Wang, H. Chen, Y. Chen, Y. Zhang, B. Huang, H. Liu, J. Liu, R. Li, ACS Catal, 10 (2020) 12976, https://doi.org/10.1021/acscatal.0c03652.  doi: 10.1021/acscatal.0c03652

    31. [31]

      Z. Zhu, X. Xing, Q. Qi, W. Shen, H. Wu, D. Li, B. Li, J. Liang, X. Tang, J. Zhao, H. Li, P. Huo, Chinese J. Struc. Chem, 42 (2023) 100194, https://doi.org/10.1016/j.cjsc.2023.100194.  doi: 10.1016/j.cjsc.2023.100194

    32. [32]

      F. Meng, W. Tian, Z. Tian, X. Tan, H. Zhang, S. Wang, Sci. Total Environ, 851 (2022) 158360, https://doi.org/10.1016/j.scitotenv.2022.158360.  doi: 10.1016/j.scitotenv.2022.158360

    33. [33]

      J. Wang, G. Wang, B. Cheng, J. Yu, J. Fan, Chinese J. Catal, 42 (2021) 56, https://doi.org/10.1016/S1872-2067(20)63634-8.  doi: 10.1016/S1872-2067(20)63634-8

    34. [34]

      Y. Chen, D. Yang, B. Shi, W. Dai, H. Ren, K. An, Z. Zhou, Z. Zhao, W. Wang, Z. Jiang, J. Mater. Chem. A, 8 (2020) 7724, https://doi.org/10.1039/D0TA00901F.  doi: 10.1039/D0TA00901F

    35. [35]

      B. Liu, D.M. Lv, Y.L. Wang, W.Y. Li, Y.W. Sun, Z.W. Li, Langmuir, 40 (2024) 6363, https://doi.org/10.1021/acs.langmuir.3c03910.  doi: 10.1021/acs.langmuir.3c03910

    36. [36]

      F. Yu, Z. Wang, S. Zhang, H. Ye, K. Kong, X. Gong, J. Hua, H. Tian, Adv. Funct. Mater, 28 (2018) 1804512, https://doi.org/10.1002/adfm.201804512.  doi: 10.1002/adfm.201804512

    37. [37]

      Q. Du, Y. Wei, J. Zheng, C. Xu, Electrochim. Acta, 132 (2014) 258, https://doi.org/10.1016/j.electacta.2014.03.172.  doi: 10.1016/j.electacta.2014.03.172

    38. [38]

      Y. Liu, J. Wu, F. Wang, Appl. Catal. B Environ, 307 (2022) 121144, https://doi.org/10.1016/j.apcatb.2022.121144.  doi: 10.1016/j.apcatb.2022.121144

    39. [39]

      M. Samal, S. Valligatla, N.A. Saad, M.V. Rao, D.N. Rao, R. Sahu, B.P. Biswal, ChemComm, 55 (2019) 11025, https://doi.org/10.1039/C9CC05415D.  doi: 10.1039/C9CC05415D

    40. [40]

      W. Zhou, T. Jia, D. Zhang, Z. Zheng, W. Hong, X. Chen, Appl. Catal. B Environ, 259 (2019) 118067, https://doi.org/10.1016/j.apcatb.2019.118067.  doi: 10.1016/j.apcatb.2019.118067

    41. [41]

      L. Chen, X. Liang, H. Wang, Q. Xiao, X. Qiu, Chem. Eng. J., 442 (2022) 136115, https://doi.org/10.1016/j.cej.2022.136115.  doi: 10.1016/j.cej.2022.136115

    42. [42]

      F. Yu, Z. Zhu, S. Wang, J. Wang, Z. Xu, F. Song, Z. Dong, Z. Zhang, Appl. Catal. B Environ, 301 (2022) 120819, https://doi.org/10.1016/j.apcatb.2021.120819.  doi: 10.1016/j.apcatb.2021.120819

    43. [43]

      K. Li, W.D. Zhang, Small, 14 (2018) 1703599, https://doi.org/10.1002/smll.201703599.  doi: 10.1002/smll.201703599

    44. [44]

      Z. Jin, J. Li, D. Liu, Y. Sun, X. Li, Q. Cai, H. Ding, J. Gui, Sep. Purif. Technol, 284 (2022) 120207, https://doi.org/10.1016/j.seppur.2021.120207.  doi: 10.1016/j.seppur.2021.120207

    45. [45]

      A.M. Elewa, A.F.M. El-Mahdy, A.E. Hassan, Z. Wen, J. Jayakumar, T.L. Lee, L.Y. Ting, I.M.A. Mekhemer, T.F. Huang, M.H. Elsayed, C.L. Chang, W.C. Lin, H.H. Chou, J. Mater. Chem. A, 10 (2022) 12378, https://doi.org/10.1039/D2TA00328G.  doi: 10.1039/D2TA00328G

    46. [46]

      C. Wang, C. Yang, J. Qin, S. Rajendran, X. Zhang, Mater. Chem. Phys, 275 (2022) 125299, https://doi.org/10.1016/j.matchemphys.2021.125299.  doi: 10.1016/j.matchemphys.2021.125299

    47. [47]

      Q. Sheng, Y. Du, Y. Dong, J. Zhao, X. Zhong, Y. Xie, Appl. Surf. Sci, 603 (2022) 154425, https://doi.org/10.1016/j.apsusc.2022.154425.  doi: 10.1016/j.apsusc.2022.154425

    48. [48]

      S. Ni, H. Qu, H. Xing, Z. Xu, X. Zhu, M. Yuan, M. Rong, L. Wang, J. Yu, Y. Li, L. Yang, H. Liu, Chin. J. Chem. Eng., 41 (2022) 320, https://doi.org/10.1016/j.cjche.2021.09.026.  doi: 10.1016/j.cjche.2021.09.026

    49. [49]

      S. Xiao, X. Li, W. Zhang, Y. Xiang, T. Li, X. Niu, J.S. Chen, Q. Yan, ACS Nano, 15 (2021) 13307, https://doi.org/10.1021/acsnano.1c03056.  doi: 10.1021/acsnano.1c03056

    50. [50]

      M. Chandra, U. Guharoy, D. Pradhan, ACS Appl. Mater. Interfaces, 14 (2022) 22122, https://doi.org/10.1021/acsami.2c03230.  doi: 10.1021/acsami.2c03230

    51. [51]

      P. Dong, A. Zhang, T. Cheng, J. Pan, J. Song, L. Zhang, R. Guan, X. Xi, J. Zhang, Chinese J. Catal, 43 (2022) 2592, https://doi.org/10.1016/S1872-2067(22)64094-4.  doi: 10.1016/S1872-2067(22)64094-4

    52. [52]

      M. Tan, Y. Ma, C. Yu, Q. Luan, J. Li, C. Liu, W. Dong, Y. Su, L. Qiao, L. Gao, Q. Lu, Y. Bai, Adv. Funct. Mater, 32 (2021) 2111740, https://doi.org/10.1002/adfm.202111740.  doi: 10.1002/adfm.202111740

    53. [53]

      Y. Wu, Y. Chen, D. Li, D. Sajjad, Y. Chen, Y. Sun, S. Liu, J. Shi, Z. Jiang, Appl. Catal. B Environ, 309 (2022) 121261, https://doi.org/10.1016/j.apcatb.2022.121261.  doi: 10.1016/j.apcatb.2022.121261

    54. [54]

      M. Qureshi, K. Takanabe, Chem. Mater., 29 (2017) 158, https://doi.org/10.1021/acs.chemmater.6b02907.  doi: 10.1021/acs.chemmater.6b02907

    55. [55]

      S. Cao, L. Piao, Angew. Chem. Int. Ed, 59 (2020) 18312, https://doi.org/10.1002/anie.202009633.  doi: 10.1002/anie.202009633

    56. [56]

      G. Kresse, J. Furthmüller, Phys. Rev B, 54 (1996) 11169, https://doi.org/10.1103/PhysRevB.54.11169.  doi: 10.1103/PhysRevB.54.11169

    57. [57]

      I.M. Sundaram, S. Kalimuthu, G.P. P, K. Sekar, S. Rajendran, Int. J. Hydrog. Energy, 47 (2022) 3709, https://doi.org/10.1016/j.ijhydene.2021.10.261.  doi: 10.1016/j.ijhydene.2021.10.261

    58. [58]

      F. Jing, Y. Guo, B. Li, Y.F. Chen, C. Jia, J. Li, Chinese Chem. Lett, 33 (2022) 1303, https://doi.org/10.1016/j.cclet.2021.07.056.  doi: 10.1016/j.cclet.2021.07.056

    59. [59]

      C. Cheng, B. He, J. Fan, B. Cheng, S. Cao, J. Yu, Adv Mater, 33 (2021) 2100317, https://doi.org/10.1002/adma.202100317.  doi: 10.1002/adma.202100317

    60. [60]

      J. Tao, X. Yu, Q. Liu, G. Liu, H. Tang, J. Colloid Interface Sci, 585 (2021) 470, https://doi.org/10.1016/j.jcis.2020.10.028.  doi: 10.1016/j.jcis.2020.10.028

  • 加载中
    1. [1]

      Shuang CaoBo ZhongChuanbiao BieBei ChengFeiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016

    2. [2]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    3. [3]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    4. [4]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

    5. [5]

      You WuChang ChengKezhen QiBei ChengJianjun ZhangJiaguo YuLiuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027

    6. [6]

      Xinyu MiaoHao YangJie HeJing WangZhiliang Jin . Adjusting the electronic structure of Keggin-type polyoxometalates to construct S-scheme heterojunction for photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-0. doi: 10.1016/j.actphy.2025.100051

    7. [7]

      Kaihui HuangDejun ChenXin ZhangRongchen ShenPeng ZhangDifa XuXin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-0. doi: 10.3866/PKU.WHXB202407020

    8. [8]

      Jiaxing CaiWendi XuHaoqiang ChiQian LiuWa GaoLi ShiJingxiang LowZhigang ZouYong Zhou . Highly Efficient InOOH/ZnIn2S4 Hollow Sphere S-Scheme Heterojunction with 0D/2D Interface for Enhancing Photocatalytic CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-0. doi: 10.3866/PKU.WHXB202407002

    9. [9]

      Weikang WangYadong WuJianjun ZhangKai MengJinhe LiLele WangQinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093

    10. [10]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

    11. [11]

      Changjun YouChunchun WangMingjie CaiYanping LiuBaikang ZhuShijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014

    12. [12]

      Jingzhao ChengShiyu GaoBei ChengKai YangWang WangShaowen Cao . Construction of 4-Amino-1H-imidazole-5-carbonitrile Modified Carbon Nitride-Based Donor-Acceptor Photocatalyst for Efficient Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-0. doi: 10.3866/PKU.WHXB202406026

    13. [13]

      Chunchun WangChangjun YouKe RongChuqi ShenFang YangShijie Li . An S-Scheme MIL-101(Fe)-on-BiOCl Heterostructure with Oxygen Vacancies for Boosting Photocatalytic Removal of Cr(Ⅵ). Acta Physico-Chimica Sinica, 2024, 40(7): 2307045-0. doi: 10.3866/PKU.WHXB202307045

    14. [14]

      Yuejiao AnWenxuan LiuYanfeng ZhangJianjun ZhangZhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-0. doi: 10.3866/PKU.WHXB202407021

    15. [15]

      Wenlong WangWentao HaoLang HeJia QiaoNing LiChaoqiu ChenYong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116

    16. [16]

      Menglan WeiXiaoxia OuYimeng WangMengyuan ZhangFei TengKaixuan Wang . S-scheme heterojunction g-C3N4/Bi2WO6 highly efficient degradation of levofloxacin: performance, mechanism and degradation pathway. Acta Physico-Chimica Sinica, 2025, 41(9): 100105-0. doi: 10.1016/j.actphy.2025.100105

    17. [17]

      Jinwang WuQijing XieChengliang ZhangHaifeng Shi . Rationally Designed ZnFe1.2Co0.8O4/BiVO4 S-Scheme Heterojunction with Spin-Polarization for the Elimination of Antibiotic. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-0. doi: 10.1016/j.actphy.2025.100050

    18. [18]

      Xiutao XuChunfeng ShaoJinfeng ZhangZhongliao WangKai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-0. doi: 10.3866/PKU.WHXB202309031

    19. [19]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    20. [20]

      Jianyu QinYuejiao AnYanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-0. doi: 10.3866/PKU.WHXB202408002

Metrics
  • PDF Downloads(0)
  • Abstract views(175)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return