用于金属锂电池的磷腈基阻燃人工界面层

金彩云 吴泽轩 李国鹏 罗战 李念武

引用本文: 金彩云, 吴泽轩, 李国鹏, 罗战, 李念武. 用于金属锂电池的磷腈基阻燃人工界面层[J]. 物理化学学报, 2025, 41(8): 100094. doi: 10.1016/j.actphy.2025.100094 shu
Citation:  Caiyun Jin, Zexuan Wu, Guopeng Li, Zhan Luo, Nian-Wu Li. Phosphazene-based flame-retardant artificial interphase layer for lithium metal batteries[J]. Acta Physico-Chimica Sinica, 2025, 41(8): 100094. doi: 10.1016/j.actphy.2025.100094 shu

用于金属锂电池的磷腈基阻燃人工界面层

    通讯作者: 李念武, linianwu@mail.buct.edu.cn
  • 基金项目:

    国家自然科学基金 21975015

摘要: 金属锂负极(LMA)因具有高的比容量(3860 mAh·g−1)和最低的氧化还原电位(−3.04 V vs.标准氢电极),而被认为是下一代高能量密度可充电电池的理想负极材料。然而,金属锂电池存在着锂负极枝晶不可控生长和容易热失控等难题。为此,本论文通过傅克烷基化反应设计合成了一种新型的倍半硅氧烷功能化的六苯氧基环三磷腈基多孔聚合物(SHPP)人工界面层用于保护LMA。SHPP分子链扭曲堆叠可形成大量纳米孔,这些具备独特限域效应的纳米孔能够限制阴离子的通过,提高锂离子迁移数,进而抑制锂枝晶生长。SHPP可以在受热时释放PO•自由基,可用于湮灭酯类电解液受热分解产生的高活性HO•和O•自由基,以减少电池热失控风险。另外,SHPP使得LMA界面中产生Li3P和LiF成分,有助于提高界面锂离子传导和化学稳定性。因此,SHPP-Li对称电池在酯类电解液中能够稳定循环1600 h,且SHPP-Li||LiNi0.8Co0.1Mn0.1O2全电池在500次循环后的容量保持率高达76.8%。这种阻燃型人工界面层为安全且无枝晶的锂金属负极提供新的设计思路。

English

    1. [1]

      X.Q. Min, G.J. Xu, B. Xie, P. Guan, M.L. Sun, G.L. Cui, Energy Storage Mater. 47 (2022) 297, https://doi.org/10.1016/j.ensm.2022.02.005. doi: 10.1016/j.ensm.2022.02.005

    2. [2]

      L.S. Li, G.J. Xu, S.H. Zhang, S.M. Dong, S.T. Wang, Z.L. Cui, X.F. Du, C.D. Wang, B. Xie, J.H. Du, X.H. Zhou, G.L. Cui, ACS Energy Lett. 7 (2022) 591, https://doi.org/10.1021/acsenergylett.1c02489. doi: 10.1021/acsenergylett.1c02489

    3. [3]

      H.Z. Jiang, X.Q. Han, X.F. Du, Z. Chen, C.L. Lu, X.T. Li, H.R. Zhang, J.W. Zhao, P.X. Han, G.L. Cui, Adv. Mater. 34 (2022) 2108665, https://doi.org/10.1002/adma.202108665. doi: 10.1002/adma.202108665

    4. [4]

      J.F. Qian, W.A. Henderson, W. Xu, P. Bhattacharya, M. Engelhard, O. Borodin, J.G. Zhang, Nat. Commun. 6 (2015) 6362, https://doi.org/10.1038/ncomms7362. doi: 10.1038/ncomms7362

    5. [5]

      C.P. Yang, Y.X. Yin, S.F. Zhang, N.W. Li, Y.G. Guo, Nat. Commun. 6 (2015) 8058, https://doi.org/10.1038/ncomms9058. doi: 10.1038/ncomms9058

    6. [6]

      Z.K. Liu, J. Guan, H.X. Yang, P.X. Sun, N.W. Li, L. Yu, Chem. Commun. 58 (2022) 10973, https://doi.org/10.1039/d2cc04128f. doi: 10.1039/d2cc04128f

    7. [7]

      Y. Yan, T. Zeng, S. Liu, C. Shu, Y. Zeng, Energy Mater 3 (2023) 300002, https://doi.org/10.20517/energymater.2022.60. doi: 10.20517/energymater.2022.60

    8. [8]

      K. Zhou, Y. Wang, J. Mei, X. Zhang, T. Xue, W. Fan, L. Zhang, T. Liu, Y. Xie, Small 20 (2024) e2305596, https://doi.org/10.1002/smll.202305596. doi: 10.1002/smll.202305596

    9. [9]

      K. Zhou, M. Bao, Y. Fang, P. He, J. Ren, W. Zong, L. Zhang, T. Liu, Adv. Funct. Mater. 35 (2024) 2411963, https://doi.org/10.1002/adfm.202411963. doi: 10.1002/adfm.202411963

    10. [10]

      Y. Wang, K. Zhou, L. Cui, J. Mei, S. Li, L. Li, W. Fan, L. Zhang, T. Liu, J. Power Sources 591 (2024) 233853, https://doi.org/10.1016/j.jpowsour.2023.233853. doi: 10.1016/j.jpowsour.2023.233853

    11. [11]

      X.N. Feng, M.G. Ouyang, X. Liu, L.G. Lu, Y. Xia, X.M. He, Energy Storage Mater. 10 (2018) 246, https://doi.org/10.1016/j.ensm.2017.05.013. doi: 10.1016/j.ensm.2017.05.013

    12. [12]

      Pei, G.Y. Zheng, F.F. Shi, Y.Z. Li, Y. Cui, Nano Lett. 17 (2017) 1132, https://doi.org/10.1021/acs.nanolett.6b04755. doi: 10.1021/acs.nanolett.6b04755

    13. [13]

      C.H. Zhang, T. Jin, J.D. Liu, J.M. Ma, N.W. Li, L. Yu, Small 19 (2023) 2301523, https://doi.org/10.1002/smll.202301523. doi: 10.1002/smll.202301523

    14. [14]

      Z.M. Zhao, F. Li, J.W. Zhao, G.L. Ding, J.Z. Wang, X.F. Du, Q. Zhou, G.J. Hou, G.L. Cui, Adv. Funct. Mater. 30 (2020) 2000347, https://doi.org/10.1002/adfm.202000347. doi: 10.1002/adfm.202000347

    15. [15]

      S.-Y. Zeng, W.-L. Wang, D. Li, C. Yang, Z.-J. Zheng, Energy Mater 4 (2024) 400029, https://doi.org/10.20517/energymater.2023.93. doi: 10.20517/energymater.2023.93

    16. [16]

      Z. Liu, W. Huang, Y. Xiao, J. Zhang, W. Kong, P. Wu, C. Zhao, A. Chen, Q. Zhang, Acta Phys. Chim. Sin. 40 (2024) 2305040, https://doi.org/10.3866/PKU.WHXB202305040. doi: 10.3866/PKU.WHXB202305040

    17. [17]

      Y.F. Meng, D. Zhou, R.L. Liu, Y. Tian, Y.F. Gao, Y. Wang, B. Sun, F.Y. Kang, M. Armand, B.H. Li, G.X. Wang, D. Aurbach, Nat. Energy 8 (2023) 1023, https://doi.org/10.1038/s41560-023-01339-z. doi: 10.1038/s41560-023-01339-z

    18. [18]

      M.C. Long, G. Wu, X.L. Wang, Y.Z. Wang, Energy Storage Mater. 53 (2022) 62, https://doi.org/10.1016/j.ensm.2022.08.044. doi: 10.1016/j.ensm.2022.08.044

    19. [19]

      K.R. Adair, C.T. Zhao, M.N. Banis, Y. Zhao, R.Y. Li, M. Cai, X.L. Sun, Angew. Chem. Int. Ed. 58 (2019) 15797, https://doi.org/10.1002/anie.201907759. doi: 10.1002/anie.201907759

    20. [20]

      W. Jia, J. Zhang, L. Zheng, H. Zhou, W. Zou, L. Wang, eScience (2024), https://doi.org/10.1016/j.esci.2024.100266. doi: 10.1016/j.esci.2024.100266

    21. [21]

      Z.,Y.L. Hao, W. Li, Y. Zeng, Y. Dai, Y. Cong, J. Ju, B. Zhang, Carbon Neutralization 3 (2024) 629, https://doi.org/10.1002/cnl2.144. doi: 10.1002/cnl2.144

    22. [22]

      J. Guan, N. Li, L. Yu, Acta Phys. Chim. Sin. 37 (2021) 2009011, https://doi.org/10.3866/PKU.WHXB202009011. doi: 10.3866/PKU.WHXB202009011

    23. [23]

      Z. Cui, Z. Jia, D. Ruan, Q. Nian, J. Fan, S. Chen, Z. He, D. Wang, J. Jiang, J. Ma, X. Ou, S. Jiao, Q. Wang, X. Ren, Nat. Commun. 15 (2024), https://doi.org/10.1038/s41467-024-46186-y. doi: 10.1038/s41467-024-46186-y

    24. [24]

      J. Zhou, C. Zhang, H. Wang, Y. Guo, C. Xie, Y. Luo, C. Wang, S. Wen, J. Cai, W. Yu, F. Chen, Y. Zhang, Q. Huang, Z. Zheng, Sci. Adv. 11 (2024) 2410129, https://doi.org/10.1002/advs.202410129. doi: 10.1002/advs.202410129

    25. [25]

      W.-L. Wu, Y.-T. Xu, X. Ke, Y.-M. Chen, Y.-F. Cheng, G.-D. Lin, M.-P. Fan, Y.-T. Liu, Z.-C. Shi, Energy Storage Mater 37 (2021) 387, https://doi.org/10.1016/j.ensm.2021.02.021. doi: 10.1016/j.ensm.2021.02.021

    26. [26]

      S. Gao, Z. Li, N. Liu, G. Liu, H. Yang, P.F. Cao, Adv. Funct. Mater. 32 (2022) 2202013, https://doi.org/10.1002/adfm.202202013. doi: 10.1002/adfm.202202013

    27. [27]

      Z. Wang, Z. Du, Y. Liu, C.E. Knapp, Y. Dai, J. Li, W. Zhang, R. Chen, F. Guo, W. Zong, X. Gao, J. Zhu, C. Wei, G. He, eScience 4 (2024) 100189, https://doi.org/10.1016/j.esci.2023.100189. doi: 10.1016/j.esci.2023.100189

    28. [28]

      L.Z. Huang, W. Li, Z.M. Cui, Energy Mater 4 (2024) 400030, https://doi.org/10.20517/energymater.2023.83. doi: 10.20517/energymater.2023.83

    29. [29]

      L.P. Zhai, G.J. Li, X.B. Yang, S. Park, D.D. Han, L. Mi, Y.J. Wang, Z.P. Li, S.Y. Lee, Adv. Funct. Mater. 32 (2021) 2108798, https://doi.org/10.1002/adfm.202108798. doi: 10.1002/adfm.202108798

    30. [30]

      J.R. He, A. Bhargav, A. Manthiram, Angew. Chem. Int. Ed. 61 (2022) e202116586, https://doi.org/10.1002/anie.202116586. doi: 10.1002/anie.202116586

    31. [31]

      H. Jia, Y.B. Xu, X.H. Zhang, S.D. Burton, P.Y. Gao, B.E. Matthews, M.H. Engelhard, K.S. Han, L.R. Zhong, C.M. Wang, W. Xu, Angew. Chem. Int. Ed. 60 (2021) 12999, https://doi.org/10.1002/anie.202102403. doi: 10.1002/anie.202102403

    32. [32]

      W.,Z.T. Tang, Y. Duan, M. Zhou, Z. Li, R. Liu, Carbon Neutralization 3 (2024) 386, https://doi.org/10.1002/cnl2.130. doi: 10.1002/cnl2.130

    33. [33]

      J. Liu, X. Li, D. Wu, H. Wang, J. Huang, J. Ma, Acta Phys. Chim. Sin. 40 (2024) 2306039, https://doi.org/10.3866/PKU.WHXB202306039. doi: 10.3866/PKU.WHXB202306039

    34. [34]

      L. Qu, Y. Sui, C. Zhang, X. Dai, P. Li, G. Sun, B. Xu, D. Fang, React. Funct. Polym. 148 (2020) 104485, https://doi.org/10.1016/j.reactfunctpolym.2020.104485. doi: 10.1016/j.reactfunctpolym.2020.104485

    35. [35]

      T. Zhu, D.L. Chen, G.Q. Liu, P. Qi, X.Y. Gu, H.F. Li, J. Sun, S. Zhang, Small 18 (2022) 2203693, https://doi.org/10.1002/smll.202203693. doi: 10.1002/smll.202203693

    36. [36]

      X. Wei, D. Zheng, M. Zhao, H.Z. Chen, X. Fan, B. Gao, L. Gu, Y. Guo, J.B. Qin, J. Wei, Y.L. Zhao, G.C. Zhang, Angew. Chem. Int. Ed. 59 (2020) 14639, https://doi.org/10.1002/anie.202006175. doi: 10.1002/anie.202006175

    37. [37]

      Y.Q. Wang, M. Soldatov, Q.Z. Wang, H.Z. Liu, Polymer 218 (2021) 123491, https://doi.org/10.1016/j.polymer.2021.123491. doi: 10.1016/j.polymer.2021.123491

    38. [38]

      Y. Zhang, L. Yu, X.D. Zhang, Y.H. Wang, C.P. Yang, X.L. Liu, W.P. Wang, Y. Zhang, X.T. Li, G. Li, S. Xin, Y.G. Guo, C.L. Bai, Sci. Adv. 9 (2023) eade5802, https://doi.org/10.1126/sciadv.ade5802. doi: 10.1126/sciadv.ade5802

    39. [39]

      H.X. Yang, Z.K. Liu, Y. Wang, N.W. Li, L. Yu, Adv. Funct. Mater. 33 (2023) 2209837, https://doi.org/10.1002/adfm.202209837. doi: 10.1002/adfm.202209837

    40. [40]

      K. Su, T. Jin, C.H. Zhang, R. Wang, S. Yuan, N.W. Li, L. Yu, Chem. Eng. J. 450 (2022) 138049, https://doi.org/10.1016/j.cej.2022.138049. doi: 10.1016/j.cej.2022.138049

    41. [41]

      P. Qi, S.H. Wang, W.J. Wang, J. Sun, H.F. Yuan, S. Zhang, Int. J. Biol. Macromol. 205 (2022) 261, https://doi.org/10.1016/j.ijbiomac.2022.02.062. doi: 10.1016/j.ijbiomac.2022.02.062

    42. [42]

      B.Y. Liaw, E.P. Roth, R.G. Jungst, G. Nagasubramanian, H.L. Case, D.H. Doughty, J. Power Sources 119 (2003) 874, https://doi.org/10.1016/s0378-7753(03)00196-4. doi: 10.1016/s0378-7753(03)00196-4

    43. [43]

      Z.H. Lin, Y. Wang, Y. Li, Y. Liu, S.C. Zhong, M.S. Xie, F. Yan, Z.Y. Zhang, J. Peng, J.Q. Li, A.P. Wang, X.B. Chen, M.L. Zhai, H. Zhang, J.Y. Qiu, Energy Storage Mater. 53 (2022) 917, https://doi.org/10.1016/j.ensm.2022.10.019. doi: 10.1016/j.ensm.2022.10.019

    44. [44]

      S.J. Tan, Y.F. Tian, Y. Zhao, X.X. Feng, J. Zhang, C.H. Zhang, M. Fan, J.C. Guo, Y.X. Yin, F.Y. Wang, S. Xin, Y.G. Guo, J. Am. Chem. Soc. 144 (2022) 18240, https://doi.org/10.1021/jacs.2c08396. doi: 10.1021/jacs.2c08396

    45. [45]

      G.X. Li, H. Jiang, R. Kou, D.W. Wang, A. Nguyen, M. Liao, P. Shi, A. Silver, D.H. Wang, ACS Energy Lett. 7 (2022) 2282, https://doi.org/10.1021/acsenergylett.2c01090. doi: 10.1021/acsenergylett.2c01090

    46. [46]

      J.J. Lee, D. Jin, J.Y. Kim, Y.J. Roh, H. Lee, S.H. Kang, J. Choi, T. Jo, Y.G. Lee, Y.M. Lee, Adv. Energy Mater. 13 (2023) 2300172, https://doi.org/10.1002/aenm.202300172. doi: 10.1002/aenm.202300172

    47. [47]

      N. Piao, S.F. Liu, B. Zhang, X. Ji, X.L. Fan, L. Wang, P.F. Wang, T. Jin, S.C. Liou, H.C. Yang, J.J. Jiang, K. Xu, M.A. Schroeder, X.M. He, C.S. Wang, ACS Energy Lett. 6 (2021) 1839, https://doi.org/10.1021/acsenergylett.1c00365. doi: 10.1021/acsenergylett.1c00365

    48. [48]

      Z. Li, X.Y. Zheng, S.Y. Ye, C. Ou, Y. Xie, Z.B. Li, F. Tian, D. Lei, C.X. Wang, Small 19 (2023) 2301005, https://doi.org/10.1002/smll.202301005. doi: 10.1002/smll.202301005

  • 加载中
计量
  • PDF下载量:  1
  • 文章访问数:  28
  • HTML全文浏览量:  3
文章相关
  • 发布日期:  2025-08-15
  • 收稿日期:  2025-02-14
  • 接受日期:  2025-04-11
  • 修回日期:  2025-03-31
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章