三聚氰胺泡沫支撑的S型硫铟锌镉/硫掺杂氮化碳异质结的绿色H2O2合成:协同界面电荷转移调控与局域光热效应

王伟康 吴亚栋 张建军 孟凯 李金河 王乐乐 刘芹芹

引用本文: 王伟康, 吴亚栋, 张建军, 孟凯, 李金河, 王乐乐, 刘芹芹. 三聚氰胺泡沫支撑的S型硫铟锌镉/硫掺杂氮化碳异质结的绿色H2O2合成:协同界面电荷转移调控与局域光热效应[J]. 物理化学学报, 2025, 41(8): 100093. doi: 10.1016/j.actphy.2025.100093 shu
Citation:  Weikang Wang, Yadong Wu, Jianjun Zhang, Kai Meng, Jinhe Li, Lele Wang, Qinqin Liu. Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect[J]. Acta Physico-Chimica Sinica, 2025, 41(8): 100093. doi: 10.1016/j.actphy.2025.100093 shu

三聚氰胺泡沫支撑的S型硫铟锌镉/硫掺杂氮化碳异质结的绿色H2O2合成:协同界面电荷转移调控与局域光热效应

    通讯作者: 张建军, zhangjianjun@cug.edu.com; 刘芹芹, qqliu@ujs.edu.cn
  • 基金项目:

    国家自然科学基金 22472069

    国家自然科学基金 22102064

    国家自然科学基金 22302080

    纳米材料与技术安徽省重点实验室 202305a12020006

摘要: 绿色光催化合成过氧化氢(H2O2)是替代高能耗蒽醌工艺的理想途径,但其在无牺牲剂体系中受限于快速载流子复合与氧化还原能力不足。本研究报道了一种原位化学浴-水热法制备的三聚氰胺泡沫(MF)负载的硫掺杂氮化碳(SCN)/硫空位修饰硫铟锌镉(CZIS)S型异质结(CZIS/SCN/MF),用于无牺牲剂H2O2光合成。通过原位辐照X射线光电子能谱(XPS)、自由基捕获电子顺磁共振(EPR)、飞秒瞬态吸收光谱(fs-TA)及理论计算,证实了其S型电荷转移机制。具体而言,硫掺杂可调控氮化碳骨架的局域电荷分布,强化SCN/CZIS异质结界面内建电场;同时,CZIS中煅烧引入的硫空位作为光电子陷阱促进电荷分离,并保留光生空穴用于H2O氧化,从而实现无牺牲剂H2O2合成。结合MF三维多孔框架的光热效应,优化S掺杂浓度和SCN用量的CZIS/SCN/MF催化剂在纯水中H2O2产率达3.46 mmol·g−1·h−1,显著优于多数无牺牲剂体系。该研究为无牺牲剂光催化体系中的界面电荷协同调控与能量转换强化提供了新策略。

English

    1. [1]

      Y. Zhang, C. Pan, G. Bian, J. Xu, Y. Dong, Y. Zhang, Y. Lou, W. Liu, Y. Zhu, Nat. Energy 8 (2023) 361, http://doi.org/10.1038/s41560-023-01218-7. doi: 10.1038/s41560-023-01218-7

    2. [2]

      X. Zhang, D. Gao, B. Zhu, B. Cheng, J. Yu, H. Yu, Nat. Commun. 15 (2024) 3212, http://doi.org/10.1038/s41467-024-47624-7. doi: 10.1038/s41467-024-47624-7

    3. [3]

      A. Meng, X. Ma, D. Wen, W. Zhong, S. Zhou, Y. Su, Chin. J. Catal. 60 (2024) 231, http://doi.org/10.1016/s1872-2067(24)60008-2. doi: 10.1016/s1872-2067(24)60008-2

    4. [4]

      K. Zhang, Y. Li, S. Yuan, L. Zhang, Q. Wang, Acta Phys. Chim. Sin. 39 (2023) 2212010, http://doi.org/10.3866/PKU.WHXB202212010. doi: 10.3866/PKU.WHXB202212010

    5. [5]

      K. Li, J. Mei, J. Li, Y. Liu, G. Wang, D. Hu, S. Yan, K. Wang, Sci. China Mater. 67 (2024) 484, http://doi.org/10.1007/s40843-023-2717-0. doi: 10.1007/s40843-023-2717-0

    6. [6]

      Y. Zhang, Y. Wang, Y. Liu, S. Zhang, Y. Zhao, J. Zhang, J. Materiomics 11 (2025) 100985, http://doi.org/10.1016/j.jmat.2024.100985. doi: 10.1016/j.jmat.2024.100985

    7. [7]

      W. Wang, L. Wang, L. Sun, H. Jiang, Y. Liu, Q. Liu, X. She, H. Tang, Chem. Eng. J. 477 (2023) 146945, http://doi.org/10.1016/j.cej.2023.146945. doi: 10.1016/j.cej.2023.146945

    8. [8]

      Y. Wu, C. Cheng, K. Qi, B. Cheng, J. Zhang, J. Yu, L. Zhang, Acta Phys. Chim. Sin. 40 (2024) 2406027, http://doi.org/10.3866/PKU.WHXB202406027. doi: 10.3866/PKU.WHXB202406027

    9. [9]

      Q. Zhang, H. Miao, J. Wang, T. Sun, E. Liu, Chin. J. Catal. 63 (2024) 176, http://doi.org/10.1016/s1872-2067(24)60077-x. doi: 10.1016/s1872-2067(24)60077-x

    10. [10]

      W. Wang, Y. Wu, S. Khan, H. Jiang, M.A. Qaiser, X. Chai, C. Zhu, L. Wang, Q. Liu, Int. J. Hydrogen Energy 77 (2024) 1176, http://doi.org/10.1016/j.ijhydene.2024.06.264. doi: 10.1016/j.ijhydene.2024.06.264

    11. [11]

      W. Wang, H. Zhang, S. Zhang, Y. Liu, G. Wang, C. Sun, H. Zhao, Angew. Chem. Int. Ed. 58 (2019) 16644, https://doi.org/10.1002/anie.201908640. doi: 10.1002/anie.201908640

    12. [12]

      W. Wang, R. Liu, J. Zhang, T. Kong, L. Wang, X. Yu, X. Ji, Q. Liu, R. Long, Z. Lu, Y. Xiong, Angew. Chem. Int. Ed. 64 (2025) e202415800, http://doi.org/10.1002/anie.202415800. doi: 10.1002/anie.202415800

    13. [13]

      W. Yang, J. Zhang, Q. Xu, Y. Yang, L. Zhang, Acta Phys. Chim. Sin. 40 (2024) 2312014, http://doi.org/10.3866/PKU.WHXB202312014. doi: 10.3866/PKU.WHXB202312014

    14. [14]

      Y. Yang, J. Liu, M. Gu, B. Cheng, L. Wang, J. Yu, Appl. Catal. B Environ. 333 (2023) 122780, http://doi.org/10.1016/j.apcatb.2023.122780. doi: 10.1016/j.apcatb.2023.122780

    15. [15]

      X. Deng, J. Zhang, K. Qi, G. Liang, F. Xu, J. Yu, Nat. Commun. 15 (2024) 4807, http://doi.org/10.1038/s41467-024-49004-7. doi: 10.1038/s41467-024-49004-7

    16. [16]

      X. Wu, L. Tan, G. Chen, J. Kang, G. Wang, Sci. China Mater. 67 (2024) 444, http://doi.org/10.1007/s40843-023-2755-2. doi: 10.1007/s40843-023-2755-2

    17. [17]

      W. Yu, C. Bie, Acta Phys. Chim. Sin. 40 (2024) 2307022, http://doi.org/10.3866/PKU.WHXB202307022. doi: 10.3866/PKU.WHXB202307022

    18. [18]

      W. Wang, S. Mei, H. Jiang, L. Wang, H. Tang, Q. Liu, Chin. J. Catal. 55 (2023) 137, http://doi.org/10.1016/s1872-2067(23)64551-6. doi: 10.1016/s1872-2067(23)64551-6

    19. [19]

      R. He, D. Xu, X. Li, J. Mater. Sci. Technol. 138 (2023) 256, http://doi.org/10.1016/j.jmst.2022.09.002. doi: 10.1016/j.jmst.2022.09.002

    20. [20]

      W. Zhong, A. Meng, Y. Su, H. Yu, P. Han, J. Yu, Angew. Chem. Int. Ed. 64 (2025) e202425038, http://doi.org/10.1002/anie.202425038. doi: 10.1002/anie.202425038

    21. [21]

      Y. Li, Z. Xia, Q. Yang, L. Wang, Y. Xing, J. Mater. Sci. Technol. 125 (2022) 128, http://doi.org/10.1016/j.jmst.2022.02.035. doi: 10.1016/j.jmst.2022.02.035

    22. [22]

      C. Zhang, L. Lin, M. Zhou, Y. Wang, S. Xu, X. Chen, Z. Li, Chem. Eng. J. 495 (2024) 153563, http://doi.org/10.1016/j.cej.2024.153563. doi: 10.1016/j.cej.2024.153563

    23. [23]

      Z. Jiang, Q. Long, B. Cheng, R. He, L. Wang, J. Mater. Sci. Technol. 162 (2023) 1, http://doi.org/10.1016/j.jmst.2023.03.045. doi: 10.1016/j.jmst.2023.03.045

    24. [24]

      S. Mao, R. He, S. Song, Chin. J. Catal. 64 (2024) 1, http://doi.org/10.1016/s1872-2067(24)60102-6. doi: 10.1016/s1872-2067(24)60102-6

    25. [25]

      Y. Niu, Y.-Y. Li, J. Wang, H. Wang, B. Wang, J. Xu, M. Tian, H. Lin, L. Wang, Inorg. Chem. 62 (2023) 5690, http://doi.org/10.1021/acs.inorgchem.3c00240. doi: 10.1021/acs.inorgchem.3c00240

    26. [26]

      W. Wang, W. Shan, Y. Hu, H. Jiang, L. Wang, J. Chen, Q. Liu, H. Tang, Chem. Eng. J. 493 (2024) 152516, http://doi.org/10.1016/j.cej.2024.152516. doi: 10.1016/j.cej.2024.152516

    27. [27]

      Y. Sun, R. Xiong, X. Ke, J. Liao, Y. Xiao, B. Cheng, S. Lei, Sep. Purif. Technol. 345 (2024) 127253, http://doi.org/10.1016/j.seppur.2024.127253. doi: 10.1016/j.seppur.2024.127253

    28. [28]

      L. Ying, Z. Huang, Y. Dong, F. Lin, J. Ding, W. Wang, J. Lu, Desalination 549 (2023) 116328, http://doi.org/10.1016/j.desal.2022.116328. doi: 10.1016/j.desal.2022.116328

    29. [29]

      H. Xu, S. Zhang, X. Zhang, M. Xu, J. Geng, M. Han, H. Zhang, J. Mater. Chem. A 11 (2023) 10204, http://doi.org/10.1039/d2ta09904g. doi: 10.1039/d2ta09904g

    30. [30]

      C. Lu, S. Khan, H. Jiang, M.A. Qaiser, W. Wang, L. Wang, Q. Liu, Appl. Surf. Sci. 654 (2024) 159463, http://doi.org/10.1016/j.apsusc.2024.159463. doi: 10.1016/j.apsusc.2024.159463

    31. [31]

      C. Liu, Q. Zhang, Z. Zou, J. Mater. Sci. Technol. 139 (2023) 167, http://doi.org/10.1016/j.jmst.2022.08.030. doi: 10.1016/j.jmst.2022.08.030

    32. [32]

      C. Zhu, Q. He, W. Wang, F. Du, F. Yang, C. Chen, C. Wang, S. Wang, X. Duan, J. Colloid. Interf. Sci. 620 (2022) 253, http://doi.org/10.1016/j.jcis.2022.04.024. doi: 10.1016/j.jcis.2022.04.024

    33. [33]

      X. Wu, D. Li, B. Luo, B. Chen, Y. Huang, T. Yu, N. Shen, L. Li, W. Shi, Appl. Catal. B Environ. 325 (2023) 122292, http://doi.org/10.1016/j.apcatb.2022.122292. doi: 10.1016/j.apcatb.2022.122292

    34. [34]

      S. Xu, Y. Yu, X. Zhang, D. Xue, Y. Wei, H. Xia, F. Zhang, J.N. Zhang, Angew. Chem. Int. Ed. 63 (2024) e202407578, http://doi.org/10.1002/anie.202407578. doi: 10.1002/anie.202407578

    35. [35]

      S. Wang, G. Hu, Y. Dou, S. Li, M. Li, H. Feng, Y.-S. Feng, Sep. Purif. Technol. 354 (2025) 129220, http://doi.org/10.1016/j.seppur.2024.129220. doi: 10.1016/j.seppur.2024.129220

    36. [36]

      J. Sun, H. Liu, S. Wang, Y. Zhang, C. Bie, L. Zhang, J. Materiomics 11 (2025) 100975, http://doi.org/10.1016/j.jmat.2024.100975. doi: 10.1016/j.jmat.2024.100975

    37. [37]

      K. Meng, J. Zhang, B. Cheng, X. Ren, Z. Xia, F. Xu, L. Zhang, J. Yu, Adv. Mater. 36 (2024) 2406460, http://doi.org/10.1002/adma.202406460. doi: 10.1002/adma.202406460

    38. [38]

      M. Gu, Y. Yang, B. Cheng, L. Zhang, P. Xiao, T. Chen, Chin. J. Catal. 59 (2024) 185, http://doi.org/10.1016/s1872-2067(23)64610-8. doi: 10.1016/s1872-2067(23)64610-8

    39. [39]

      H. Zhang, J. Liu, Y. Zhang, B. Cheng, B. Zhu, L. Wang, J. Mater. Sci. Technol. 166 (2023) 241, http://doi.org/10.1016/j.jmst.2023.05.030. doi: 10.1016/j.jmst.2023.05.030

    40. [40]

      Y. Zhao, Y. Zhang, H. Tan, C. Ai, J. Zhang, J. Materiomics 11 (2025) 100970, http://doi.org/10.1016/j.jmat.2024.100970. doi: 10.1016/j.jmat.2024.100970

    41. [41]

      B. Zhu, J. Liu, J. Sun, F. Xie, H. Tan, B. Cheng, J. Zhang, J. Mater. Sci. Technol. 162 (2023) 90, http://doi.org/10.1016/j.jmst.2023.03.054. doi: 10.1016/j.jmst.2023.03.054

    42. [42]

      J. Qiu, K. Meng, Y. Zhang, B. Cheng, J. Zhang, L. Wang, J. Yu, Adv. Mater. 36 (2024) 2400288, http://doi.org/10.1002/adma.202400288. doi: 10.1002/adma.202400288

    43. [43]

      M. Sayed, F. Xu, P. Kuang, J. Low, S. Wang, L. Zhang, J. Yu, Nat. Commun. 12 (2021) 4936, http://doi.org/10.1038/s41467-021-25007-6. doi: 10.1038/s41467-021-25007-6

    44. [44]

      W. Wang, W. Zhang, Y. Cai, Q. Wang, J. Deng, J. Chen, Z. Jiang, Y. Zhang, C. Yu, Nano Res. 16 (2023) 2177, http://doi.org/10.1007/s12274-022-4976-0. doi: 10.1007/s12274-022-4976-0

    45. [45]

      Y. Ma, S. Wang, Y. Zhang, B. Cheng, L. Zhang, J. Materiomics 11 (2025) 100978, http://doi.org/10.1016/j.jmat.2024.100978. doi: 10.1016/j.jmat.2024.100978

    46. [46]

      F. Xu, Y. He, J. Zhang, G. Liang, C. Liu, J. Yu, Angew. Chem. Int. Ed. 64 (2025) e202414672 http://doi.org/10.1002/anie.202414672. doi: 10.1002/anie.202414672

    47. [47]

      M. Gu, J. Zhang, I.V. Kurganskii, A.S. Poryvaev, M.V. Fedin, B. Cheng, J. Yu, L. Zhang, Adv. Mater. 37 (2025) 2414803, http://doi.org/10.1002/adma.202414803. doi: 10.1002/adma.202414803

    48. [48]

      Y. Xia, K. Zhang, H. Yang, L. Shi, Q. Yi, Acta Phys. Chim. Sin. 40 (2024) 2407012, http://doi.org/10.3866/PKU.WHXB202407012. doi: 10.3866/PKU.WHXB202407012

    49. [49]

      J. Yan, J. Zhang, J. Mater. Sci. Technol. 193 (2024) 18, http://doi.org/10.1016/j.jmst.2023.12.054. doi: 10.1016/j.jmst.2023.12.054

    50. [50]

      G. Sun, Z. Tai, J. Zhang, B. Cheng, H. Yu, J. Yu, Appl. Catal. B Environ. 358 (2024) 124459, http://doi.org/10.1016/j.apcatb.2024.124459. doi: 10.1016/j.apcatb.2024.124459

    51. [51]

      X. Zhou, C. Ai, X. Wang, Z. Wu, J. Zhang, J. Materiomics 11 (2025) 100974, http://doi.org/10.1016/j.jmat.2024.100974. doi: 10.1016/j.jmat.2024.100974

    52. [52]

      J. Cai, B. Liu, S. Zhang, L. Wang, Z. Wu, J. Zhang, B. Cheng, J. Mater. Sci. Technol. 197 (2024) 183, http://doi.org/10.1016/j.jmst.2024.02.012. doi: 10.1016/j.jmst.2024.02.012

    53. [53]

      J. Zhang, B. Zhu, L. Zhang, J. Yu, Chem.Commun. 59 (2023) 688, http://doi.org/10.1039/d2cc06300j. doi: 10.1039/d2cc06300j

    54. [54]

      S. Wan, W. Wang, B. Cheng, G. Luo, Q. Shen, J. Yu, J. Zhang, S. Cao, L. Zhang, Nat. Commun. 15 (2024) 9612, http://doi.org/10.1038/s41467-024-53951-6. doi: 10.1038/s41467-024-53951-6

    55. [55]

      C. Cheng, J. Yu, D. Xu, L. Wang, G. Liang, L. Zhang, M. Jaroniec, Nat. Commun. 15 (2024) 1313, http://doi.org/10.1038/s41467-024-45604-5. doi: 10.1038/s41467-024-45604-5

    56. [56]

      C. Cheng, J. Zhang, B. Zhu, G. Liang, L. Zhang, J. Yu, Angew. Chem. Int. Ed. 62 (2023) e202218688, http://doi.org/10.1002/anie.202218688. doi: 10.1002/anie.202218688

    57. [57]

      D. Zu, Y. Ying, Q. Wei, P. Xiong, M.S. Ahmed, Z. Lin, M.M.J. Li, M. Li, Z. Xu, G. Chen, L. Bai, S. She, Y.H. Tsang, H. Huang, Angew. Chem. Int. Ed. 63 (2024) e202405756, http://doi.org/10.1002/anie.202405756. doi: 10.1002/anie.202405756

    58. [58]

      Y. Yang, X. Zhou, M. Gu, B. Cheng, Z. Wu, J. Zhang, Acta Phys. Chim. Sin. 41 (2025) 100064, http://doi.org/10.1016/j.actphy.2025.100064. doi: 10.1016/j.actphy.2025.100064

    59. [59]

      T. Wang, X. Pan, M. He, L. Kang, W. Ma, Adv. Sci. 11 (2024) 2403771, http://doi.org/10.1002/advs.202403771. doi: 10.1002/advs.202403771

    60. [60]

      M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M.C. Payne, J. Phys. Condens. Mat. 14 (2002) 2717, http://doi.org/10.1088/0953-8984/14/11/301. doi: 10.1088/0953-8984/14/11/301

    61. [61]

      Y. Wu, Y. Yang, M. Gu, C. Bie, H. Tan, B. Cheng, J. Xu, Chin. J. Catal. 53 (2023) 123, http://doi.org/10.1016/s1872-2067(23)64514-0. doi: 10.1016/s1872-2067(23)64514-0

    62. [62]

      Wang, L.-Y. Huang, L.-J. Xue, Q. Kang, L.-L. Wen, K.-L. Lv, Appl. Catal. B Environ. 358 (2024) 124366, http://doi.org/10.1016/j.apcatb.2024.124366. doi: 10.1016/j.apcatb.2024.124366

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  19
  • HTML全文浏览量:  1
文章相关
  • 发布日期:  2025-08-15
  • 收稿日期:  2025-03-13
  • 接受日期:  2025-04-10
  • 修回日期:  2025-04-01
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章