Citation: Zeqiu Chen, Limiao Cai, Jie Guan, Zhanyang Li, Hao Wang, Yaoguang Guo, Xingtao Xu, Likun Pan. Advanced electrode materials in capacitive deionization for efficient lithium extraction[J]. Acta Physico-Chimica Sinica, ;2025, 41(8): 100089. doi: 10.1016/j.actphy.2025.100089 shu

Advanced electrode materials in capacitive deionization for efficient lithium extraction

  • Corresponding author: Yaoguang Guo, ygguo@sspu.edu.cn Xingtao Xu, xingtao.xu@zjou.edu.cn Likun Pan, lkpan@phy.ecnu.edu.cn
  • These authors contributed equally to this work.
  • Received Date: 17 January 2025
    Revised Date: 3 April 2025
    Accepted Date: 7 April 2025

    Fund Project: the National Natural Science Foundation of China 52400174the National Natural Science Foundation of China 52270129the National Natural Science Foundation of China 52370142Shanghai Sailing Program 24YF2714000Oriental Talent Youth Program, and Shanghai Shuguang Program 23SG52

  • Efficient technologies for lithium extraction are progressively pivotal in response to the growing requirement for lithium in new energy applications. However, due to its high energy consumption and possible secondary pollution problems, traditional lithium absorption and recovery technologies, are limited in practical application and development. Capacitive deionization (CDI) demonstrates significant potential for lithium extraction with regard to efficiency, cost-effectiveness, and energy consumption. This review commences with bibliometric analysis to dissect the key research topics of lithium extraction via CDI, and presents a complete synopsis of recent advances in electrode materials for lithium extraction using CDI technology, along with various types of CDI systems that utilize these materials. This study elucidates in detail the main electrode materials used in CDI systems for lithium resource recovery——aqueous lithium ion electrode materials (including LiFePO4, LiMn2O4, LiNi1/3Co1/3Mn1/3O2) and their modification materials (including carbon nanotubes, graphene, MOFs). In addition, this paper discusses the improvement of lithium extraction efficiency through different CDI systems and evaluates the capability of various advanced electrode materials in these systems. The end of the paper emphasizes the application potential of machine learning in the domain of lithium extraction via CDI. The study is anticipated to deliver a strong theoretical basis and practical recommendations for advancing efficient lithium extraction systems that utilize CDI.
  • 加载中
    1. [1]

      P. Greim, A. Solomon, C. Breyer, Nat. Commun. 11 (1) (2020) 4570, https://doi.org/10.1038/s41467-020-18402-y.  doi: 10.1038/s41467-020-18402-y

    2. [2]

      S. Sahoo, S. Tripathy, A. Nayak, K. Hembrom, S. Dey, R. Rath, M. Mohanta, Miner. Process. Extr. M 45 (1) (2022) 1, https://doi.org/10.1080/08827508.2022.2117172.  doi: 10.1080/08827508.2022.2117172

    3. [3]

      E. Dugamin, A. Richard, M. Cathelineau, M. Boiron, F. Despinois, A. Brisset, Sci. Rep. 11 (1) (2021) 21091, https://doi.org/10.1038/s41598-021-99912-7.  doi: 10.1038/s41598-021-99912-7

    4. [4]

      L. Talens Peiró, G. Villalba Méndez, R. Ayres, Jom 65 (8) (2013) 986, https://doi.org/10.1007/s11837-013-0666-4.  doi: 10.1007/s11837-013-0666-4

    5. [5]

      T. Gao, N. Fan, W. Chen, T. Dai, China Geol. 6 (1) (2023) 137, https://doi.org/10.31035/cg2022088.  doi: 10.31035/cg2022088

    6. [6]

      Y. Sun, Q. Wang, Y. Wang, R. Yun, X. Xiang, Sep. Purif. Technol. 256 (2021) 117807, https://doi.org/10.1016/j.seppur.2020.117807.  doi: 10.1016/j.seppur.2020.117807

    7. [7]

      M. Zheng, X. Zhang, M. Li, D. Che, L. Bu, J. Han, C. Ye. China Geol. 6 (4) (2023) 547, https://doi.org/10.31035/cg2023061.  doi: 10.31035/cg2023061

    8. [8]

      A. Khalil, S. Mohammed, R. Hashaikeh, N. Hilal, Desalination 528 (2022) 115611, https://doi.org/10.1016/j.desal.2022.115611.  doi: 10.1016/j.desal.2022.115611

    9. [9]

      J. Song, L. Nghiem, X. Li, T. He, Environ. Sci.-Wat. Res. Technol. 3 (4) (2017) 593, https://doi.org/10.1039/c7ew00020k.  doi: 10.1039/c7ew00020k

    10. [10]

      L. Wu, C. Zhang, S. Kim, T. Hatton, H. Mo, T. Waite, Water Res. 221 (2022) 118822, https://doi.org/10.1016/j.watres.2022.118822.  doi: 10.1016/j.watres.2022.118822

    11. [11]

      Y. Zhang, Y. Hu, L. Wang, W. Sun, Miner. Eng. 139 (2019) 105865, https://doi.org/10.1016/j.mineng.2019.105868.  doi: 10.1016/j.mineng.2019.105868

    12. [12]

      Z. Xu, H. Zhang, R. Wang, W. Gui, G. Liu, Y. Yang, Ind. Eng. Chem. Res. 53 (42) (2014) 16502, https://doi.org/10.1021/ie502749n.  doi: 10.1021/ie502749n

    13. [13]

      X. Liu, M. Zhong, X. Chen, Z. Zhao, Hydrometallurgy 176 (2018) 73, https://doi.org/10.1016/j.hydromet.2018.01.005.  doi: 10.1016/j.hydromet.2018.01.005

    14. [14]

      W. Xiang, S. Liang, Z. Zhou, W. Qin, W. Fei, Hydrometallurgy 171 (2017) 27, https://doi.org/10.1016/j.hydromet.2017.04.007.  doi: 10.1016/j.hydromet.2017.04.007

    15. [15]

      J. Zhang, Z. Cheng, X. Qin, X. Gao, M. Wang, X. Xiang, Desalination 547 (2023) 116225, https://doi.org/10.1016/j.desal.2022.116225.  doi: 10.1016/j.desal.2022.116225

    16. [16]

      B. Van Der Bruggen, A. Koninckx, C. Vandecasteele, Water Res. 38 (5) (2004) 1347, https://doi.org/10.1016/j.watres.2003.11.008.  doi: 10.1016/j.watres.2003.11.008

    17. [17]

      A. Somrani, A. Hamzaoui, M. Pontie, Desalination 317 (2013) 184, https://doi.org/10.1016/j.desal.2013.03.009.  doi: 10.1016/j.desal.2013.03.009

    18. [18]

      Y. Li, Y. Zhao, H. Wang, M. Wang, Desalination 468 (2019) 114081, https://doi.org/10.1016/j.desal.2019.114081.  doi: 10.1016/j.desal.2019.114081

    19. [19]

      L. Li, V. Deshmane, M. Paranthaman, R. Bhave, B. Moyer, S. Harrison, Johnson Matthey Tech. 62 (2) (2018) 161, https://doi.org/10.1595/205651317x696676.  doi: 10.1595/205651317x696676

    20. [20]

      H. Yu, G. Naidu, C. Zhang, C. Wang, A. Razmjou, D. Han, T. He, H. Shon, Desalination 539 (2022) 115951, https://doi.org/10.1016/j.desal.2022.115951.  doi: 10.1016/j.desal.2022.115951

    21. [21]

      A. Battistel, M. Palagonia, D. Brogioli, F. Mantia, R. Trócoli, Adv. Mater. 32 (23) (2020) 1905440, https://doi.org/10.1002/adma.201905440.  doi: 10.1002/adma.201905440

    22. [22]

      J. Wang, X. Yue, P. Wang, T. Yu, X. Du, X. Hao, A. Abudula, G. Guan, Renew. Sust. Energy Rev. 154 (2022) 111813, https://doi.org/10.1016/j.rser.2021.111813.  doi: 10.1016/j.rser.2021.111813

    23. [23]

      Y. Hao, Y. Wang, Y. Wang, X. Guo, X. Yan, Y. Chen, X. Zhang, W. Lang, Ind. Eng. Chem. Res. 62 (50) (2023) 21693, https://doi.org/10.1021/acs.iecr.3c03744.  doi: 10.1021/acs.iecr.3c03744

    24. [24]

      D. Weng, H. Duan, Y. Hou, J. Huo, L. Chen, F. Zhang, J. Wang, Prog. Nat. Sci.-Mater. 30 (2) (2020) 139, https://doi.org/10.1016/j.pnsc.2020.01.017.  doi: 10.1016/j.pnsc.2020.01.017

    25. [25]

      H. Wang, X. Xu, X. Gao, Y. Li, T. Lu, L. Pan, Coord. Chem. Rev. 510 (2024) 215835, https://doi.org/10.1016/j.ccr.2024.215835.  doi: 10.1016/j.ccr.2024.215835

    26. [26]

      W. Tang, J. Liang, D. He, J. Gong, L. Tang, Z. Liu, D. Wang, G. Zeng, Water Res. 150 (2019) 225, https://doi.org/10.1016/j.watres.2018.11.064.  doi: 10.1016/j.watres.2018.11.064

    27. [27]

      Y. Shin, J. Lim, C. Boo, S. Hong, Desalination 502 (2021) 114930, https://doi.org/10.1016/j.desal.2021.114930.  doi: 10.1016/j.desal.2021.114930

    28. [28]

      J. Li, L. Han, R. Wang, T. Wang, L. Pan, X. Zhang, C. Wang, Desalination 591 (2024) 118035, https://doi.org/10.1016/j.desal.2024.118035.  doi: 10.1016/j.desal.2024.118035

    29. [29]

      H. Wang, M. Jiang, G. Xu, C. Wang, X. Xu, Y. Liu, Y. Li, T. Lu, G. Yang, L. Pan, Small 20 (42) (2024) 2401214, https://doi.org/10.1002/smll.202401214.  doi: 10.1002/smll.202401214

    30. [30]

      H. Wang, Y. Li, Y. Liu, X. Xu, T. Lu, L. Pan, Sep. Purif. Technol. 354 (2025) 129423, https://doi.org/10.1016/j.seppur.2024.129423.  doi: 10.1016/j.seppur.2024.129423

    31. [31]

      G. Xu, M. Jiang, J. Li, X. Xuan, J. Li, T. Lu, L. Pan, Energy Storage Mater. 72 (2024) 103710, https://doi.org/10.1016/j.ensm.2024.103710.  doi: 10.1016/j.ensm.2024.103710

    32. [32]

      M. Jiang, Y. Zhang, Z. Yang, H. Li, J. Li, J. Li, T. Lu, C. Wang, G. Yang, L. Pan, Inorg. Chem. Front. 10 (22) (2023) 6646, https://doi.org/10.1039/d3qi01705b.  doi: 10.1039/d3qi01705b

    33. [33]

      Y. Li, Y. Liu, M. Wang, X. Xu, T. Lu, C. Sun, L. Pan, Carbon 130 (2018) 377, https://doi.org/10.1016/j.carbon.2018.01.035.  doi: 10.1016/j.carbon.2018.01.035

    34. [34]

      X. Yang, J. Li, W. Qu, W. Wang, P. Wang, J. Ma, Desalination 599 (2025) 118450, https://doi.org/10.1016/j.desal.2024.118450.  doi: 10.1016/j.desal.2024.118450

    35. [35]

      S. Zavahir, T. Elmakki, M. Gulied, Z. Ahmad, L. Al-Sulaiti, H. Shon, Y. Chen, H. Park, B. Batchelor, D. S. Han, Desalination 500 (2021) 114883, https://doi.org/10.1016/j.desal.2020.114883.  doi: 10.1016/j.desal.2020.114883

    36. [36]

      M. Liu, M. He, J. Han, Y. Sun, H. Jiang, Z. Li, Y. Li, H. Zhang, Sustainability 14 (21) (2022) 14429, https://doi.org/10.3390/su142114429.  doi: 10.3390/su142114429

    37. [37]

      Z. Song, Y. Chen, N. Ren, X. Duan, Environ. Funct. Mater. 2 (3) (2023) 290, https://doi.org/10.1016/j.efmat.2023.11.001.  doi: 10.1016/j.efmat.2023.11.001

    38. [38]

      M. Chen, Wires Comput. Stat. 2(4) (2010) 387, https://doi.org/10.1002/wics.89.  doi: 10.1002/wics.89

    39. [39]

      T. Pang, J. Shen, Desalination 527 (2022) 115562, https://doi.org/10.1016/j.desal.2022.115562.  doi: 10.1016/j.desal.2022.115562

    40. [40]

      J. Ma, R. Zhou, F. Yu, Desalination 571 (2024) 117107, https://doi.org/10.1016/j.desal.2023.117107.  doi: 10.1016/j.desal.2023.117107

    41. [41]

      C. Xiao, L. Zeng, Hydrometallurgy 178 (2018) 283, https://doi.org/10.1016/j.hydromet.2018.05.001.  doi: 10.1016/j.hydromet.2018.05.001

    42. [42]

      N. Heidari, P. Momeni, Environ. Earth. Sci. 76 (16) (2017) 551, https://doi.org/10.1007/s12665-017-6885-1.  doi: 10.1007/s12665-017-6885-1

    43. [43]

      R. Reich, K. Slunitschek, R. Danisi, E. Eiche, J. Kolb, Miner. Process. Extr. M 44 (4) (2022) 261, https://doi.org/10.1080/08827508.2022.2047041.  doi: 10.1080/08827508.2022.2047041

    44. [44]

      K. Walha, R. Amar, F. Quemeneur, P. Jaouen, Desalination 219 (1–3) (2008) 231, https://doi.org/10.1016/j.desal.2007.05.016.  doi: 10.1016/j.desal.2007.05.016

    45. [45]

      D. Zhou, L. Zhu, Y. Fu, M. Zhu, L. Xue, Desalination 376 (16) (2015) 109, https://doi.org/10.16/jdesal.2015.020.  doi: 10.16/jdesal.2015.020

    46. [46]

      L. Wang, X. Xiong, Z. Fan, G. Zhang, Z. Wang, Appl. Mech. Mater. 378 (2013) 318, https://doi.org/10.4028/www.scientific.net/AMM.378.318.  doi: 10.4028/www.scientific.net/AMM.378.318

    47. [47]

      A. Mohammad, Y. Teow, W. Ang, Y. Chung, D. Oatley-Radcliffe, N. Hilal, Desalination 356 (2015) 226, https://doi.org/10.1016/j.desal.2014.10.043.  doi: 10.1016/j.desal.2014.10.043

    48. [48]

      P. Xu, J. Drewes, T. Kim, C. Bellona, G. Amy, J. Membr. Sci. 279 (12) (2006) 165, https://doi.org/10.1016/j.memsci.2005.12.001.  doi: 10.1016/j.memsci.2005.12.001

    49. [49]

      J. Blair, G. Murphy, Saline Water Conversion 20 (1960) 206, https://doi.org/10.21/ba-1960-0027.ch020.  doi: 10.21/ba-1960-0027.ch020

    50. [50]

      A. Johnson, J. Newman, J. Electrochem. Soc. 118 (3) (1971) 510, https://doi.org/10.1149/1.2408094.  doi: 10.1149/1.2408094

    51. [51]

      P. Srimuk, X. Su, J. Yoon, D. Aurbach, V. Presser, Nat. Rev. Mater. 5 (7) (2020) 517, https://doi.org/10.1038/s41578-020-0193-1.  doi: 10.1038/s41578-020-0193-1

    52. [52]

      D. Lee, T. Ryu, J. Shin, J. Ryu, K. Chung, Y. Kim, Hydrometallurgy 173 (2017) 283, https://doi.org/10.1016/j.hydromet.2017.09.005.  doi: 10.1016/j.hydromet.2017.09.005

    53. [53]

      M. Pasta, A. Battistel, F. La Mantia, Energy Environ. Sci. 5 (11) (2012) 9487, https://doi.org/10.1039/c2ee22977c.  doi: 10.1039/c2ee22977c

    54. [54]

      R. Al-Juboori, S. Bakly, L. Bowtell, S. Alkurdi, A. Altaee, J. Water Process. Eng. 47 (2022) 102786, https://doi.org/10.1016/j.jwpe.2022.102786.  doi: 10.1016/j.jwpe.2022.102786

    55. [55]

      H. Wang, Y. Liu, Y. Li, X. Xu, X. Liu, Y. Yao, T. Lu, L. Pan, Chem. Eng. J. 496 (2024) 153808, https://doi.org/10.1016/j.cej.2024.153808.  doi: 10.1016/j.cej.2024.153808

    56. [56]

      H. Wang, Y. Liu, Y. Li, X. Xu, T. Lu, L. Pan, Mater. Horiz. 11 (21) (2024) 5209, https://doi.org/10.1039/d4mh00773e.  doi: 10.1039/d4mh00773e

    57. [57]

      X. Zhang, Y. Li, Z. Yang, P. Yang, J. Wang, M. Shi, F. Yu, J. Ma, Sep. Purif. Technol. 297 (2022) 121510, https://doi.org/10.1016/j.seppur.2022.121510.  doi: 10.1016/j.seppur.2022.121510

    58. [58]

      M. Gao, J. Li, Z. Wang, Z. Yang, Y. Chen, W. Deng, W. Liang, T. Ao, W. Chen, Sep. Purif. Technol. 328 (2024) 125084, https://doi.org/10.1016/j.seppur.2023.125084.  doi: 10.1016/j.seppur.2023.125084

    59. [59]

      A. Sood, A. Poletayev, D Cogswell, P. Csernica, J. Mefford, D. Fraggedakis, M. Toney, A. Lindenberg, M. Bazant, W. Chueh, Nat. Rev. Mater. 6 (9) (2021) 847, https://doi.org/10.1038/s41578-021-00314-y.  doi: 10.1038/s41578-021-00314-y

    60. [60]

      K. Salari, P. Zarafshan, M. Khashehchi, G. Chegini, H. Etezadi, H. Karami, J. Szulżyk-Cieplak, G. Łagód, Membranes 12 (5) (2022) 459, https://doi.org/10.3390/membranes12050459.  doi: 10.3390/membranes12050459

    61. [61]

      Z. He, Y. Lv, T. Zhang, Y. Zhu, L. Dai, S. Yao, W. Zhu, L. Wang, Chem. Eng. J. 427 (2022) 131680, https://doi.org/10.1016/j.cej.2021.131680.  doi: 10.1016/j.cej.2021.131680

    62. [62]

      S. Bao, C. Xin, Y. Zhang, B. Chen, W. Ding, Y. Luo, Energies 16 (3) (2023) 1136, https://doi.org/10.3390/en16031136.  doi: 10.3390/en16031136

    63. [63]

      J. Wang, J. Yuan, H. Gao, F. Yu, J. Ma, Chem. Eng. J. 480 (2024) 147986, https://doi.org/10.1016/j.cej.2023.147986.  doi: 10.1016/j.cej.2023.147986

    64. [64]

      E. Sayed, M. Obaid, A. Olabi, M. Abdelkareem, M. Al Radi, A. Al-Dawoud, S. Al-Asheh, N. Ghaffour, J. Water. Process. Eng. 56 (2023) 104379, https://doi.org/10.1016/j.jwpe.2023.104379.  doi: 10.1016/j.jwpe.2023.104379

    65. [65]

      P. Sivasubramanian, M. Kumar, V. Kirankumar, M. Samuel, C. Dong, J. Chang, Desalination 559 (2023) 116652, https://doi.org/10.1016/j.desal.2023.116652.  doi: 10.1016/j.desal.2023.116652

    66. [66]

      F. Yu, Y. Yang, X. Zhang, J. Ma, Sep. Purif. Technol. 354 (2025) 129285, https://doi.org/10.1016/j.seppur.2024.129285.  doi: 10.1016/j.seppur.2024.129285

    67. [67]

      Y. Tao, Y. Cui, H. Wang, Z. Li, Z. Qian, P. Zhang, H. Zhou, M. Shi, Adv. Funct. Mater. 35 (6) (2024) 2414805, https://doi.org/10.1002/adfm.202414805.  doi: 10.1002/adfm.202414805

    68. [68]

      Q. Wang, Q. Wu, M. Zhao, S. Lu, D. Liang, Chem. Eng. J. 482 (2024) 148923, https://doi.org/10.1016/j.cej.2024.148923.  doi: 10.1016/j.cej.2024.148923

    69. [69]

      H. Yu, S. Hossain, C. Wang, Y. Choo, G. Naidu, D. Han, H. Shon, Desalination 556 (2023) 116569, https://doi.org/10.1016/j.desal.2023.116569.  doi: 10.1016/j.desal.2023.116569

    70. [70]

      S. Kim, J. Kang, H. Joo, Y. Sung, J. Yoon, Environ. Sci. Technol. 54 (14) (2020) 9044, https://doi.org/10.1021/acs.est.9b07646.  doi: 10.1021/acs.est.9b07646

    71. [71]

      Y. Xiong, J. Zhou, P. Lu, J. Yin, Y. Wang, Z. Fan, Matter 5 (6) (2022) 1760, https://doi.org/10.1016/j.matt.2022.04.034.  doi: 10.1016/j.matt.2022.04.034

    72. [72]

      J. Luo, W. Cui, P. He, Y. Xia, Nat. Chem. 2 (9) (2010) 760, https://doi.org/10.1038/nchem.763.  doi: 10.1038/nchem.763

    73. [73]

      J. Tarascon, M. Armand, Nature 414 (6861) (2001) 359, https://doi.org/10.1038/35104644.  doi: 10.1038/35104644

    74. [74]

      Z. Zhao, X. Si, X. Liu, L. He, X. Liang, Hydrometallurgy 133 (2013) 75, https://doi.org/10.1016/j.hydromet.2012.11.013.  doi: 10.1016/j.hydromet.2012.11.013

    75. [75]

      M. Thackeray, P. Johnson, L. De Picciotto, P. Bruce, J. Goodenough, Mater. Res. Bull.19 (2) (1984) 179, https://doi.org/10.1016/0025-5408(84)90088-6.  doi: 10.1016/0025-5408(84)90088-6

    76. [76]

      Q. Lu, P. Liu, T. Zhou, R. Huang, K. Zhang, L. Hu, R. Liu, Z. Ren, J. Wang, X. Wang, Nano Res. 17 (4) (2023) 2563, https://doi.org/10.1007/s12274-023-6121-0.  doi: 10.1007/s12274-023-6121-0

    77. [77]

      H. Kanoh, K. Ooi, Y. Miyai, S. Katoh, Sep. Sci. Technol. 28 (13) (1993) 643, https://doi.org/10.1080/01496399308019512.  doi: 10.1080/01496399308019512

    78. [78]

      Y. Mu, C. Zhang, W. Zhang, Y. Wang, Desalination 511 (2021) 115112, https://doi.org/10.1016/j.desal.2021.115112.  doi: 10.1016/j.desal.2021.115112

    79. [79]

      X. Shang, B. Hu, P. Nie, W. Shi, T. Hussain, J. Liu, Sep. Purif. Technol. 258 (2021) 118009, https://doi.org/10.1016/j.seppur.2020.118009.  doi: 10.1016/j.seppur.2020.118009

    80. [80]

      C. Ouyang, S. Shi, M. Lei, J. Alloy. Compd. 474 (12) (2009) 370, https://doi.org/10.1016/j.jallcom.2008.06.123.  doi: 10.1016/j.jallcom.2008.06.123

    81. [81]

      Y. Wang, G. Zhang, G. Dong, H. Zheng, Batteries 8 (11) (2022) 225, https://doi.org/10.3390/batteries8110225.  doi: 10.3390/batteries8110225

    82. [82]

      C. Lawagon, G. Nisola, R. Cuevas, H. Kim, S. Lee, W. Chung, Chem. Eng. J. 348 (2018) 1000, https://doi.org/10.1016/j.cej.2018.05.030.  doi: 10.1016/j.cej.2018.05.030

    83. [83]

      R. Fang, K. Chen, L. Yin, Z. Sun, F. Li, H. Cheng, Adv. Mater. 31 (9) (2018) 1800863, https://doi.org/10.1002/adma.201800863.  doi: 10.1002/adma.201800863

    84. [84]

      N. Wang, Z. Bai, Y. Qian, J. Yang, Adv. Mater. 28 (21) (2016) 4126, https://doi.org/10.1002/adma.201505918.  doi: 10.1002/adma.201505918

    85. [85]

      S. Zhang, F. Han, Q. Pan, D. Lin, G. Chen, X. Mu, X. Zhu, C. Shao, N. Wu, G. Meng, Sci. China Mater. 66 (9) (2023) 3493, https://doi.org/10.1007/s40843-023-2526-8.  doi: 10.1007/s40843-023-2526-8

    86. [86]

      S. Zhang, F. Han, Q. Pan, D. Lin, X. Zhu, C. Shao, G. Zhang, Z. Wang, S. Sun, G. Meng, Energy Environ. Mater. 6 (4) (2023) e12586, https://doi.org/10.1002/eem2.12586.  doi: 10.1002/eem2.12586

    87. [87]

      G. Wang, Z. Ma, G. Shao, L. Kong, W. Gao, J. Power Sources 291 (2015) 209, https://doi.org/10.1016/j.jpowsour.2015.05.027.  doi: 10.1016/j.jpowsour.2015.05.027

    88. [88]

      X. Tu, Y. Zhou, X. Tian, Y. Song, C. Deng, H. Zhu, Electrochim. Acta 222 (2016) 64, https://doi.org/10.1016/j.electacta.2016.10.137.  doi: 10.1016/j.electacta.2016.10.137

    89. [89]

      Y. Qiao, W. Feng, J. Li, T. Shen, Electrochim. Acta 232 (2017) 323, https://doi.org/10.1016/j.electacta.2017.02.161.  doi: 10.1016/j.electacta.2017.02.161

    90. [90]

      W. Li, A. Garg, M. Le, C. Ruhatiya, L. Gao, V. Tran, Electrochim. Acta 330 (2020) 135314, https://doi.org/10.1016/j.electacta.2019.135314.  doi: 10.1016/j.electacta.2019.135314

    91. [91]

      J. Daigle, Y. Asakawa, M. Beaupré, V. Gariépy, R. Vieillette, D. Laul, M. Trudeau, K. Zaghib, Sci. Rep. 9 (1) (2019) 16871, https://doi.org/10.1038/s41598-019-53195-1.  doi: 10.1038/s41598-019-53195-1

    92. [92]

      Y. Hu, F. Lin, Z. Liu, Ceram. Int. 45 (8) (2019) 10976, https://doi.org/10.1016/j.ceramint.2019.02.180.  doi: 10.1016/j.ceramint.2019.02.180

    93. [93]

      A. Wei, J. Mu, R. He, X. Bai, Z. Liu, L. Zhang, Z. Liu, Y. Wang, J. Phys. Chem. Solids 138 (2020) 109303, https://doi.org/10.1016/j.jpcs.2019.109303.  doi: 10.1016/j.jpcs.2019.109303

    94. [94]

      Z. Yao, X. Xia, C. Zhou, Y. Zhong, Y. Wang, S. Deng, W. Wang, X. Wang, J. Tu, Adv. Sci. 5 (3) (2018) 1700786, https://doi.org/10.1002/advs.201700786.  doi: 10.1002/advs.201700786

    95. [95]

      X. Shang, J. Liu, B. Hu, P. Nie, J. Yang, B. Zhang, Y. Wang, F. Zhan, J. Qiu, Small Methods 6 (7) (2022) 2200508, https://doi.org/10.1002/smtd.202200508.  doi: 10.1002/smtd.202200508

    96. [96]

      J. Si, C. Xue, S. Li, L. Yang, W. Li, J. Yang, J. Lan, N. Sun, Desalination 572 (2024) 117154, https://doi.org/10.1016/j.desal.2023.117154.  doi: 10.1016/j.desal.2023.117154

    97. [97]

      X. Zhao, M. Feng, Y. Jiao, Y. Zhang, Y. Wang, Z. Sha, Desalination 481 (2020) 114360, https://doi.org/10.1016/j.desal.2020.114360.  doi: 10.1016/j.desal.2020.114360

    98. [98]

      B. Hu, X. Shang, P. Nie, B. Zhang, J. Yang, J. Liu, J. Colloid Interface Sci. 612 (2022) 392, https://doi.org/10.1016/j.jcis.2021.12.181.  doi: 10.1016/j.jcis.2021.12.181

    99. [99]

      R. Freund, O. Zaremba, G. Arnauts, R. Ameloot, G. Skorupskii, M. Dincă, A. Bavykina, J. Gascon, A. Ejsmont, J. Goscianska, et al., Angew. Chem. Int. Ed. 60 (45) (2021) 23975, https://doi.org/10.1002/anie.202106259.  doi: 10.1002/anie.202106259

    100. [100]

      A. Razmjou, M. Asadnia, E. Hosseini, A. Habibnejad Korayem, V. Chen, Nat. Commun. 10 (1) (2019) 5793, https://doi.org/10.1038/s41467-019-13648-7.  doi: 10.1038/s41467-019-13648-7

    101. [101]

      X. Cao, C. Tan, M. Sindoro, H. Zhang, Chem. Soc. Rev. 46 (10) (2017) 2660, https://doi.org/10.1039/c6cs00426a.  doi: 10.1039/c6cs00426a

    102. [102]

      M. Ding, X. Cai, H. Jiang, Chem. Sci. 10 (44) (2019) 10209, https://doi.org/10.1039/c9sc03916c.  doi: 10.1039/c9sc03916c

    103. [103]

      A. Chen, M. Cheng, D. Huang, G. Zhang, W. Wang, L. Du, G. Wang, H. Liu, Y. Chen, W. Xiao, et al., Renew. Sust. Energy Rev. 199 (2024) 114520, https://doi.org/10.1016/j.rser.2024.114520.  doi: 10.1016/j.rser.2024.114520

    104. [104]

      N. Cheng, L. Ren, X. Xu, Y. Du, S. Dou, Adv. Energy Mater. 8 (25) (2018) 1801257, https://doi.org/10.1002/aenm.201801257.  doi: 10.1002/aenm.201801257

    105. [105]

      G. Zhong, D. Liu, J. Zhang, J. Mater. Chem. A 6 (5) (2018) 1887, https://doi.org/10.1039/c7ta08268a.  doi: 10.1039/c7ta08268a

    106. [106]

      S. Hossain, H. Yu, Y. Choo, G. Naidu, D. Han, H. Shon, Desalination 546 (2023) 116201, https://doi.org/10.1016/j.desal.2022.116201.  doi: 10.1016/j.desal.2022.116201

    107. [107]

      J. Lim, H. Lee, S. Lee, S. Hong, Desalination 578 (2024) 117403, https://doi.org/10.1016/j.desal.2024.117403.  doi: 10.1016/j.desal.2024.117403

    108. [108]

      F. Yang, J. Ma, X. Zhang, X. Huang, P. Liang, Water Res. 164 (2019) 114904, https://doi.org/10.1016/j.watres.2019.114904.  doi: 10.1016/j.watres.2019.114904

    109. [109]

      T. Elmakki, S. Zavahir, H. Shon, G. Gago, H. Park, D. Han, Desalination 593 (2025) 118195, https://doi.org/10.1016/j.desal.2024.118195.  doi: 10.1016/j.desal.2024.118195

    110. [110]

      W. Shi, X. Liu, C. Ye, X. Cao, C. Gao, J. Shen, Sep. Purif. Technol. 210 (2019) 885, https://doi.org/10.1016/j.seppur.2018.09.006.  doi: 10.1016/j.seppur.2018.09.006

    111. [111]

      J. Yang, X. Shang, B. Hu, B. Zhang, Y. Wang, J. Yang, J. Liu, J. Solid State Electrochem. 27 (8) (2023) 2029, https://doi.org/10.1007/s10008-023-05461-6.  doi: 10.1007/s10008-023-05461-6

    112. [112]

      B. Hu, Y. Wang, B. Zhang, X. Song, H. Jiang, J. Ma, J. Liu, Sep. Purif. Technol. 348 (2024) 127693, https://doi.org/10.1016/j.seppur.2024.127693.  doi: 10.1016/j.seppur.2024.127693

    113. [113]

      N. Xie, Y. Li, Y. Yuan, J. Gong, X. Hu, ACS Appl. Energy Mater. 4 (11) (2021) 13036, https://doi.org/10.1021/acsaem.1c02654.  doi: 10.1021/acsaem.1c02654

    114. [114]

      H. Zhang, Z. Huang, L. Zhao, Z. Guo, J. Wang, J. Liu, Y. Zhao, F. Li, P. Zhang, Z. Ji, Chem. Eng. J. 482 (2024) 148802, https://doi.org/10.1016/j.cej.2024.148802.  doi: 10.1016/j.cej.2024.148802

    115. [115]

      A. Siekierka, Desalination 527 (2022) 11569, https://doi.org/10.1016/j.desal.2022.115569.  doi: 10.1016/j.desal.2022.115569

    116. [116]

      Y. Ha, H. Jung, H. Lim, P. Jo, H. Yoon, C. Yoo, T. Pham, W. Ahn, Y. Cho, Energies 12 (15) (2019) 2913, https://doi.org/10.3390/en12152913.  doi: 10.3390/en12152913

    117. [117]

      H. Saif, J. Crespo, S. Pawlowski, J. Membr. Sci. Lett. 3 (2) (2023) 100059, https://doi.org/10.1016/j.memlet.2023.100059.  doi: 10.1016/j.memlet.2023.100059

    118. [118]

      W. Xu, L. He, Z. Zhao, Desalination 503 (2021) 114935, https://doi.org/10.1016/j.desal.2021.114935.  doi: 10.1016/j.desal.2021.114935

    119. [119]

      Z. Guo, Z. Ji, J. Wang, X. Guo, J. Liang, Desalination 533 (2022) 115767, https://doi.org/10.1016/j.desal.2022.115767.  doi: 10.1016/j.desal.2022.115767

    120. [120]

      L. He, W. Xu, Y. Song, Y. Luo, X. Liu, Z. Zhao, Glob. Chall. 2 (2) (2018) 1700079, https://doi.org/10.1002/gch2.201700079.  doi: 10.1002/gch2.201700079

    121. [121]

      C. Liu, Y. Li, D. Lin, P. Hsu, B. Liu, G. Yan, T. Wu, Y. Cui, S. Chu, Joule 4 (7) (2020) 1459, https://doi.org/10.1016/j.joule.2020.05.017.  doi: 10.1016/j.joule.2020.05.017

    122. [122]

      S. Porada, L. Borchardt, M. Oschatz, M. Bryjak, J. Atchison, K. Keesman, S. Kaskel, P. Biesheuvel, V. Presser, Energy Environ. Sci. 6 (12) (2013) 3700, https://doi.org/10.1039/c3ee42209g.  doi: 10.1039/c3ee42209g

    123. [123]

      W. Tang, P. Kovalsky, D. He, T. Waite, Water Res. 84 (2015) 342, https://doi.org/10.1016/j.watres.2015.08.012.  doi: 10.1016/j.watres.2015.08.012

    124. [124]

      J. Choi, H. Lee, S. Hong, Desalination 400 (2016) 38, https://doi.org/10.1016/j.desal.2016.09.016.  doi: 10.1016/j.desal.2016.09.016

    125. [125]

      J. Lee, K. Park, H. Eum, C. Lee, Desalination 196 (13) (2006) 125, https://doi.org/10.1016/j.desal.2006.01.011.  doi: 10.1016/j.desal.2006.01.011

    126. [126]

      A. Siekierka, J. Wolska, M. Bryjak, W. Kujawski, Desalin. Water Treat. 75 (2017) 331, https://doi.org/10.5004/dwt.2017.20431.  doi: 10.5004/dwt.2017.20431

    127. [127]

      J. Lee, S. Kim, C. Kim, J. Yoon, Energy Environ. Sci. 7 (11) (2014) 3683, https://doi.org/10.1039/c4ee02378a.  doi: 10.1039/c4ee02378a

    128. [128]

      D. Jiang, R. Xu, L. Bai, W. Wu, D. Luo, Z. Li, T. Asahi, Y. Mai, Z. Liu, Y. Yamauchi, et al., Coord. Chem. Rev. 516 (2024) 215923, https://doi.org/10.1016/j.ccr.2024.215923.  doi: 10.1016/j.ccr.2024.215923

    129. [129]

      A. Siekierka, J. Kujawa, W. Kujawski, M. Bryjak, Sep. Purif. Technol. 194 (2018) 231, https://doi.org/10.1016/j.seppur.2017.11.045.  doi: 10.1016/j.seppur.2017.11.045

    130. [130]

      A. Siekierka, Sep. Purif. Technol. 236 (2020) 116234, https://doi.org/10.1016/j.seppur.2019.116234.  doi: 10.1016/j.seppur.2019.116234

    131. [131]

      S. Dahiya, B. Mishra, Sep. Purif. Technol. 240 (2020) 116660, https://doi.org/10.1016/j.seppur.2020.116660.  doi: 10.1016/j.seppur.2020.116660

    132. [132]

      S. Jeon, H. Park, J. Yeo, S. Yang, C. Cho, M. Han, D. Kim, Energy Environ. Sci. 6 (5) (2013), https://doi.org/10.1039/c3ee24443a.  doi: 10.1039/c3ee24443a

    133. [133]

      K. Smith, R. Dmello, J. Electrochem. Soc. 163 (3) (2016) A530, https://doi.org/10.1149/2.0761603jes.  doi: 10.1149/2.0761603jes

    134. [134]

      X. Liu, X. Chen, L. He, Z. Zhao, Desalination 376 (2015) 35, https://doi.org/10.1016/j.desal.2015.08.013.  doi: 10.1016/j.desal.2015.08.013

    135. [135]

      L. Miao, M. Gao, W. Xiao, Y. Kang, R. Li, H. Kong, H. Mou, W. Chen, T. Ao, Desalination 586 (2024) 117850, https://doi.org/10.1016/j.desal.2024.117850.  doi: 10.1016/j.desal.2024.117850

    136. [136]

      F. Saffarimiandoab, R. Mattesini, W. Fu, E. Kuruoglu, X. Zhang, J. Mater. Chem. A 9 (4) (2021) 2259, https://doi.org/10.1039/d0ta09531a.  doi: 10.1039/d0ta09531a

    137. [137]

      G. Xu, Y. Zhang, M. Jiang, J. Li, H. Sun, J. Li, T. Lu, C. Wang, G. Yang, L. Pan, Chem. Eng. J. 476 (2023) 146676, https://doi.org/10.1016/j.cej.2023.146676.  doi: 10.1016/j.cej.2023.146676

    138. [138]

      Z. Xu, Y. Ding, S. Han, C. Zhang, Water Res. 266 (2024) 122374, https://doi.org/10.1016/j.watres.2024.122374.  doi: 10.1016/j.watres.2024.122374

    139. [139]

      E. Aytaç, A. Fombona-Pascual, J. Lado, E. Quismondo, J. Palma, M. Khayet, Desalination 563 (2023) 116715, https://doi.org/10.1016/j.desal.2023.116715.  doi: 10.1016/j.desal.2023.116715

    140. [140]

      L. Bai, R. Xu, W. Wu, C. Ma, S. Li, H. Gao, D. Luo, B. Liu, S. Melhi, Y. Zhao, et al., J. Mater. Chem. A 12 (18) (2024) 10676, https://doi.org/10.1039/d3ta07069g.  doi: 10.1039/d3ta07069g

    141. [141]

      Z. Wang, T. Yan, L. Shi, D. Zhang, ACS Appl. Mater. Interfaces 9 (17) (2017) 15068, https://doi.org/10.1021/acsami.7b02712.  doi: 10.1021/acsami.7b02712

    142. [142]

      J. Zhang, J. Fang, J. Han, T. Yan, L. Shi, D. Zhang, J. Mater. Chem. A 6 (31) (2018) 15245, https://doi.org/10.1039/c8ta04813d.  doi: 10.1039/c8ta04813d

    143. [143]

      F. Saffarimiandoab, R. Mattesini, W. Fu, E. Kuruoglu, X. Zhang, Desalination 515 (2021) 115197, https://doi.org/10.1016/j.desal.2021.115197.  doi: 10.1016/j.desal.2021.115197

    144. [144]

      Y. Zhu, B. Lian, Y. Wang, C. Miller, C. Bales, J. Fletcher, L. Yao, T. Waite, Water Res. 227 (2022) 119349, https://doi.org/10.1016/j.watres.2022.119349.  doi: 10.1016/j.watres.2022.119349

    145. [145]

      K. Salari, P. Zarafshan, M. Khashehchi, E. Pipelzadeh, G. Chegini, Desalination 540 (2022) 115992, https://doi.org/10.1016/j.desal.2022.115992.  doi: 10.1016/j.desal.2022.115992

    146. [146]

      S. Yu, J. Jeon, Y. Shin, H. Bae, ACS EST Engg. 4 (8) (2024) 1937, https://doi.org/10.1021/acsestengg.4c00142.  doi: 10.1021/acsestengg.4c00142

    147. [147]

      M. Son, N. Yoon, S. Park, A. Abbas, K. Cho, Sci. Total Environ. 856 (2023) 159158, https://doi.org/10.1016/j.scitotenv.2022.159158.  doi: 10.1016/j.scitotenv.2022.159158

  • 加载中
    1. [1]

      Zhuo WangXue BaiKexin ZhangHongzhi WangJiabao DongYuan GaoBin Zhao . MOF-Templated Synthesis of Nitrogen-Doped Carbon for Enhanced Electrochemical Sodium Ion Storage and Removal. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-0. doi: 10.3866/PKU.WHXB202405002

    2. [2]

      Guoze YanBin ZuoShaoqing LiuTao WangRuoyu WangJinyang BaoZhongzhou ZhaoFeifei ChuZhengtong LiYamauchi YusukeMelhi SaadXingtao Xu . Opportunities and Challenges of Capacitive Deionization for Uranium Extraction from Seawater. Acta Physico-Chimica Sinica, 2025, 41(4): 2404006-0. doi: 10.3866/PKU.WHXB202404006

    3. [3]

      Ping YeLingshuang QinMengyao HeFangfang WuZengye ChenMingxing LiangLibo Deng . Potential of Zero Charge-Mediated Electrochemical Capture of Cadmium Ions from Wastewater by Lotus Leaf-Derived Porous Carbons. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-0. doi: 10.3866/PKU.WHXB202311032

    4. [4]

      Zehao ZhangZheng WangHaibo Li . Preparation of 2D V2O3@Pourous Carbon Nanosheets Derived from V2CFx MXene for Capacitive Desalination. Acta Physico-Chimica Sinica, 2024, 40(8): 2308020-0. doi: 10.3866/PKU.WHXB202308020

    5. [5]

      Xiaochen ZhangFei YuJie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026

    6. [6]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    7. [7]

      Jun HuangPengfei NieYongchao LuJiayang LiYiwen WangJianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-0. doi: 10.1016/j.actphy.2025.100066

    8. [8]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    9. [9]

      Shuhong XiangLv YangYingsheng XuGuoxin CaoHongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097

    10. [10]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    11. [11]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    12. [12]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    13. [13]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    14. [14]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    15. [15]

      Shuhui Li Rongxiuyuan Huang Yingming Pan . Electrochemical Synthesis of 2,5-Diphenyl-1,3,4-Oxadiazole: A Recommended Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 357-365. doi: 10.12461/PKU.DXHX202407028

    16. [16]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    17. [17]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    18. [18]

      Yifei Cheng Jiahui Yang Wei Shao Wanqun Zhang Wanqun Hu Weiwei Li Kaiping Yang . Learning Goes Beyond the Written Word: Practical Insights from the “Leaf Electroplating” Popular Science Experiment. University Chemistry, 2024, 39(9): 319-327. doi: 10.3866/PKU.DXHX202310033

    19. [19]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    20. [20]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

Metrics
  • PDF Downloads(1)
  • Abstract views(70)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return