Citation: Mingxuan Qi, Lanyu Jin, Honghe Yao, Zipeng Xu, Teng Cheng, Qi Chen, Cheng Zhu, Yang Bai. Recent progress on electrical failure and stability of perovskite solar cells under reverse bias[J]. Acta Physico-Chimica Sinica, ;2025, 41(8): 100088. doi: 10.1016/j.actphy.2025.100088 shu

Recent progress on electrical failure and stability of perovskite solar cells under reverse bias

  • Corresponding author: Cheng Zhu, zc@bit.edu.cn Yang Bai, mse.ybai@bit.edu.cn
  • Received Date: 7 February 2025
    Revised Date: 21 March 2025
    Accepted Date: 3 April 2025

    Fund Project: the National Natural Science Foundation of China 52473272

  • Halide perovskites have attracted widespread attention in the photovoltaic field due to their exception optoelectronic properties and remarkable defect tolerance. The power conversion efficiency of perovskite solar cells has rapidly increased, reaching 26.95%. However, the weak ionic bonding in perovskite materials make them highly sensitive to electric fields, leading to instability under reverse bias, which poses a significant challenge to their commercialization. During operation, partial shading of modules can cause the shaded perovskite sub-cells to become resistive. Consequently, under the influence of other sub-cells, these shaded sub-cells experience reverse bias, resulting in a substantial decline in device performance. Currently, there is no characterization technique available to directly investigate the failure mechanisms of perovskite solar cells under reverse bias. Furthermore, there is no consensus in existing research on the types of ion migration occurring within devices during reverse bias ageing. Since the failure mechanisms of perovskite solar cells under reverse bias remain unclear, effective stability strategies targeting these mechanisms have not been proposed. As a result, reverse bias instability continues to hinder the long-term operational stability of perovskite solar cells. Given these challenges, a comprehensive review of the electrical failure and degradation mechanisms of perovskite solar cells under reverse bias is imperative. This review summarizes the latest research progress on the reverse bias stability of perovskite solar cells, covering key aspects such as the maximum breakdown voltage, electrical evolution, ageing behavior, degradation mechanisms, stability enhancement strategies, and characterization techniques used in stability studies. Finally, this review highlights future research directions for investigating the ageing mechanisms of perovskite solar cells under reverse bias and proposes potential approaches, such as machine learning, to address the reverse bias stability issues of high-efficiency perovskite solar cells, in the hope of paving the way for further improving their reverse bias stability.
  • 加载中
    1. [1]

      https://www.nrel.gov/pv/cell-efficiency.html. (Accessed 10 March 2025).

    2. [2]

      F.Y. Lin, Y. Yang, C.T. Zhu, T. Chen, S.P. Ma, Y. Luo, L. Zhu, X.Y. Guo, Acta Phys. Chim. Sin. 38 (2022) 24, https://doi.org/10.3866/PKU.WHXB202005007.  doi: 10.3866/PKU.WHXB202005007

    3. [3]

      Y. Lu, Y. Ge, M.L. Sui, Acta Phys. Chim. Sin. 38 (2022) 76, https://doi.org/10.3866/PKU.WHXB202007088.  doi: 10.3866/PKU.WHXB202007088

    4. [4]

      L. Shi, M.P. Bucknall, T.L. Young, M. Zhang, L. Hu, J. Bing, D.S. Lee, J. Kim, T. Wu, N. Takamure, D.R. McKenzie, S. Huang, M.A. Green, A.W.Y. Ho-Baillie, Science 368 (6497) (2020) eaba2412, https://doi.org/10.1126/science.aba2412.  doi: 10.1126/science.aba2412

    5. [5]

      J. Tang, S. Ma, Y. Wu, F. Pei, Y. Ma, G. Yuan, Z. Zhang, H. Zhou, C. Zhu, Y. Jiang, Y. Li, Q. Chen, Sol. RRL 8 (2) (2024) 2300801, https://doi.org/10.1002/solr.202300801.  doi: 10.1002/solr.202300801

    6. [6]

      F. Bella, G. Griffini, J.-P. Correa-Baena, G. Saracco, M. Gr€atzel, A. Hagfeldt, S. Turri, C. Gerbaldi, Science 354 (6309) (2016) 203, https://doi.org/10.1126/science.aah4046.  doi: 10.1126/science.aah4046

    7. [7]

      Y. Wang, Z. Zhang, Y. Lan, Q. Song, M. Li, Y. Song, Angew. Chem. Int. Ed. 60 (16) (2021) 8673, https://doi.org/10.1002/anie.202100218.  doi: 10.1002/anie.202100218

    8. [8]

      B.Y. Zhang, C. Yang, W.F. Liu, A.M. Liu, Appl. Phys. Lett. 101 (9) (2012) 93903, https://doi.org/10.1063/1.4749821.  doi: 10.1063/1.4749821

    9. [9]

      N. Klasen, F. Lux, J. Weber, T. Roessler, A. Kraft, IEEE J. Photovoltaics 12 (2) (2022) 546, https://doi.org/10.1109/JPHOTOV.2022.3144635.  doi: 10.1109/JPHOTOV.2022.3144635

    10. [10]

      Y. Jia, Y. Wang, X. Hu, J. Xu, G. Weng, X. Luo, S. Chen, Z. Zhu, H. Akiyama, Sol. Energy 225 (2021) 463, https://doi.org/10.1016/j.solener.2021.07.052.  doi: 10.1016/j.solener.2021.07.052

    11. [11]

      Farella, G. Montagna, A.M. Mancini, A. Cola, IEEE Trans. Nucl. Sci. 56 (4) (2009) 1736, https://doi.org/10.1109/TNS.2009.2017020.  doi: 10.1109/TNS.2009.2017020

    12. [12]

      D. Shvydka, V.G. Karpov, A.D. Compaan, Appl. Phys. Lett. 80 (17) (2002) 3114, https://doi.org/10.1063/1.1475359.  doi: 10.1063/1.1475359

    13. [13]

      J.V. Li, A.F. Halverson, O.V. Sulima, S. Bansal, J.M. Burst, T.M. Barnes, T.A. Gessert, D.H. Levi, Sol. Energy Mater. Sol. Cell. 100 (2012) 126, https://doi.org/10.1016/j.solmat.2012.01.003.  doi: 10.1016/j.solmat.2012.01.003

    14. [14]

      Agresti, S. Pescetelli, E. Gatto, M. Venanzi, A. Di Carlo, J. Power Sources 287 (2015) 87, https://doi.org/10.1016/j.jpowsour.2015.04.038.  doi: 10.1016/j.jpowsour.2015.04.038

    15. [15]

      S. Mastroianni, A. Lembo, T.M. Brown, A. Reale, A. Di Carlo, ChemPhysChem 13 (12) (2012) 2964, https://doi.org/10.1002/cphc.201200229.  doi: 10.1002/cphc.201200229

    16. [16]

      S. Mastroianni, A. Lanuti, T.M. Brown, R. Argazzi, S. Caramori, A. Reale, A. Di Carlo, Appl. Phys. Lett. 101 (12) (2012) 123302, https://doi.org/10.1063/1.4754116.  doi: 10.1063/1.4754116

    17. [17]

      E. Palmiotti, S. Johnston, A. Gerber, H. Guthrey, A. Rockett, L. Mansfield, T.J. Silverman, M. Al-Jassim, Sol. Energy 161 (2018) 1, https://doi.org/10.1016/j.solener.2017.12.019.  doi: 10.1016/j.solener.2017.12.019

    18. [18]

      H. Guthrey, M. Nardone, S. Johnston, J. Liu, A. Norman, J. Moseley, M. Al-Jassim, Prog. Photovoltaics Res. Appl. 27 (9) (2019) 812, https://doi.org/10.1002/pip.3168.  doi: 10.1002/pip.3168

    19. [19]

      K. Bakker, H.N. Åhman, T. Burgers, N. Barreau, A. Weeber, M. Theelen, Sol. Energy Mater. Sol. Cell. 205 (2020) 110249, https://doi.org/10.1016/j.solmat.2019.110249.  doi: 10.1016/j.solmat.2019.110249

    20. [20]

      C. Wehrenfennig, G.E. Eperon, M.B. Johnston, H.J. Snaith, L.M. Herz, Adv. Mater. 26 (10) (2014) 1584, https://doi.org/10.1002/adma.201305172.  doi: 10.1002/adma.201305172

    21. [21]

      Y. Zhao, C. Liang, H. Zhang, D. Li, D. Tian, G. Li, X. Jing, W. Zhang, W. Xiao, Q. Liu, F. Zhang, Z. He, Energy Environ. Sci. 8 (4) (2015) 1256, https://doi.org/10.1039/C4EE04064C.  doi: 10.1039/C4EE04064C

    22. [22]

      H. Wu, C. Xu, Z. Zhang, Z. Xiong, M. Shi, S. Ma, W. Fan, Z. Zhang, Q. Liao, Z. Kang, Y. Zhang, Nano Lett. 22 (4) (2022) 1467, https://doi.org/10.1021/acs.nanolett.1c03336.  doi: 10.1021/acs.nanolett.1c03336

    23. [23]

      R.A.Z. Razera, D.A. Jacobs, F. Fu, P. Fiala, M. Dussouillez, F. Sahli, T.C.J. Yang, L. Ding, A. Walter, A.F. Feil, H.I. Boudinov, S. Nicolay, C. Ballif, Q. Jeangros, J. Mater. Chem. A 8 (1) (2020) 242, https://doi.org/10.1039/C9TA12032G.  doi: 10.1039/C9TA12032G

    24. [24]

      N. Li, Z. Shi, C. Fei, H. Jiao, M. Li, H. Gu, S.P. Harvey, Y. Dong, M.C. Beard, J. Huang, Nat. Energy 9 (10) (2024) 1264, https://doi.org/10.1038/s41560-024-01579-7.  doi: 10.1038/s41560-024-01579-7

    25. [25]

      M. Diethelm, T. Lukas, J. Smith, A. Dasgupta, P. Caprioglio, M. Futscher, R. Hany, H.J. Snaith, Energy Environ. Sci. 18 (2025) 1385, https://doi.org/10.1039/D4EE02494J.  doi: 10.1039/D4EE02494J

    26. [26]

      H. Bi, M. Wang, L. Liu, J. Yan, R. Zeng, Z. Xu, J. Wang, J. Mater. Chem. A 12 (2024) 12744, https://doi.org/10.1039/D3TA07457A.  doi: 10.1039/D3TA07457A

    27. [27]

      Q. Jeangros, M. Duchamp, J. Werner, M. Kruth, R.E. Dunin-Borkowski, B. Niesen, C. Ballif, A. Hessler-Wyser, Nano Lett. 16 (11) (2016) 7013, https://doi.org/10.1021/acs.nanolett.6b03158.  doi: 10.1021/acs.nanolett.6b03158

    28. [28]

      Z. Xu, R.A. Kerner, S.P. Harvey, K. Zhu, J.J. Berry, B.P. Rand, ACS Energy Lett. 8 (1) (2023) 513, https://doi.org/10.1021/acsenergylett.2c02385.  doi: 10.1021/acsenergylett.2c02385

    29. [29]

      D. Bogachuk, K. Saddedine, D. Martineau, S. Narbey, A. Verma, P. Gebhardt, J.P. Herterich, N. Glissmann, S. Zouhair, J. Markert, I.E. Gould, M.D. McGehee, U. Würfel, A. Hinsch, L. Wagner, Sol. RRL 6 (3) (2022) 2100527, https://doi.org/10.1002/solr.202100527.  doi: 10.1002/solr.202100527

    30. [30]

      C. Jiang, J. Zhou, H. Li, L. Tan, M. Li, W. Tress, L. Ding, M. Gr€atzel, C. Yi, NanoMicro Lett. 15 (1) (2022) 12, https://doi.org/10.1007/s40820-022-00985-4.  doi: 10.1007/s40820-022-00985-4

    31. [31]

      T. Tayagaki, H. Kobayashi, K. Yamamoto, T.N. Murakami, M. Yoshita, Sol. Energy Mater. Sol. Cells 279 (2025) 113229, https://doi.org/10.1016/j.solmat.2024.113229.  doi: 10.1016/j.solmat.2024.113229

    32. [32]

      W. Li, K. Huang, J. Chang, C. Hu, C. Long, H. Zhang, X. Maldague, B. Liu, J. Meng, Y. Duan, J. Yang, ChemPhysMater 1 (1) (2022) 71, https://doi.org/10.1016/j.chphma.2021.10.001.  doi: 10.1016/j.chphma.2021.10.001

    33. [33]

      Rajagopal, S.T. Williams, C.-C. Chueh, A.K.-Y. Jen, J. Phys. Chem. Lett. 7 (6) (2016) 995, https://doi.org/10.1021/acs.jpclett.6b00058.  doi: 10.1021/acs.jpclett.6b00058

    34. [34]

      Wang, L. Huang, Y. Guo, S. Liu, J. Huang, X. Liu, J. Zhang, Z. Hu, K. Liu, Y. Zhu, Sol. RRL 7 (20) (2023) 2300456, https://doi.org/10.1002/solr.202300456.  doi: 10.1002/solr.202300456

    35. [35]

      W. Tress, J.P. Correa Baena, M. Saliba, A. Abate, M. Graetzel, Adv. Energy Mater. 6 (19) (2016) 1600396, https://doi.org/10.1002/aenm.201600396.  doi: 10.1002/aenm.201600396

    36. [36]

      Z. Ni, H. Jiao, C. Fei, H. Gu, S. Xu, Z. Yu, G. Yang, Y. Deng, Q. Jiang, Y. Liu, Y. Yan, J. Huang, Nat. Energy 7 (1) (2022) 65, https://doi.org/10.1038/s41560-021-00949-9.  doi: 10.1038/s41560-021-00949-9

    37. [37]

      X. Guo, N. Li, Y. Xu, J. Zhao, F. Cui, Y. Chen, X. Du, Q. Song, G. Zhang, X. Cheng, X. Tao, Z. Chen, Adv. Funct. Mater. 33 (22) (2023) 2213995, https://doi.org/10.1002/adfm.202213995.  doi: 10.1002/adfm.202213995

    38. [38]

      X. Ren, J. Wang, Y. Lin, Y. Wang, H. Xie, H. Huang, B. Yang, Y. Yan, Y. Gao, J. He, J. Huang, Y. Yuan, Nat. Mater. 23 (6) (2024) 810, https://doi.org/10.1038/s41563-024-01876-2.  doi: 10.1038/s41563-024-01876-2

    39. [39]

      F. Jiang, Y. Shi, T.R. Rana, D. Morales, I.E. Gould, D.P. McCarthy, J.A. Smith, M.G. Christoforo, M.Y. Yaman, F. Mandani, T. Terlier, H. Contreras, S. Barlow, A.D. Mohite, H.J. Snaith, S.R. Marder, J.D. MacKenzie, M.D. McGehee, D.S. Ginger, Nat. Energy 9 (10) (2024) 1275, https://doi.org/10.1038/s41560-024-01600-z.  doi: 10.1038/s41560-024-01600-z

    40. [40]

      A.R. Bowring, L. Bertoluzzi, B.C. O'Regan, M.D. McGehee, Adv. Energy Mater. 8 (8) (2018) 1702365, https://doi.org/10.1002/aenm.201702365.  doi: 10.1002/aenm.201702365

    41. [41]

      Breitenstein, J. Bauer, K. Bothe, W. Kwapil, D. Lausch, U. Rau, J. Schmidt, M. Schneemann, M.C. Schubert, J.-M. Wagner, W. Warta, J. Appl. Phys. 109 (7) (2011) 71101, https://doi.org/10.1063/1.3562200.  doi: 10.1063/1.3562200

    42. [42]

      M. Singh Tyagi, Solid State Electron. 11 (1) (1968) 99, https://doi.org/10.1016/0038-1101(68)90141-X.  doi: 10.1016/0038-1101(68)90141-X

    43. [43]

      L. Bertoluzzi, J.B. Patel, K.A. Bush, C.C. Boyd, R.A. Kerner, B.C. O'Regan, M.D.McGehee, Adv. Energy Mater. 11 (10) (2021) 2002614, https://doi.org/10.1002/aenm.202002614.  doi: 10.1002/aenm.202002614

    44. [44]

      T.S. Vaas, B.E. Pieters, A. Gerber, U. Rau, IEEE J. Photovoltaics 13 (3) (2023) 398, https://doi.org/10.1109/JPHOTOV.2023.3240680.  doi: 10.1109/JPHOTOV.2023.3240680

    45. [45]

      C. Eames, J.M. Frost, P.R.F. Barnes, B.C. O'Regan, A. Walsh, M.S. Islam, Nat. Commun. 6 (1) (2015) 7497, https://doi.org/10.1038/ncomms8497.  doi: 10.1038/ncomms8497

    46. [46]

      K. Huang, X. Feng, H. Li, C. Long, B. Liu, J. Shi, Q. Meng, K. Weber, T. Duong, J. Yang, Adv. Sci. 9 (35) (2022) 2204163, https://doi.org/10.1002/advs.202204163.  doi: 10.1002/advs.202204163

    47. [47]

      J. Zhang, X. Niu, C. Peng, H. Jiang, L. Yu, H. Zhou, Z. Zhou, Angew. Chem., Int. Ed. 62 (50) (2023) e202314106, https://doi.org/10.1002/anie.202314106.  doi: 10.1002/anie.202314106

    48. [48]

      P. Teng, S. Reichert, W. Xu, S.-C. Yang, F. Fu, Y. Zou, C. Yin, C. Bao, M. Karlsson, X. Liu, J. Qin, T. Yu, W. Tress, Y. Yang, B. Sun, C. Deibel, F. Gao, Matter 4 (11) (2021) 3710, https://doi.org/10.1016/j.matt.2021.09.007.  doi: 10.1016/j.matt.2021.09.007

    49. [49]

      Y. Cheng, X. Liu, Z. Guan, M. Li, Z. Zeng, H. Li, S. Tsang, A.G. Aberle, F. Lin, Adv. Mater. 33 (3) (2021) 2006170, https://doi.org/10.1002/adma.202006170.  doi: 10.1002/adma.202006170

    50. [50]

      D. Kim, J.S. Yun, P. Sharma, D.S. Lee, J. Kim, A.M. Soufiani, S. Huang, M.A. Green, A.W.Y. Ho-Baillie, J. Seidel, Nat. Commun. 10 (1) (2019) 444, https://doi.org/10.1038/s41467-019-08364-1.  doi: 10.1038/s41467-019-08364-1

    51. [51]

      M. Kot, C. Das, Z. Wang, K. Henkel, Z. Rouissi, K. Wojciechowski, H.J. Snaith, D. Schmeisser, ChemSusChem 9 (24) (2016) 3401, https://doi.org/10.1002/cssc.201601186.  doi: 10.1002/cssc.201601186

    52. [52]

      L. Zhou, X. Guo, Z. Lin, J. Ma, J. Su, Z. Hu, C. Zhang, S. Liu, (Frank), J. Chang, Y. Hao, Nano Energy 60 (2019) 583, https://doi.org/10.1016/j.nanoen.2019.03.081.  doi: 10.1016/j.nanoen.2019.03.081

    53. [53]

      Z. Yin, Y. Chen, Y. Zhang, Y. Yuan, Q. Yang, Y. Zhong, X. Gao, J. Xiao, Z. Wang, J. Xu, S. Wang, Adv. Funct. Mater. 33 (33) (2023) 2302199, https://doi.org/10.1002/adfm.202302199.  doi: 10.1002/adfm.202302199

    54. [54]

      L. Najafi, S. Bellani, L. Gabatel, M.I. Zappia, A. Di Carlo, F. Bonaccorso, ACS Appl. Energy Mater. 5 (2) (2022) 1378, https://doi.org/10.1021/acsaem.1c03206.  doi: 10.1021/acsaem.1c03206

    55. [55]

      Z. Xu, H. Bristow, M. Babics, B. Vishal, E. Aydin, R. Azmi, E. Ugur, B.K. Yildirim, J. Liu, R.A. Kerner, S. De Wolf, B.P. Rand, Joule 7 (9) (2023) 1992, https://doi.org/10.1016/j.joule.2023.07.017.  doi: 10.1016/j.joule.2023.07.017

  • 加载中
    1. [1]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    2. [2]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    3. [3]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    4. [4]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

    5. [5]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

    6. [6]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    7. [7]

      Yihan XueXue HanJie ZhangXiaoru Wen . NCQDs修饰FeOOH基复合材料的制备及其电容脱盐性能. Acta Physico-Chimica Sinica, 2025, 41(7): 100072-0. doi: 10.1016/j.actphy.2025.100072

    8. [8]

      Meng-Yin WangRuo-Bei HuangJian-Feng XiongJing-Hua TianJian-Feng LiZhong-Qun Tian . Critical Role and Recent Development of Separator in Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2307017-0. doi: 10.3866/PKU.WHXB202307017

    9. [9]

      Xuechen HuQiuying XiaFan YueXinyi HeZhenghao MeiJinshi WangHui XiaXiaodong Huang . Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2309046-0. doi: 10.3866/PKU.WHXB202309046

    10. [10]

      Zeyi Yan Ruitao Liu Xinyu Qi Yuxiang Zhang Lulu Sun Xiangyuan Li Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110

    11. [11]

      Yameen AhmedXiangxiang FengYuanji GaoYang DingCaoyu LongMustafa HaiderHengyue LiZhuan LiShicheng HuangMakhsud I. SaidaminovJunliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057

    12. [12]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    13. [13]

      Ying LiangYuheng DengShilv YuJiahao ChengJiawei SongJun YaoYichen YangWanlei ZhangWenjing ZhouXin ZhangWenjian ShenGuijie LiangBin LiYong PengRun HuWangnan Li . Machine learning-guided antireflection coatings architectures and interface modification for synergistically optimizing efficient and stable perovskite solar cells. Acta Physico-Chimica Sinica, 2025, 41(9): 100098-0. doi: 10.1016/j.actphy.2025.100098

    14. [14]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    15. [15]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    16. [16]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    17. [17]

      Yingtong ShiGuotong XuGuizeng LiangDi LanSiyuan ZhangYanru WangDaohao LiGuanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-0. doi: 10.1016/j.actphy.2025.100082

    18. [18]

      Xiaojing TianZhichun HuangQingsong ZhangXu WangNing YangNanping Deng . PNIPAm Thermo-Responsive Nanofibers Mats: Morphological Stability and Response Behavior under Cross-Linking. Acta Physico-Chimica Sinica, 2024, 40(4): 2304037-0. doi: 10.3866/PKU.WHXB202304037

    19. [19]

      Yawen GuoDawei LiYang GaoCuihong Li . Recent Progress on Stability of Organic Solar Cells Based on Non-Fullerene Acceptors. Acta Physico-Chimica Sinica, 2024, 40(6): 2306050-0. doi: 10.3866/PKU.WHXB202306050

    20. [20]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

Metrics
  • PDF Downloads(0)
  • Abstract views(23)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return