Citation: Yu Peng, Jiawei Chen, Yue Yin, Yongjie Cao, Mochou Liao, Congxiao Wang, Xiaoli Dong, Yongyao Xia. Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2[J]. Acta Physico-Chimica Sinica, ;2025, 41(8): 100087. doi: 10.1016/j.actphy.2025.100087 shu

Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2

  • Corresponding author: Xiaoli Dong, xldong@fudan.edu.cn Yongyao Xia, yyxia@fudan.edu.cn
  • Received Date: 19 February 2025
    Revised Date: 18 March 2025
    Accepted Date: 2 April 2025

    Fund Project: the National Natural Science Foundation of China 21935003

  • Raising the charge cut-off voltage of LiCoO2 (LCO) cathodes provides a straightforward approach to increasing the energy density of lithium-ion batteries (LIBs). However, when the charge cut-off voltage exceeds 4.55 V (vs. Li/Li+), the cathode-electrolyte interphase (CEI) becomes unstable, failing to protect the LCO cathode from severe interfacial side reactions and structural instability. These issues accelerate battery degradation and severely hinder the practical application of high-energy-density LIBs. Moreover, ethylene carbonate (EC)-based electrolytes exhibit more pronounced parasitic reactions than EC-free electrolytes under high voltage, further exacerbating performance limitations. Therefore, optimizing the components and structure of the CEI with EC-free electrolytes remains a challenge. In this work, we aim to construct a robust and chemically stable F-/B-containing CEI on the surface of LCO cathodes using an EC-free electrolyte design. By replacing EC with more anti-oxidative propylene carbonate (PC) and fluoroethylene carbonate (FEC) co-solvents, the oxidative stability of the electrolyte is significantly improved. This promotes the formation of LiF within the CEI, thereby enhancing its mechanical strength. Meanwhile, the introduction of the sacrificial film-forming additive lithium bis(oxalato)borate (LiBOB) facilitates the generation of oxalates (Li2C2O4) and B-containing crosslinked polymers (LiBxOy) within the CEI. These components exhibit high electrochemical stability and flexibility, compensating for the limitations of the LiF-rich CEI and further enhancing the overall structural stability of the CEI. This combination results in a rigid-flexible coupling architecture composed of inorganic-rich components (LiF and Li2C2O4) embedded in B-containing crosslinked polymers (LiBxOy), ensuring both mechanical integrity and chemical stability of the CEI. Consequently, this tailored CEI effectively mitigates interfacial layer cracking and regeneration, reducing irreversible structural degradation and interfacial side reactions in high-voltage LCO cathodes. Based on these improvements, the EC-free PC-based electrolyte enables superior performance of LCO cathodes at 4.6 V, achieving 82% capacity retention at 0.5C over 200 cycles. Furthermore, graphite||LCO full cells demonstrate enhanced cycling stability at 4.5 V and enable operation across a wide temperature range (−40 to 80 ℃), highlighting the effectiveness of the rigid-flexible coupling CEI derived from the tailored electrolyte. By moving away from conventional EC-based electrolyte formulas, this work provides new insights into designing high-performance, wide-temperature, and sustainable PC-based electrolytes.
  • 加载中
    1. [1]

      M. Li, J. Lu, Z. Chen, K. Amine, Adv. Mater. 30 (2018) 1800561, https://doi.org/10.1002/adma.201800561.  doi: 10.1002/adma.201800561

    2. [2]

      L. Wang, B. Chen, J. Ma, G. Cui, L. Chen, Chem. Soc. Rev. 47 (2018) 6505, https://doi.org/10.1039/C8CS00322J.  doi: 10.1039/C8CS00322J

    3. [3]

      Y. Lyu, X. Wu, K. Wang, Z. Feng, T. Cheng, Y. Liu, M. Wang, R. Chen, L. Xu, J. Zhou, Y. Lu, B. Guo, Adv. Energy Mater. 11 (2021) 2000982, https://doi.org/10.1002/aenm.202000982.  doi: 10.1002/aenm.202000982

    4. [4]

      C. Lin, J. Li, Z.-W. Yin, W. Huang, Q. Zhao, Q. Weng, Q. Liu, J. Sun, G. Chen, F. Pan, Adv. Mater. 36 (2024) 2307404, https://doi.org/10.1002/adma.202307404.  doi: 10.1002/adma.202307404

    5. [5]

      B. Chu, Y.-J. Guo, J.-L. Shi, Y.-X. Yin, T. Huang, H. Su, A. Yu, Y.-G. Guo, Y.J. Li, Power Sources. 544 (2022) 231873, https://doi.org/10.1016/j.jpowsour.2022.231873.  doi: 10.1016/j.jpowsour.2022.231873

    6. [6]

      Y. Kim, G.M. Veith, J. Nanda, R.R. Unocic, M. Chi, N.J. Dudney, Electrochim. Acta 56 (2011) 6573, https://doi.org/10.1016/j.electacta.2011.03.070.  doi: 10.1016/j.electacta.2011.03.070

    7. [7]

      Z. Sun, J. Zhao, M. Zhu, J. Liu, Adv. Energy Mater. 14 (2024) 2303498, https://doi.org/10.1002/aenm.202303498.  doi: 10.1002/aenm.202303498

    8. [8]

      Q. Wu, B. Zhang, Y. Lu, J. Energy Chem. 74 (2022) 283, https://doi.org/10.1016/j.jechem.2022.07.007.  doi: 10.1016/j.jechem.2022.07.007

    9. [9]

      N. Qin, Q. Gan, Z. Zhuang, Y. Wang, Y. Li, Z. Li, I. Hussain, C. Zeng, G. Liu, Y. Bai, K. Zhang, Z. Lu, Adv. Energy Mater. 12 (2022) 2201549, https://doi.org/10.1002/aenm.202201549.  doi: 10.1002/aenm.202201549

    10. [10]

      Z. Zhuang, J. Wang, K. Jia, G. Ji, J. Ma, Z. Han, Z. Piao, R. Gao, H. Ji, X. Zhong, G. Zhou, H.-M. Cheng, Adv. Mater. 35 (2023) 2212059, https://doi.org/10.1002/adma.202212059.  doi: 10.1002/adma.202212059

    11. [11]

      Z. Liu, M. Han, S. Zhang, H. Li, X. Wu, Z. Fu, H. Zhang, G. Wang, Y. Zhang, Adv. Mater. 36 (2024) 2404188, https://doi.org/10.1002/adma.202404188.  doi: 10.1002/adma.202404188

    12. [12]

      T. Fan, Y. Wang, V.K. Harika, A. Nimkar, K. Wang, X. Liu, M. Wang, L. Xu, Y. Elias, H. Sclar, M.S. Chae, Y. Min, Y. Lu, N. Shpigel, D. Aurbach, Adv. Sci. 9 (2022) 2202627, https://doi.org/10.1002/advs.202202627.  doi: 10.1002/advs.202202627

    13. [13]

      T. Cheng, Z. Ma, R. Qian, Y. Wang, Q. Cheng, Y. Lyu, A. Nie, B. Guo, Adv. Funct. Mater. 8 (2021) 2001974, https://doi.org/10.1002/adfm.202001974.  doi: 10.1002/adfm.202001974

    14. [14]

      X. Yang, C. Wang, P. Yan, T. Jiao, J. Hao, Y. Jiang, F. Ren, W. Zhang, J. Zheng, Y. Cheng, X. Wang, W. Yang, J. Zhu, S. Pan, M. Lin, L. Zeng, Z. Gong, J. Li, Y. Yang, Adv. Energy Mater. 12 (2022) 2200197, https://doi.org/10.1002/aenm.202200197.  doi: 10.1002/aenm.202200197

    15. [15]

      C. Yang, X. Liao, X. Zhou, C. Sun, R. Qu, J. Han, Y. Zhao, L. Wang, Y. You, J. Lu, Adv. Mater. 35 (2023) 2210966, https://doi.org/10.1002/adma.202210966.  doi: 10.1002/adma.202210966

    16. [16]

      Y. Li, W. Li, R. Shimizu, D. Cheng, H. Nguyen, J. Paulsen, S. Kumakura, M. Zhang, Y.S. Meng, Adv. Energy Mater. 12 (2022) 2103033, https://doi.org/10.1002/aenm.202103033.  doi: 10.1002/aenm.202103033

    17. [17]

      M. Mao, X. Ji, Q. Wang, Z. Lin, M. Li, T. Liu, C. Wang, Y.-S. Hu, H. Li, X. Huang, L. Chen, L. Suo, Nat. Commun. 14 (2023) 1082, https://doi.org/10.1038/s41467-023-36853-x.  doi: 10.1038/s41467-023-36853-x

    18. [18]

      Y. Qin, K. Xu, Q. Wang, M. Ge, T. Cheng, M. Liu, H. Cheng, Y. Hu, C. Shen, D. Wang, Y. Liu, B. Guo, Nano Energy 96 (2022) 107082, https://doi.org/10.1016/j.nanoen.2022.107082.  doi: 10.1016/j.nanoen.2022.107082

    19. [19]

      Q. Liu, W. Jiang, J. Xu, Y. Xu, Z. Yang, D.-J. Yoo, K.Z. Pupek, C. Wang, C. Liu, K. Xu, Z. Zhang, Nat. Commun. 14 (2023) 3678, https://doi.org/10.1038/s41467-023-38229-7.  doi: 10.1038/s41467-023-38229-7

    20. [20]

      J. Liu, M. Wu, X. Li, D. Wu, H. Wang, J. Huang, J. Ma, Adv. Energy Mater. 13 (2023) 2300084, https://doi.org/10.1002/aenm.202300084.  doi: 10.1002/aenm.202300084

    21. [21]

      B. Zhang, L. Wang, X. Wang, S. Zhou, A. Fu, Y. Yan, Q. Wang, Q. Xie, D. Peng, Y. Qiao, S.-G. Sun, Energy Storage Mater. 53 (2022) 492, https://doi.org/10.1016/j.ensm.2022.09.032.  doi: 10.1016/j.ensm.2022.09.032

    22. [22]

      Z. Wu, G. Zeng, J. Yin, C.-L. Chiang, Q. Zhang, B. Zhang, J. Chen, Y. Yan, Y. Tang, H. Zhang, S. Zhou, Q. Wang, X. Kuai, Y.-G. Lin, L. Gu, Y. Qiao, S.-G. Sun, ACS Energy Lett. 8 (2023) 4806, https://doi.org/10.1021/acsenergylett.3c01954.  doi: 10.1021/acsenergylett.3c01954

    23. [23]

      S. Kim, J.-A. Lee, D.G. Lee, J. Son, T.H. Bae, T.K. Lee, N.-S. Choi, ACS Energy Lett. 9 (2024) 262, https://doi.org/10.1021/acsenergylett.3c02534.  doi: 10.1021/acsenergylett.3c02534

    24. [24]

      J. Xu, Nano-Micro Lett. 14 (2022) 166, https://doi.org/10.1007/s40820-022-00917-2.  doi: 10.1007/s40820-022-00917-2

    25. [25]

      J.C. Hestenes, L.E. Marbella, ACS Energy Lett. 8 (2023) 4572, https://doi.org/10.1021/acsenergylett.3c01529.  doi: 10.1021/acsenergylett.3c01529

    26. [26]

      Z. Sun, F. Li, J. Ding, Z. Lin, M. Xu, M. Zhu, J. Liu, ACS Energy Lett. 8 (2023) 2478, https://doi.org/10.1021/acsenergylett.3c00324.  doi: 10.1021/acsenergylett.3c00324

    27. [27]

      Y. Yamada, J. Wang, S. Ko, E. Watanabe, A. Yamada, Nat. Energy 4 (2019) 269, https://doi.org/10.1038/s41560-019-0336-z.  doi: 10.1038/s41560-019-0336-z

    28. [28]

      W. Li, A. Dolocan, J. Li, Q. Xie, A. Manthiram, Adv. Energy Mater. 9 (2019) 1901152, https://doi.org/10.1002/aenm.201901152.  doi: 10.1002/aenm.201901152

    29. [29]

      R. Pan, Z. Cui, M. Yi, Q. Xie, A. Manthiram, Adv. Energy Mater. 12 (2022) 2103806, https://doi.org/10.1002/aenm.202103806.  doi: 10.1002/aenm.202103806

    30. [30]

      M. Qin, M. Liu, Z. Zeng, Q. Wu, Y. Wu, H. Zhang, S. Lei, S. Cheng, J. Xie, Adv. Energy Mater. 12 (2022) 2201801, https://doi.org/10.1002/aenm.202201801.  doi: 10.1002/aenm.202201801

    31. [31]

      X. Liu, X. Shen, H. Li, P. Li, L. Luo, H. Fan, X. Feng, W. Chen, X. Ai, H. Yang, Y. Cao, Adv. Energy Mater. 11 (2021) 2003905, https://doi.org/10.1002/aenm.202003905.  doi: 10.1002/aenm.202003905

    32. [32]

      H. Liang, Z. Ma, Y. Wang, F. Zhao, Z. Cao, L. Cavallo, Q. Li, J. Ming, ACS Nano 17 (2023) 18062, https://doi.org/10.1021/acsnano.3c04790.  doi: 10.1021/acsnano.3c04790

    33. [33]

      X. Fan, C. Wang, Chem. Soc. Rev. 50 (2021) 10486, https://doi.org/10.1039/D1CS00450F.  doi: 10.1039/D1CS00450F

    34. [34]

      Z. Li, H. Rao, R. Atwi, B.M. Sivakumar, B. Gwalani, S. Gray, K.S. Han, T.A. Everett, T.A. Ajantiwalay, V. Murugesan, N.N. Rajput, V.G. Pol, Nat. Commun. 14 (2023) 868, https://doi.org/10.1038/s41467-023-36647-1.  doi: 10.1038/s41467-023-36647-1

    35. [35]

      S. Li, W. Zhang, Q. Wu, L. Fan, X. Wang, X. Wang, Z. Shen, Y. He, Y. Lu, Angew. Chem. Int. Ed. 59 (2020) 14935, https://doi.org/10.1002/anie.202004853.  doi: 10.1002/anie.202004853

    36. [36]

      D. Wu, C. Zhu, H. Wang, J. Huang, G. Jiang, Y. Yang, G. Yang, D. Tang, J. Ma, Angew. Chem. Int. Ed. 63 (2024) 202315608, https://doi.org/10.1002/anie.202315608.  doi: 10.1002/anie.202315608

    37. [37]

      R. Wang, B. Weng, A. Mahadevegowda, I. Temprano, H. Wang, Z. He, C. Ducati, Y. Xiao, C.P. Grey, M.F.L. De Volder, Adv. Energy Mater. 14 (2024) 2401097, https://doi.org/10.1002/aenm.202401097.  doi: 10.1002/aenm.202401097

    38. [38]

      W.M. Dose, W. Li, I. Temprano, C.A. O'Keefe, B.L. Mehdi, ACS Energy Lett. 10 (2022) 3524, https://doi.org/10.1021/acsenergylett.2c01722.  doi: 10.1021/acsenergylett.2c01722

    39. [39]

      D. Wu, J. He, J. Liu, M. Wu, S. Qi, H. Wang, J. Huang, F. Li, D. Tang, J. Ma, Adv. Energy Mater. 12 (2022) 2200337, https://doi.org/10.1002/aenm.202200337.  doi: 10.1002/aenm.202200337

    40. [40]

      J. Xu, J. Zhang, T.P. Pollard, Q. Li, S. Tan, S. Hou, H. Wan, F. Chen, H. He, E. Hu, K. Xu, X.-Q. Yang, O. Borodin, C. Wang, Nature 614 (2023) 694, https://doi.org/10.1038/s41586-022-05627-8.  doi: 10.1038/s41586-022-05627-8

    41. [41]

      P. Bai, X. Ji, J. Zhang, W. Zhang, S. Hou, H. Su, M. Li, T. Deng, L. Cao, S. Liu, X. He, Y. Xu, C. Wang, Angew. Chem. Int. Ed. 61 (2022) e202202731, https://doi.org/10.1002/anie.202202731.  doi: 10.1002/anie.202202731

    42. [42]

      Q. Li, Y. Wang, X. Wang, X. Sun, J.-N. Zhang, X. Yu, H. Li, ACS Appl. Mater. Interfaces 12 (2020) 2319, https://doi.org/10.1021/acsami.9b16727.  doi: 10.1021/acsami.9b16727

    43. [43]

      Y. Chen, Q. He, Y. Mo, W. Zhou, Y. Zhao, N. Piao, C. Liu, P. Xiao, H. Liu, B. Li, S. Chen, L. Wang, X. He, L. Xing, J. Liu, Adv. Energy Mater. 12 (2022) 2201631, https://doi.org/10.1002/aenm.202201631.  doi: 10.1002/aenm.202201631

    44. [44]

      J. Lai, Y. Huang, X. Zeng, T. Zhou, Z. Peng, Z. Li, X. Zhang, K. Ding, C. Xu, Y. Ying, Y.-P. Cai, R. Shang, J. Zhao, Q. Zheng, ACS Energy Lett. 8 (2023) 2241, https://doi.org/10.1021/acsenergylett.3c00504.  doi: 10.1021/acsenergylett.3c00504

    45. [45]

      M. Qin, Z. Zeng, Q. Wu, F. Ma, Q. Liu, S. Cheng, J. Xie, Adv. Funct. Mater. 34 (2024) 2406357, https://doi.org/10.1002/adfm.202406357.  doi: 10.1002/adfm.202406357

    46. [46]

      Y. Wang, Z. Li, Y. Hou, Z. Hao, Q. Zhang, Y. Ni, Y. Lu, Z. Yan, K. Zhang, Q. Zhao, F. Li, J. Chen, Chem. Soc. Rev. 52 (2023) 2713, https://doi.org/10.1039/D2CS00873D.  doi: 10.1039/D2CS00873D

    47. [47]

      D.Y. Wang, N.N. Sinha, J.C. Burns, R. Petibon, J.R. Dahn, J. Power Sources 270 (2014) 68, https://doi.org/10.1016/j.jpowsour.2014.07.053.  doi: 10.1016/j.jpowsour.2014.07.053

    48. [48]

      K. Guo, C. Zhu, H. Wang, S. Qi, J. Huang, D. Wu, J. Ma, Adv. Energy Mater. 13 (2023) 2204272, https://doi.org/10.1002/aenm.202204272.  doi: 10.1002/aenm.202204272

    49. [49]

      S. Kim, S.O. Park, M.-Y. Lee, J.-A. Lee, I. Kristanto, T.K. Lee, D. Hwang, J. Kim, T.- U. Wi, H.-W. Lee, S.K. Kwak, N.-S. Choi, Energy Storage Mater. 45 (2022) 1, https://doi.org/10.1016/j.ensm.2021.10.031.  doi: 10.1016/j.ensm.2021.10.031

    50. [50]

      E.W.C. Spotte-Smith, T.B. Petrocelli, H.D. Patel, S.M. Blau, K.A. Persson, ACS Energy Lett. 8 (2023) 347, https://doi.org/10.1021/acsenergylett.2c02351.  doi: 10.1021/acsenergylett.2c02351

    51. [51]

      Z. Piao, R. Gao, Y. Liu, G. Zhou, H.-M. Cheng, Adv. Mater. 35 (2023) 2206009, https://doi.org/10.1002/adma.202206009.  doi: 10.1002/adma.202206009

    52. [52]

      S. Li, J. Li, P. Wang, H. Ding, J. Zhou, C. Li, X. Cui, Adv. Funct. Mater. 34 (2024) 2307180, https://doi.org/10.1002/adfm.202307180.  doi: 10.1002/adfm.202307180

    53. [53]

      Y. Yang, H. Wang, C. Zhu, J. Ma, Angew. Chem. Int. Ed. 62 (2023) e202300057, https://doi.org/10.1002/anie.202300057.  doi: 10.1002/anie.202300057

    54. [54]

      J. Zhang, P. Wang, P. Bai, H. Wan, S. Liu, S. Hou, X. Pu, J. Xia, W. Zhang, Z. Wang, B. Nan, X. Zhang, J. Xu, C. Wang, Adv. Mater. 34 (2022) 2108353, https://doi.org/10.1002/adma.202108353.  doi: 10.1002/adma.202108353

  • 加载中
    1. [1]

      Hao ChenDongyue YangGang HuangXinbo Zhang . Progress on Liquid Organic Electrolytes of Li-O2 Batteries. Acta Physico-Chimica Sinica, 2024, 40(7): 2305059-0. doi: 10.3866/PKU.WHXB202305059

    2. [2]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    3. [3]

      Aoyu HuangJun XuYu HuangGui ChuMao WangLili WangYongqi SunZhen JiangXiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007

    4. [4]

      Zhuo HanDanfeng ZhangHaixian WangGuorui ZhengMing LiuYanbing He . Research Progress and Prospect on Electrolyte Additives for Interface Reconstruction of Long-Life Ni-Rich Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(9): 2307034-0. doi: 10.3866/PKU.WHXB202307034

    5. [5]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039

    6. [6]

      Qianli MaTianbing SongTianle HeXirong ZhangHuanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106

    7. [7]

      Jiandong LiuZhijia ZhangKamenskii MikhailVolkov FilippEliseeva SvetlanaJianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 2308048-0. doi: 10.3866/PKU.WHXB202308048

    8. [8]

      Zhi DouHuiyu DuanYixi LinYinghui XiaMingbo ZhengZhenming Xu . High-Throughput Screening Lithium Alloy Phases and Investigation of Ion Transport for Solid Electrolyte Interphase Layer. Acta Physico-Chimica Sinica, 2024, 40(3): 2305039-0. doi: 10.3866/PKU.WHXB202305039

    9. [9]

      Changsheng AnTao Liu . Decoding SEI chemistry at the lithium-metal potential. Acta Physico-Chimica Sinica, 2025, 41(9): 100101-0. doi: 10.1016/j.actphy.2025.100101

    10. [10]

      Da WangXiaobin YinJianfang WuYaqiao LuoSiqi Shi . All-Solid-State Lithium Cathode/Electrolyte Interfacial Resistance: From Space-Charge Layer Model to Characterization and Simulation. Acta Physico-Chimica Sinica, 2024, 40(7): 2307029-0. doi: 10.3866/PKU.WHXB202307029

    11. [11]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    12. [12]

      Rui YangHui LiQingfei MengWenjie LiJiliang WuYongjin FangChi HuangYuliang Cao . Influence of PC-based Electrolyte on High-Rate Performance in Li/CrOx Primary Battery. Acta Physico-Chimica Sinica, 2024, 40(9): 2308053-0. doi: 10.3866/PKU.WHXB202308053

    13. [13]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    14. [14]

      Yajie LiBin ChenYiping WangHui XingWei ZhaoGeng ZhangSiqi Shi . Inhibiting Dendrite Growth by Customizing Electrolyte or Separator to Achieve Anisotropic Lithium-Ion Transport: A Phase-Field Study. Acta Physico-Chimica Sinica, 2024, 40(3): 2305053-0. doi: 10.3866/PKU.WHXB202305053

    15. [15]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    16. [16]

      Mingyang MenJinghua WuGaozhan LiuJing ZhangNini ZhangXiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019

    17. [17]

      Hanmei LüXin ChenQifu SunNing ZhaoXiangxin Guo . Uniform Garnet Nanoparticle Dispersion in Composite Polymer Electrolytes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305016-0. doi: 10.3866/PKU.WHXB202305016

    18. [18]

      Xin FengKexin GuoChunguang JiaBowen LiuSuqin CiJunxiang ChenZhenhai Wen . Hydrogen Generation Coupling with High-Selectivity Electrocatalytic Glycerol Valorization into Formate in an Acid-Alkali Dual-Electrolyte Flow Electrolyzer. Acta Physico-Chimica Sinica, 2024, 40(5): 2303050-0. doi: 10.3866/PKU.WHXB202303050

    19. [19]

      Xinran Zhang Siqi Liu Yichi Chen Qingli Zou Qinghong Xu Yaqin Huang . From Protein to Energy Storage Materials: Edible Gelatin Jelly Electrolyte. University Chemistry, 2025, 40(7): 255-266. doi: 10.12461/PKU.DXHX202408104

    20. [20]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

Metrics
  • PDF Downloads(2)
  • Abstract views(73)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return