Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis
- Corresponding author: Yu Fang, yu.fang@hnu.edu.cn † These authors contributed equally to this work.
Citation:
Lewang Yuan, Yaoyao Peng, Zong-Jie Guan, Yu Fang. Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis[J]. Acta Physico-Chimica Sinica,
;2025, 41(8): 100086.
doi:
10.1016/j.actphy.2025.100086
A. Basak, S. Karak, R. Banerjee, J. Am. Chem. Soc. 145 (2023) 7592, https://doi.org/10.1021/jacs.3c00950.
doi: 10.1021/jacs.3c00950
A. Bavykina, N. Kolobov, I.S. Khan, J.A. Bau, A. Ramirez, J. Gascon, Chem. Rev. 120 (2020) 8468, https://doi.org/10.1021/acs.chemrev.9b00685.
doi: 10.1021/acs.chemrev.9b00685
I.P. Beletskaya, V.P. Ananikov, Chem. Rev. 111 (2011) 1596, https://doi.org/10.1021/cr100347k.
doi: 10.1021/cr100347k
S. Bi, Z. Zhang, F. Meng, D. Wu, J.S. Chen, F. Zhang, Angew. Chem. Int. Ed. 61 (2021) e202111627, https://doi.org/10.1002/anie.202111627.
doi: 10.1002/anie.202111627
B.P. Biswal, S. Chandra, S. Kandambeth, B. Lukose, T. Heine, R. Banerjee, J. Am. Chem. Soc. 135 (2013) 5328, https://doi.org/10.1021/ja4017842.
doi: 10.1021/ja4017842
H.U. Blaser, C. Malan, B. Pugin, F. Spindler, H. Steiner, M. Studer, Adv. Synth. Catal. 345 (2003) 103, https://doi.org/10.1002/adsc.200390000.
doi: 10.1002/adsc.200390000
M.J. Bojdys, J. Jeromenok, A. Thomas, M. Antonietti, Adv. Mater. 22 (2010) 2202, https://doi.org/10.1002/adma.200903436.
doi: 10.1002/adma.200903436
G. Cai, P. Yan, L. Zhang, H.-C. Zhou, H.-L. Jiang, Chem. Rev. 121 (2021) 12278, https://doi.org/10.1021/acs.chemrev.1c00243.
doi: 10.1021/acs.chemrev.1c00243
Y. Cai, F.-X. Xiao, Acta Phys. -Chim. Sin. 40 (2024) 2306048, https://doi.org/10.3866/PKU.WHXB202306048.
doi: 10.3866/PKU.WHXB202306048
N.L. Campbell, R. Clowes, L.K. Ritchie, A.I. Cooper, Chem. Mater. 21 (2009) 204, https://doi.org/10.1021/cm802981m.
doi: 10.1021/cm802981m
Y. Cao, R. Guo, M. Ma, Z. Huang, Y. Zhou, Acta Phys. -Chim. Sin. 40 (2024) 2303029, https://doi.org/10.3866/PKU.WHXB202303029.
doi: 10.3866/PKU.WHXB202303029
C. Chen, K.P. Nuckolls, S. Ding, W. Miao, D. Wong, M. Oh, R.L. Lee, S. He, C. Peng, D. Pei, et al., Nature 636 (2024) 342, https://doi.org/10.1038/s41586-024-08227-w.
doi: 10.1038/s41586-024-08227-w
H. Chen, D. Feng, F. Wei, F. Guo, A.K. Cheetham, Angew. Chem. Int. Ed. 63 (2024) e202415454, https://doi.org/10.1002/anie.202415454.
doi: 10.1002/anie.202415454
H. Chen, W. Liu, A. Laemont, C. Krishnaraj, X. Feng, F. Rohman, M. Meledina, Q. Zhang, R. Van Deun, K. Leus, et al., Angew. Chem. Int. Ed. 60 (2021) 10820, https://doi.org/10.1002/anie.202101036.
doi: 10.1002/anie.202101036
P. Chen, Y. Zhou, F. Dong, Acta Phys. -Chim. Sin. 37 (2020) 2010010, https://doi.org/10.3866/PKU.WHXB202010010.
doi: 10.3866/PKU.WHXB202010010
T. Chen, Y. Pang, S.H. Ali, L. Chen, Y. Li, X. Yan, B. Wang, Mol. Catal. 558 (2024) 114045, https://doi.org/10.1016/j.mcat.2024.114045.
doi: 10.1016/j.mcat.2024.114045
J. Cheng, S. Gao, B. Cheng, K. Yang, W. Wang, S. Cao, Acta Phys. -Chim. Sin. 40 (2024) 2406026, https://doi.org/10.3866/pku.Whxb202406026.
doi: 10.3866/pku.Whxb202406026
A.P. Côté, A.I. Benin, N.W. Ockwig, M. O'Keeffe, A.J. Matzger, O.M. Yaghi, Science 310 (2005) 1166, https://doi.org/10.1126/science.1120411.
doi: 10.1126/science.1120411
A. Corma, P. Serna, Science 313 (2006) 332, https://doi.org/10.1126/science.1128383.
doi: 10.1126/science.1128383
X. Cui, S. Lei, A.C. Wang, L. Gao, Q. Zhang, Y. Yang, Z. Lin, Nano Energy 70 (2020) 104525, https://doi.org/10.1016/j.nanoen.2020.104525.
doi: 10.1016/j.nanoen.2020.104525
L. Dai, A. Dong, X. Meng, H. Liu, Y. Li, P. Li, B. Wang, Angew. Chem. Int. Ed. 62 (2023) e202300224, https://doi.org/10.1002/anie.202300224.
doi: 10.1002/anie.202300224
G. Das, F.A. Ibrahim, Z.A. Khalil, P. Bazin, F. Chandra, R.G. AbdulHalim, T. Prakasam, A.K. Das, S.K. Sharma, S. Varghese, et al., Small 20 (2024) 2311064, https://doi.org/10.1002/smll.202311064.
doi: 10.1002/smll.202311064
P. Das, G. Chakraborty, J. Roeser, S. Vogl, J. Rabeah, A. Thomas, J. Am. Chem. Soc. 145 (2023) 2975, https://doi.org/10.1021/jacs.2c11454.
doi: 10.1021/jacs.2c11454
A. Dey, S. Chakraborty, A. Singh, F.A. Rahimi, S. Biswas, T. Mandal, T.K. Maji, Angew. Chem. Int. Ed. 63 (2024) e202403093, https://doi.org/10.1002/anie.202403093.
doi: 10.1002/anie.202403093
F. Dong, Acta Phys. -Chim. Sin. 37 (2021) 2101002, https://doi.org/10.3866/pku.Whxb202101002.
doi: 10.3866/pku.Whxb202101002
S. Enthaler, A. Company, Chem. Soc. Rev. 40 (2011) 4912, https://doi.org/10.1039/c1cs15085e.
doi: 10.1039/c1cs15085e
Y. Fan, D.W. Kang, S. Labalme, W. Lin, J. Am. Chem. Soc. 145 (2023) 25074, https://doi.org/10.1021/jacs.3c09729.
doi: 10.1021/jacs.3c09729
Y. Fang, Y. Liu, H. Huang, J. Sun, J. Hong, F. Zhang, X. Wei, W. Gao, M. Shao, Y. Guo, et al., Nat. Commun. 15 (2024) 4856, https://doi.org/10.1038/s41467-024-49036-z.
doi: 10.1038/s41467-024-49036-z
X. Feng, L. Chen, Y. Dong, D. Jiang, Chem. Commun. 47 (2011) 1979, https://doi.org/10.1039/c0cc04386a.
doi: 10.1039/c0cc04386a
C. Furlan, C. Mortarino, Renew. Sust. Energ. Rev. 81 (2018) 1879, https://doi.org/10.1016/j.rser.2017.05.284.
doi: 10.1016/j.rser.2017.05.284
S.-X. Gan, C. Jia, Q.-Y. Qi, X. Zhao, Chem. Sci. 13 (2022) 1009, https://doi.org/10.1039/d1sc05504f.
doi: 10.1039/d1sc05504f
Q. Gao, X. Li, G.-H. Ning, K. Leng, B. Tian, C. Liu, W. Tang, H.-S. Xu, K.P. Loh, Chem. Commun. 54 (2018) 2349, https://doi.org/10.1039/c7cc09866a.
doi: 10.1039/c7cc09866a
Z.-Z. Gao, Z.-K. Wang, L. Wei, G. Yin, J. Tian, C.-Z. Liu, H. Wang, D.-W. Zhang, Y.-B. Zhang, X. Li, et al., ACS Appl. Mater. Inter. 12 (2019) 1404, https://doi.org/10.1021/acsami.9b19870.
doi: 10.1021/acsami.9b19870
K. Geng, T. He, R. Liu, S. Dalapati, K.T. Tan, Z. Li, S. Tao, Y. Gong, Q. Jiang, D. Jiang, Chem. Rev. 120 (2020) 8814, https://doi.org/10.1021/acs.chemrev.9b00550.
doi: 10.1021/acs.chemrev.9b00550
Q. Guan, G.-B. Wang, L.-L. Zhou, W.-Y. Li, Y.-B. Dong, Nanoscale Adv. 2 (2020) 3656, https://doi.org/10.1039/d0na00537a.
doi: 10.1039/d0na00537a
M. Guo, X. Guan, Q. Meng, M.L. Gao, Q. Li, H.L. Jiang, Angew. Chem. Int. Ed. 63 (2024) e202410097, https://doi.org/10.1002/anie.202410097.
doi: 10.1002/anie.202410097
A. Halder, M. Ghosh, A. Khayum M, S. Bera, M. Addicoat, H.S. Sasmal, S. Karak, S. Kurungot, R. Banerjee, J. Am. Chem. Soc. 140 (2018) 10941, https://doi.org/10.1021/jacs.8b06460.
doi: 10.1021/jacs.8b06460
E. Hamzehpoor, F. Effaty, T.H. Borchers, R.S. Stein, A. Wahrhaftig‐Lewis, X. Ottenwaelder, T. Friščić, D.F. Perepichka, Angew. Chem. Int. Ed. 63 (2024) e202404539, https://doi.org/10.1002/anie.202404539.
doi: 10.1002/anie.202404539
A. Hayat, S. Raza, M.A. Amin, Z. Ajmal, M.M. Alghamdi, A.A. El-Zahhar, H. Ali, D. Ghernaout, Y. Al-Hadeethi, M. Sohail, et al., Mater. Sci. Eng. R Rep. 157 (2024) 100771, https://doi.org/10.1016/j.mser.2024.100771.
doi: 10.1016/j.mser.2024.100771
M.M. Heravi, V. Zadsirjan, P. Hajiabbasi, H. Hamidi, Monatsh. Chem. 150 (2019) 535, https://doi.org/10.1007/s00706-019-2364-6.
doi: 10.1007/s00706-019-2364-6
T. Hisatomi, K. Domen, Nat. Catal. 2 (2019) 387, https://doi.org/10.1038/s41929-019-0242-6.
doi: 10.1038/s41929-019-0242-6
J. Hong, M. Liu, Y. Liu, S. Shang, X. Wang, C. Du, W. Gao, C. Hua, H. Xu, Z. You, et al., Angew. Chem. Int. Ed. 63 (2024) e202317876, https://doi.org/10.1002/anie.202317876.
doi: 10.1002/anie.202317876
K. Huang, D. Chen, X. Zhang, R. Shen, P. Zhang, D. Xu, X. Li, Acta Phys. -Chim. Sin. 40 (2024) 2407020, https://doi.org/10.3866/PKU.WHXB202407020.
doi: 10.3866/PKU.WHXB202407020
T. Huang, J. Kou, H. Yuan, H. Guo, K. Yuan, H. Li, F. Wang, Z. Dong, Adv. Funct. Mater. (2024) 2413943, https://doi.org/10.1002/adfm.202413943.
doi: 10.1002/adfm.202413943
F. Hussin, H.O. Lintang, S.L. Lee, L. Yuliati, J. Photochem. Photobiol. A 340 (2017) 128, https://doi.org/10.1016/j.jphotochem.2017.03.016.
doi: 10.1016/j.jphotochem.2017.03.016
A. Jati, S. Dam, S. Kumar, K. Kumar, B. Maji, Chem. Sci. 14 (2023) 8624, https://doi.org/10.1039/d3sc02440g.
doi: 10.1039/d3sc02440g
A. Jati, K. Dey, M. Nurhuda, M.A. Addicoat, R. Banerjee, B. Maji, J. Am. Chem. Soc. 144 (2022) 7822, https://doi.org/10.1021/jacs.2c01814.
doi: 10.1021/jacs.2c01814
A. Jiménez‐Almarza, A. López‐Magano, L. Marzo, S. Cabrera, R. Mas‐Ballesté, J. Alemán, ChemCatChem 11 (2019) 4916, https://doi.org/10.1002/cctc.201901061.
doi: 10.1002/cctc.201901061
C.C.C. Johansson Seechurn, M.O. Kitching, T.J. Colacot, V. Snieckus, Angew. Chem. Int. Ed. 51 (2012) 5062, https://doi.org/10.1002/anie.201107017.
doi: 10.1002/anie.201107017
L. Kong, X. Zhang, C. Wang, F. Wan, L. Li, Chin. J. Catal. 38 (2017) 2120, https://doi.org/10.1016/s1872-2067(17)62959-0.
doi: 10.1016/s1872-2067(17)62959-0
C. Krishnaraj, H. Sekhar Jena, L. Bourda, A. Laemont, P. Pachfule, J. Roeser, C.V. Chandran, S. Borgmans, S.M.J. Rogge, K. Leus, et al., J. Am. Chem. Soc. 142 (2020) 20107, https://doi.org/10.1021/jacs.0c09684.
doi: 10.1021/jacs.0c09684
P. Kuhn, M. Antonietti, A. Thomas, Angew. Chem. Int. Ed. 47 (2008) 3450, https://doi.org/10.1002/anie.200705710.
doi: 10.1002/anie.200705710
R. Kulkarni, Y. Noda, D. Kumar Barange, Y.S. Kochergin, P. Lyu, B. Balcarova, P. Nachtigall, M.J. Bojdys, Nat. Commun. 10 (2019) 3228, https://doi.org/10.1038/s41467-019-11264-z.
doi: 10.1038/s41467-019-11264-z
A. Laemont, G. Matthys, R. Lavendomme, P. Van Der Voort, Angew. Chem. Int. Ed. 63 (2024) e202412420, https://doi.org/10.1002/anie.202412420.
doi: 10.1002/anie.202412420
X. Lan, H. Li, Y. Liu, Y. Zhang, T. Zhang, Y. Chen, Angew. Chem. Int. Ed. 63 (2024) e202407092, https://doi.org/10.1002/anie.202407092.
doi: 10.1002/anie.202407092
N.S. Lewis, Science 315 (2007) 798, https://doi.org/10.1126/science.1137014.
doi: 10.1126/science.1137014
S.V. Ley, A.W. Thomas, Angew. Chem. Int. Ed. 42 (2003) 5400, https://doi.org/10.1002/anie.200300594.
doi: 10.1002/anie.200300594
H. Li, Z. Zhou, T. Ma, K. Wang, H. Zhang, A.H. Alawadhi, O.M. Yaghi, J. Am. Chem. Soc. 146 (2024) 35486, https://doi.org/10.1021/jacs.4c14971.
doi: 10.1021/jacs.4c14971
J. Li, S.Y. Gao, J. Liu, S. Ye, Y. Feng, D.H. Si, R. Cao, Adv. Funct. Mater. 33 (2023) 2305735, https://doi.org/10.1002/adfm.202305735.
doi: 10.1002/adfm.202305735
J. Li, X. Jing, Q. Li, S. Li, X. Gao, X. Feng, B. Wang, Chem. Soc. Rev. 49 (2020) 3565, https://doi.org/10.1039/d0cs00017e.
doi: 10.1039/d0cs00017e
J. Li, Z. Zhang, J. Jia, X. Liu, Chem. Res. Chin. Univ. 38 (2022) 275, https://doi.org/10.1007/s40242-022-1434-1.
doi: 10.1007/s40242-022-1434-1
L. Li, Q. Shan, J. Zang, L. Yu, D.J. Young, Z.-G. Ren, H.-X. Li, Catal. Sci. Technol. 14 (2024) 7212, https://doi.org/10.1039/d4cy01083c.
doi: 10.1039/d4cy01083c
Q. Li, Y. Ouyang, H. Li, L. Wang, J. Zeng, Angew. Chem. Int. Ed. 61 (2021) e202108069, https://doi.org/10.1002/anie.202108069.
doi: 10.1002/anie.202108069
S. Li, X. Chen, Y. Yuan, Acta Phys. -Chim. Sin. 39 (2023) 2303032, https://doi.org/10.3866/pku.Whxb202303032.
doi: 10.3866/pku.Whxb202303032
T. Li, P.L. Zhang, L.Z. Dong, Y.Q. Lan, Angew. Chem. Int. Ed. 63 (2024) e202318180, https://doi.org/10.1002/anie.202318180.
doi: 10.1002/anie.202318180
X. Li, J. Yu, M. Jaroniec, X. Chen, Chem. Rev. 119 (2019) 3962, https://doi.org/10.1021/acs.chemrev.8b00400.
doi: 10.1021/acs.chemrev.8b00400
Z. Li, Y. Zhi, P. Shao, H. Xia, G. Li, X. Feng, X. Chen, Z. Shi, X. Liu, Appl. Catal. B Environ. 245 (2019) 334, https://doi.org/10.1016/j.apcatb.2018.12.065.
doi: 10.1016/j.apcatb.2018.12.065
C.Y. Lin, D. Zhang, Z. Zhao, Z. Xia, Adv. Mater. 30 (2018) 1703646, https://doi.org/10.1002/adma.201703646.
doi: 10.1002/adma.201703646
Q. Lin, Y. Yusran, J. Xing, Y. Li, J. Zhang, T. Su, L. Yang, J. Suo, L. Zhang, Q. Li, et al., ACS Appl. Mater. Interfaces. 16 (2024) 5869, https://doi.org/10.1021/acsami.3c16724.
doi: 10.1021/acsami.3c16724
M. Liu, Q. Xu, G. Zeng, Angew. Chem. Int. Ed. 63 (2024) e202404886, https://doi.org/10.1002/anie.202404886.
doi: 10.1002/anie.202404886
S. Liu, J. Guo, Chem. Res. Chin. Univ. 38 (2022) 373, https://doi.org/10.1007/s40242-022-2007-z.
doi: 10.1007/s40242-022-2007-z
W. Liu, X. Li, C. Wang, H. Pan, W. Liu, K. Wang, Q. Zeng, R. Wang, J. Jiang, J. Am. Chem. Soc. 141 (2019) 17431, https://doi.org/10.1021/jacs.9b09502.
doi: 10.1021/jacs.9b09502
X. Liu, H. Qin, W. Fan, Sci. Bull. 61 (2016) 645, https://doi.org/10.1007/s11434-016-1053-7.
doi: 10.1007/s11434-016-1053-7
Y. Liu, S. Xing, J. Zhang, W. Liu, Y. Xu, Y. Zhang, K. Yang, L. Yang, K. Jiang, X. Shao, Org. Chem. Front. 9 (2022) 1375, https://doi.org/10.1039/d1qo01873f.
doi: 10.1039/d1qo01873f
A. López-Magano, A. Jiménez-Almarza, J. Alemán, R. Mas-Ballesté, Catalysts 10 (2020) 720, https://doi.org/10.3390/catal10070720.
doi: 10.3390/catal10070720
A. López‐Magano, S. Daliran, A.R. Oveisi, R. Mas‐Ballesté, A. Dhakshinamoorthy, J. Alemán, H. Garcia, R. Luque, Adv. Mater. 35 (2023) 2209475, https://doi.org/10.1002/adma.202209475.
doi: 10.1002/adma.202209475
J. Low, J. Yu, M. Jaroniec, S. Wageh, A.A. Al‐Ghamdi, Adv. Mater. 29 (2017) 1601694, https://doi.org/10.1002/adma.201601694.
doi: 10.1002/adma.201601694
Z. Lu, H. Lv, Q. Liu, Z. Wang, Acta Phys. -Chim. Sin. 40 (2024) 2405005, https://doi.org/10.3866/pku.Whxb202405005.
doi: 10.3866/pku.Whxb202405005
. Ma, L. Qin, T. Zhou, J. Zhang, Energ. Environ. Sci. 17 (2024) 8992, https://doi.org/10.1039/d4ee03766a.
doi: 10.1039/d4ee03766a
X. Ma, J. Kang, Y. Wu, C. Pang, S. Li, J. Li, Y. Xiong, J. Luo, M. Wang, Z. Xu, Trends Anal. Chem. 157 (2022) 116793, https://doi.org/10.1016/j.trac.2022.116793.
doi: 10.1016/j.trac.2022.116793
H. Mai, D. Chen, Y. Tachibana, H. Suzuki, R. Abe, R.A. Caruso, Chem. Soc. Rev. 50 (2021) 13692, https://doi.org/10.1039/d1cs00684c.
doi: 10.1039/d1cs00684c
.J. Martin, G. Liu, S.J.A. Moniz, Y. Bi, A.M. Beale, J. Ye, J. Tang, Chem. Soc. Rev. 44 (2015) 7808, https://doi.org/10.1039/c5cs00380f.
doi: 10.1039/c5cs00380f
L. Marzo, S.K. Pagire, O. Reiser, B. König, Angew. Chem. Int. Ed. 57 (2018) 10034, https://doi.org/10.1002/anie.201709766.
doi: 10.1002/anie.201709766
J.M.R. Narayanam, C.R.J. Stephenson, Chem. Soc. Rev. 40 (2011) 102, https://doi.org/10.1039/b913880n.
doi: 10.1039/b913880n
K.-K. Niu, T.-X. Luan, J. Cui, H. Liu, L.-B. Xing, P.-Z. Li, ACS Catal. 14 (2024) 2631, https://doi.org/10.1021/acscatal.3c05454.
doi: 10.1021/acscatal.3c05454
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306 (2004) 666, https://doi.org/10.1126/science.1102896.
doi: 10.1126/science.1102896
. Pang, G. Liu, D. Huang, Y. Zhu, X. Zhao, W. Wang, Y. Xiang, Angew. Chem. Int. Ed. 62 (2023) e202313520, https://doi.org/10.1002/anie.202313520.
doi: 10.1002/anie.202313520
H. Park, H.-i. Kim, G.-h. Moon, W. Choi, Energ. Environ. Sci. 9 (2016) 411, https://doi.org/10.1039/c5ee02575c.
doi: 10.1039/c5ee02575c
. Peng, L. Yuan, K.K. Liu, Z.J. Guan, S. Jin, Y. Fang, Angew. Chem. Int. Ed. 63 (2024) e202423055, https://doi.org/10.1002/anie.202423055.
doi: 10.1002/anie.202423055
S.P. Qi, R.T. Guo, Z.X. Bi, Z.R. Zhang, C.F. Li, W.G. Pan, Small 19 (2023) 2303632, https://doi.org/10.1002/smll.202303632.
doi: 10.1002/smll.202303632
Y. Qian, Y. Han, X. Zhang, G. Yang, G. Zhang, H.-L. Jiang, Nat. Commun. 14 (2023) 3083, https://doi.org/10.1038/s41467-023-38884-w.
doi: 10.1038/s41467-023-38884-w
Y. Qian, H.-L. Jiang, Acc. Chem. Res. 57 (2024) 1214, https://doi.org/10.1021/acs.accounts.4c00061.
doi: 10.1021/acs.accounts.4c00061
J. Qin, Y. An, Y. Zhang, Acta Phys. -Chim. Sin. 40 (2024) 2408002, https://doi.org/10.3866/PKU.WHXB202408002.
doi: 10.3866/PKU.WHXB202408002
L. Qin, C. Ma, J. Zhang, T. Zhou, Adv. Funct. Mater. 34 (2024) 2401562, https://doi.org/10.1002/adfm.202401562.
doi: 10.1002/adfm.202401562
. Roy, B. Mishra, S. Maji, A. Sinha, S. Dutta, S. Mondal, A. Banerjee, P. Pachfule, D. Adhikari, Angew. Chem. Int. Ed. 63 (2024) e202410300, https://doi.org/10.1002/anie.202410300.
doi: 10.1002/anie.202410300
P. Ruiz-Castillo, S.L. Buchwald, Chem. Rev. 116 (2016) 12564, https://doi.org/10.1021/acs.chemrev.6b00512.
doi: 10.1021/acs.chemrev.6b00512
K. Seob Song, P.W. Fritz, D.F. Abbott, L. Nga Poon, C.M. Caridade, F. Gándara, V. Mougel, A. Coskun, Angew. Chem. Int. Ed. 62 (2023) e202309775, https://doi.org/10.1002/anie.202309775.
doi: 10.1002/anie.202309775
D. Shindell, C.J. Smith, Nature 573 (2019) 408, https://doi.org/10.1038/s41586-019-1554-z.
doi: 10.1038/s41586-019-1554-z
H. Song, X. Meng, Z.-j. Wang, H. Liu, J. Ye, Joule 3 (2019) 1606, https://doi.org/10.1016/j.joule.2019.06.023.
doi: 10.1016/j.joule.2019.06.023
Y. Song, F. Xin, L. Zhang, Y. Wang, ChemCatChem 9 (2017) 4139, https://doi.org/10.1002/cctc.201700856.
doi: 10.1002/cctc.201700856
L. Stegbauer, K. Schwinghammer, B.V. Lotsch, Chem. Sci. 5 (2014) 2789, https://doi.org/10.1039/c4sc00016a.
doi: 10.1039/c4sc00016a
S. Suleman, Y. Zhang, Y. Qian, J. Zhang, Z. Lin, Ö. Metin, Z. Meng, H.L. Jiang, Angew. Chem. Int. Ed. 63 (2023) e202314988, https://doi.org/10.1002/anie.202314988.
doi: 10.1002/anie.202314988
C. Sun, L. Karuppasamy, L. Gurusamy, H.-J. Yang, C.-H. Liu, J. Dong, J.J. Wu, Sep. Purif. Technol. 271 (2021) 118873, https://doi.org/10.1016/j.seppur.2021.118873.
doi: 10.1016/j.seppur.2021.118873
Y. Tachibana, L. Vayssieres, J.R. Durrant, Nat. Photonics 6 (2012) 511, https://doi.org/10.1038/nphoton.2012.175.
doi: 10.1038/nphoton.2012.175
D. Tan, R. Zhuang, R. Chen, M. Ban, W. Feng, F. Xu, X. Chen, Q. Wang, Adv. Funct. Mater. 34 (2023) 2311655, https://doi.org/10.1002/adfm.202311655.
doi: 10.1002/adfm.202311655
P.-J. Tian, X.-H. Han, Q.-Y. Qi, X. Zhao, Chem. Sci. 15 (2024) 9669, https://doi.org/10.1039/d4sc01780c.
doi: 10.1039/d4sc01780c
C. Wang, J. Tang, Z. Chen, Y. Jin, J. Liu, H. Xu, H. Wang, X. He, Q. Zhang, Energy Storage Mater. 55 (2023) 498, https://doi.org/10.1016/j.ensm.2022.12.015.
doi: 10.1016/j.ensm.2022.12.015
G.-B. Wang, Y.-J. Wang, J.-L. Kan, K.-H. Xie, H.-P. Xu, F. Zhao, M.-C. Wang, Y. Geng, Y.-B. Dong, J. Am. Chem. Soc. 145 (2023) 4951, https://doi.org/10.1021/jacs.2c13541.
doi: 10.1021/jacs.2c13541
H. Wang, H. Wang, Z. Wang, L. Tang, G. Zeng, P. Xu, M. Chen, T. Xiong, C. Zhou, X. Li, et al., Chem. Soc. Rev. 49 (2020) 4135, https://doi.org/10.1039/d0cs00278j.
doi: 10.1039/d0cs00278j
J.-C. Wang, T. Sun, J. Zhang, Z. Chen, J.-Q. Du, J.-L. Kan, Y.-B. Dong, Chem. Sci. 15 (2024) 18634, https://doi.org/10.1039/d4sc04358h.
doi: 10.1039/d4sc04358h
M. Wang, G. Liang, M. Wang, M. Hu, L. Zhu, Z. Li, Z. Zhang, L. He, M. Du, Chem. Eng. J. 448 (2022) 137779, https://doi.org/10.1016/j.cej.2022.137779.
doi: 10.1016/j.cej.2022.137779
M. Wang, T. Zeng, Y. Yu, X. Wang, Y. Zhao, H. Xi, Y.-B. Zhang, J. Am. Chem. Soc. 146 (2023) 1035, https://doi.org/10.1021/jacs.3c11944.
doi: 10.1021/jacs.3c11944
Q. Wang, K. Domen, Chem. Rev. 120 (2019) 919, https://doi.org/10.1021/acs.chemrev.9b00201.
doi: 10.1021/acs.chemrev.9b00201
T. Wang, G.-X. Ren, Z. Shadike, J.-L. Yue, M.-H. Cao, J.-N. Zhang, M.-W. Chen, X.-Q. Yang, S.-M. Bak, P. Northrup, et al., Nat. Commun. 10 (2019) 4458, https://doi.org/10.1038/s41467-019-12310-6.
doi: 10.1038/s41467-019-12310-6
W. Wang, D. Huang, W. Zheng, X. Zhao, K. He, H. Pang, Y. Xiang, Chem. Mater. 35 (2023) 7154, https://doi.org/10.1021/acs.chemmater.3c01425.
doi: 10.1021/acs.chemmater.3c01425
W. Wang, M.O. Tadé, Z. Shao, Chem. Soc. Rev. 44 (2015) 5371, https://doi.org/10.1039/c5cs00113g.
doi: 10.1039/c5cs00113g
X. Wang, S. Dong, K. Qi, V. Popkov, X. Xiang, Acta Phys. -Chim. Sin. 40 (2024) 2408005, https://doi.org/10.3866/PKU.WHXB202408005.
doi: 10.3866/PKU.WHXB202408005
X. Wang, X. Han, J. Zhang, X. Wu, Y. Liu, Y. Cui, J. Am. Chem. Soc. 138 (2016) 12332, https://doi.org/10.1021/jacs.6b07714.
doi: 10.1021/jacs.6b07714
Y.A. Wang, Q. Wu, X. Wang, M. Jiang, R. Zhang, X.J. Chen, R.P. Liang, J.D. Qiu, Angew. Chem. Int. Ed. 63 (2024) e202413071, https://doi.org/10.1002/anie.202413071.
doi: 10.1002/anie.202413071
Z. Wang, J. Wang, J. Zhang, K. Dai, Acta Phys. -Chim. Sin. 39 (2022) 2209037, https://doi.org/10.3866/PKU.WHXB202209037.
doi: 10.3866/PKU.WHXB202209037
P.-F. Wei, M.-Z. Qi, Z.-P. Wang, S.-Y. Ding, W. Yu, Q. Liu, L.-K. Wang, H.-Z. Wang, W.-K. An, W. Wang, J. Am. Chem. Soc. 140 (2018) 4623, https://doi.org/10.1021/jacs.8b00571.
doi: 10.1021/jacs.8b00571
D. Wu, S. Zhang, W.Y. Hernández, W. Baaziz, O. Ersen, M. Marinova, A.Y. Khodakov, V.V. Ordomsky, ACS Catal. 11 (2020) 19, https://doi.org/10.1021/acscatal.0c03955.
doi: 10.1021/acscatal.0c03955
W. Xia, C. Ji, R. Wang, S. Qiu, Q. Fang, Acta Phys. -Chim. Sin. 39 (2023) 2212057, https://doi.org/10.3866/PKU.WHXB202212057.
doi: 10.3866/PKU.WHXB202212057
Y. Xia, K. Zhang, H. Yang, L. Shi, Q. Yi, Acta Phys. -Chim. Sin. 40 (2024) 2407012, https://doi.org/10.3866/PKU.WHXB202407012.
doi: 10.3866/PKU.WHXB202407012
L. Xiao, L. Qi, J. Sun, A. Husile, S. Zhang, Z. Wang, J. Guan, Nano Energy 120 (2024) 109155, https://doi.org/10.1016/j.nanoen.2023.109155.
doi: 10.1016/j.nanoen.2023.109155
F. Xie, C. Yuan, H. Tan, A.Z. Moshfegh, B. Zhu, J. Yu, Acta Phys. -Chim. Sin. 40 (2024) 2407013, https://doi.org/10.3866/PKU.WHXB202407013.
doi: 10.3866/PKU.WHXB202407013
K. Xiong, K. Zhang, F. Zhang, B. Zeng, X. Lang, J. Colloid Interface Sci. 681 (2025) 250, https://doi.org/10.1016/j.jcis.2024.11.105.
doi: 10.1016/j.jcis.2024.11.105
Z. Xiong, B. Sun, H. Zou, R. Wang, Q. Fang, Z. Zhang, S. Qiu, J. Am. Chem. Soc. 144 (2022) 6583, https://doi.org/10.1021/jacs.2c02089.
doi: 10.1021/jacs.2c02089
F. Xue, J. Xiong, G. Mo, P. Peng, R. Chen, Z. Wang, Chin. J. Org. Chem. 33 (2013) 2291, https://doi.org/10.6023/cjoc201306023.
doi: 10.6023/cjoc201306023
L. Yang, J. Yuan, G. Wang, Q. Cao, C. Zhang, M. Li, J. Shao, Y. Xu, H. Li, J. Lu, Adv. Funct. Mater. 33 (2023) 2300954, https://doi.org/10.1002/adfm.202300954.
doi: 10.1002/adfm.202300954
Q. Yang, M. Luo, K. Liu, H. Cao, H. Yan, Appl. Catal. B Environ. 276 (2020) 119174, https://doi.org/10.1016/j.apcatb.2020.119174.
doi: 10.1016/j.apcatb.2020.119174
S. Yang, W. Hu, X. Zhang, P. He, B. Pattengale, C. Liu, M. Cendejas, I. Hermans, X. Zhang, J. Zhang, et al., J. Am. Chem. Soc. 140 (2018) 14614, https://doi.org/10.1021/jacs.8b09705.
doi: 10.1021/jacs.8b09705
W. Yang, J. Zhang, Q. Xu, Y. Yang, L. Zhang, Acta Phys. -Chim. Sin. 40 (2024) 2312014, https://doi.org/10.3866/PKU.WHXB202312014.
doi: 10.3866/PKU.WHXB202312014
C.I. Yeo, Y.S. Tan, H.T.A. Awan, A. Hanan, W.P. Wong, R. Walvekar, B.H. Goh, M. Khalid, Coord. Chem. Rev. 521 (2024) 216167, https://doi.org/10.1016/j.ccr.2024.216167.
doi: 10.1016/j.ccr.2024.216167
Z. Yong, T. Ma, Angew. Chem. Int. Ed. 62 (2023) e202308980, https://doi.org/10.1002/anie.202308980.
doi: 10.1002/anie.202308980
J.Y. Yue, J.X. Luo, Z.X. Pan, R.Z. Zhang, P. Yang, Q. Xu, B. Tang, Angew. Chem. Int. Ed. 63 (2024) e202405763, https://doi.org/10.1002/anie.202405763.
doi: 10.1002/anie.202405763
W. Zhang, P. Ai, L. Yuan, S. Peng, Y. Li, Fuel 369 (2024) 131785, https://doi.org/10.1016/j.fuel.2024.131785.
doi: 10.1016/j.fuel.2024.131785
W. Zhang, X. Mei, L. Yuan, G. Wang, Y. Li, S. Peng, Appl. Surf. Sci. 593 (2022) 153459, https://doi.org/10.1016/j.apsusc.2022.153459.
doi: 10.1016/j.apsusc.2022.153459
Y. Zhang, P. Li, P. Cui, X. Hu, C. Shu, R. Sun, M. Peng, B. Tan, X. Wang, Angew. Chem. Int. Ed. 63 (2024) e202413131 https://doi.org/10.1002/anie.202413131.
doi: 10.1002/anie.202413131
W. Zhao, P. Yan, H. Yang, M. Bahri, A.M. James, H. Chen, L. Liu, B. Li, Z. Pang, R. Clowes, et al., Nat. Synth. 1 (2022) 87, https://doi.org/10.1038/s44160-021-00005-0.
doi: 10.1038/s44160-021-00005-0
Y. Zhao, X. Xu, K. Zhang, Z. Li, H. Wang, Y. Zhao, J. Qiu, J. Wang, ACS Catal. 14 (2024) 3556, https://doi.org/10.1021/acscatal.3c05648.
doi: 10.1021/acscatal.3c05648
Y. Zhong, W. Dong, S. Ren, L. Li, Adv. Mater. 36 (2023) 2308251, https://doi.org/10.1002/adma.202308251.
doi: 10.1002/adma.202308251
Z. Zhou, T. Ma, H. Zhang, S. Chheda, H. Li, K. Wang, S. Ehrling, R. Giovine, C. Li, A.H. Alawadhi, et al., Nature 635 (2024) 96, https://doi.org/10.1038/s41586-024-08080-x.
doi: 10.1038/s41586-024-08080-x
Q. Zhu, Y.-L. Li, J. Yang, X.-M. Jia, Y.-H. Luo, D.-E. Zhang, Solid State Sci. 147 (2024) 107398, https://doi.org/10.1016/j.solidstatesciences.2023.107398.
doi: 10.1016/j.solidstatesciences.2023.107398
Y.Q. Zou, J.R. Chen, X.P. Liu, L.Q. Lu, R.L. Davis, K.A. Jørgensen, W.J. Xiao, Angew. Chem. Int. Ed. 51 (2011) 784, https://doi.org/10.1002/anie.201107028.
doi: 10.1002/anie.201107028
Zhenxing Liu , Jiaen Hu , Zishi Cheng , Xinqi Hao . 基础有机化学教学中烯烃的氧化反应. University Chemistry, 2025, 40(6): 139-144. doi: 10.12461/PKU.DXHX202408107
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
Jingping Li , Suding Yan , Jiaxi Wu , Qiang Cheng , Kai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009
Fei Xie , Chengcheng Yuan , Haiyan Tan , Alireza Z. Moshfegh , Bicheng Zhu , Jiaguo Yu . d-Band Center Regulated O2 Adsorption on Transition Metal Single Atoms Loaded COF: A DFT Study. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-0. doi: 10.3866/PKU.WHXB202407013
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029
Guodong Xu , Chengcai Sheng , Xiaomeng Zhao , Tuojiang Zhang , Zongtang Liu , Jun Dong . Reform of Comprehensive Organic Chemistry Experiments in the Context of Emerging Engineering Education: A Case Study on the Improved Preparation of Benzocaine. University Chemistry, 2024, 39(11): 286-295. doi: 10.12461/PKU.DXHX202403094
Yueshuai Xu , Wei Liu , Xudong Chen , Zhikun Zheng . 水相中制备共价有机框架单晶的实验教学设计. University Chemistry, 2025, 40(6): 256-265. doi: 10.12461/PKU.DXHX202408045
Yuanqing Wang , Yusong Pan , Hongwu Zhu , Yanlei Xiang , Rong Han , Run Huang , Chao Du , Chengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050
Fan Wu , Wenchang Tian , Jin Liu , Qiuting Zhang , YanHui Zhong , Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031
Wei Li , Jinfan Xu , Yongjun Zhang , Ying Guan . 共价有机框架整体材料的制备及食品安全非靶向筛查应用——推荐一个仪器分析综合化学实验. University Chemistry, 2025, 40(6): 276-285. doi: 10.12461/PKU.DXHX202406013
Hui-Ying Chen , Hao-Lin Zhu , Pei-Qin Liao , Xiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Jiajia Wang , Sibo Huang , Xijing Gao , Chaoxun Liu , Haibo Zhang . 光催化硝酸根还原产氨的综合实验设计. University Chemistry, 2025, 40(8): 241-248. doi: 10.12461/PKU.DXHX202410050
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
Yanhui Guo , Li Wei , Zhonglin Wen , Chaorong Qi , Huanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004
Yulian Hu , Xin Zhou , Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020