Citation: Lewang Yuan, Yaoyao Peng, Zong-Jie Guan, Yu Fang. Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis[J]. Acta Physico-Chimica Sinica, ;2025, 41(8): 100086. doi: 10.1016/j.actphy.2025.100086 shu

Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis

  • Corresponding author: Yu Fang, yu.fang@hnu.edu.cn
  • These authors contributed equally to this work.
  • Received Date: 11 February 2025
    Revised Date: 18 March 2025
    Accepted Date: 28 March 2025

    Fund Project: National Natural Science Foundation of China 22371067

  • Two-dimensional covalent organic frameworks (2D COFs) exhibit distinctive characteristics, including tunable topology, an extensive specific surface area, susceptibility to functionalization, and robust stability, making them frequently utilizedin multiphase photocatalytic applications. This article begins with an overview of the synthesis methods for 2D COFs, covering solvothermal, ionothermal, mechanochemical, microwave-assisted, sonochemical, and interfacial synthesis techniques. It provides a concise introduction to various factors influencing photocatalytic performance, such as crystallinity and stability, band structure, charge transfer capability, pore size and specific surface area, and the nature of the light source. Subsequently, the discussion shifts to summarizing and analyzing advancements in the use of 2D COFs as photocatalysts for organic small molecule conversion reactions, particularly in photocatalytic oxidation, reduction, and coupling reactions. Finally, summary and outlook are presented regarding the opportunities and challenges that 2D COFs face in photocatalytic organic transformations.
  • 加载中
    1. [1]

      A. Basak, S. Karak, R. Banerjee, J. Am. Chem. Soc. 145 (2023) 7592, https://doi.org/10.1021/jacs.3c00950.  doi: 10.1021/jacs.3c00950

    2. [2]

      A. Bavykina, N. Kolobov, I.S. Khan, J.A. Bau, A. Ramirez, J. Gascon, Chem. Rev. 120 (2020) 8468, https://doi.org/10.1021/acs.chemrev.9b00685.  doi: 10.1021/acs.chemrev.9b00685

    3. [3]

      I.P. Beletskaya, V.P. Ananikov, Chem. Rev. 111 (2011) 1596, https://doi.org/10.1021/cr100347k.  doi: 10.1021/cr100347k

    4. [4]

      S. Bi, Z. Zhang, F. Meng, D. Wu, J.S. Chen, F. Zhang, Angew. Chem. Int. Ed. 61 (2021) e202111627, https://doi.org/10.1002/anie.202111627.  doi: 10.1002/anie.202111627

    5. [5]

      B.P. Biswal, S. Chandra, S. Kandambeth, B. Lukose, T. Heine, R. Banerjee, J. Am. Chem. Soc. 135 (2013) 5328, https://doi.org/10.1021/ja4017842.  doi: 10.1021/ja4017842

    6. [6]

      H.U. Blaser, C. Malan, B. Pugin, F. Spindler, H. Steiner, M. Studer, Adv. Synth. Catal. 345 (2003) 103, https://doi.org/10.1002/adsc.200390000.  doi: 10.1002/adsc.200390000

    7. [7]

      M.J. Bojdys, J. Jeromenok, A. Thomas, M. Antonietti, Adv. Mater. 22 (2010) 2202, https://doi.org/10.1002/adma.200903436.  doi: 10.1002/adma.200903436

    8. [8]

      G. Cai, P. Yan, L. Zhang, H.-C. Zhou, H.-L. Jiang, Chem. Rev. 121 (2021) 12278, https://doi.org/10.1021/acs.chemrev.1c00243.  doi: 10.1021/acs.chemrev.1c00243

    9. [9]

      Y. Cai, F.-X. Xiao, Acta Phys. -Chim. Sin. 40 (2024) 2306048, https://doi.org/10.3866/PKU.WHXB202306048.  doi: 10.3866/PKU.WHXB202306048

    10. [10]

      N.L. Campbell, R. Clowes, L.K. Ritchie, A.I. Cooper, Chem. Mater. 21 (2009) 204, https://doi.org/10.1021/cm802981m.  doi: 10.1021/cm802981m

    11. [11]

      Y. Cao, R. Guo, M. Ma, Z. Huang, Y. Zhou, Acta Phys. -Chim. Sin. 40 (2024) 2303029, https://doi.org/10.3866/PKU.WHXB202303029.  doi: 10.3866/PKU.WHXB202303029

    12. [12]

      C. Chen, K.P. Nuckolls, S. Ding, W. Miao, D. Wong, M. Oh, R.L. Lee, S. He, C. Peng, D. Pei, et al., Nature 636 (2024) 342, https://doi.org/10.1038/s41586-024-08227-w.  doi: 10.1038/s41586-024-08227-w

    13. [13]

      H. Chen, D. Feng, F. Wei, F. Guo, A.K. Cheetham, Angew. Chem. Int. Ed. 63 (2024) e202415454, https://doi.org/10.1002/anie.202415454.  doi: 10.1002/anie.202415454

    14. [14]

      H. Chen, W. Liu, A. Laemont, C. Krishnaraj, X. Feng, F. Rohman, M. Meledina, Q. Zhang, R. Van Deun, K. Leus, et al., Angew. Chem. Int. Ed. 60 (2021) 10820, https://doi.org/10.1002/anie.202101036.  doi: 10.1002/anie.202101036

    15. [15]

      P. Chen, Y. Zhou, F. Dong, Acta Phys. -Chim. Sin. 37 (2020) 2010010, https://doi.org/10.3866/PKU.WHXB202010010.  doi: 10.3866/PKU.WHXB202010010

    16. [16]

      T. Chen, Y. Pang, S.H. Ali, L. Chen, Y. Li, X. Yan, B. Wang, Mol. Catal. 558 (2024) 114045, https://doi.org/10.1016/j.mcat.2024.114045.  doi: 10.1016/j.mcat.2024.114045

    17. [17]

      J. Cheng, S. Gao, B. Cheng, K. Yang, W. Wang, S. Cao, Acta Phys. -Chim. Sin. 40 (2024) 2406026, https://doi.org/10.3866/pku.Whxb202406026.  doi: 10.3866/pku.Whxb202406026

    18. [18]

      A.P. Côté, A.I. Benin, N.W. Ockwig, M. O'Keeffe, A.J. Matzger, O.M. Yaghi, Science 310 (2005) 1166, https://doi.org/10.1126/science.1120411.  doi: 10.1126/science.1120411

    19. [19]

      A. Corma, P. Serna, Science 313 (2006) 332, https://doi.org/10.1126/science.1128383.  doi: 10.1126/science.1128383

    20. [20]

      X. Cui, S. Lei, A.C. Wang, L. Gao, Q. Zhang, Y. Yang, Z. Lin, Nano Energy 70 (2020) 104525, https://doi.org/10.1016/j.nanoen.2020.104525.  doi: 10.1016/j.nanoen.2020.104525

    21. [21]

      L. Dai, A. Dong, X. Meng, H. Liu, Y. Li, P. Li, B. Wang, Angew. Chem. Int. Ed. 62 (2023) e202300224, https://doi.org/10.1002/anie.202300224.  doi: 10.1002/anie.202300224

    22. [22]

      G. Das, F.A. Ibrahim, Z.A. Khalil, P. Bazin, F. Chandra, R.G. AbdulHalim, T. Prakasam, A.K. Das, S.K. Sharma, S. Varghese, et al., Small 20 (2024) 2311064, https://doi.org/10.1002/smll.202311064.  doi: 10.1002/smll.202311064

    23. [23]

      P. Das, G. Chakraborty, J. Roeser, S. Vogl, J. Rabeah, A. Thomas, J. Am. Chem. Soc. 145 (2023) 2975, https://doi.org/10.1021/jacs.2c11454.  doi: 10.1021/jacs.2c11454

    24. [24]

      A. Dey, S. Chakraborty, A. Singh, F.A. Rahimi, S. Biswas, T. Mandal, T.K. Maji, Angew. Chem. Int. Ed. 63 (2024) e202403093, https://doi.org/10.1002/anie.202403093.  doi: 10.1002/anie.202403093

    25. [25]

      F. Dong, Acta Phys. -Chim. Sin. 37 (2021) 2101002, https://doi.org/10.3866/pku.Whxb202101002.  doi: 10.3866/pku.Whxb202101002

    26. [26]

      S. Enthaler, A. Company, Chem. Soc. Rev. 40 (2011) 4912, https://doi.org/10.1039/c1cs15085e.  doi: 10.1039/c1cs15085e

    27. [27]

      Y. Fan, D.W. Kang, S. Labalme, W. Lin, J. Am. Chem. Soc. 145 (2023) 25074, https://doi.org/10.1021/jacs.3c09729.  doi: 10.1021/jacs.3c09729

    28. [28]

      Y. Fang, Y. Liu, H. Huang, J. Sun, J. Hong, F. Zhang, X. Wei, W. Gao, M. Shao, Y. Guo, et al., Nat. Commun. 15 (2024) 4856, https://doi.org/10.1038/s41467-024-49036-z.  doi: 10.1038/s41467-024-49036-z

    29. [29]

      X. Feng, L. Chen, Y. Dong, D. Jiang, Chem. Commun. 47 (2011) 1979, https://doi.org/10.1039/c0cc04386a.  doi: 10.1039/c0cc04386a

    30. [30]

      C. Furlan, C. Mortarino, Renew. Sust. Energ. Rev. 81 (2018) 1879, https://doi.org/10.1016/j.rser.2017.05.284.  doi: 10.1016/j.rser.2017.05.284

    31. [31]

      S.-X. Gan, C. Jia, Q.-Y. Qi, X. Zhao, Chem. Sci. 13 (2022) 1009, https://doi.org/10.1039/d1sc05504f.  doi: 10.1039/d1sc05504f

    32. [32]

      Q. Gao, X. Li, G.-H. Ning, K. Leng, B. Tian, C. Liu, W. Tang, H.-S. Xu, K.P. Loh, Chem. Commun. 54 (2018) 2349, https://doi.org/10.1039/c7cc09866a.  doi: 10.1039/c7cc09866a

    33. [33]

      Z.-Z. Gao, Z.-K. Wang, L. Wei, G. Yin, J. Tian, C.-Z. Liu, H. Wang, D.-W. Zhang, Y.-B. Zhang, X. Li, et al., ACS Appl. Mater. Inter. 12 (2019) 1404, https://doi.org/10.1021/acsami.9b19870.  doi: 10.1021/acsami.9b19870

    34. [34]

      K. Geng, T. He, R. Liu, S. Dalapati, K.T. Tan, Z. Li, S. Tao, Y. Gong, Q. Jiang, D. Jiang, Chem. Rev. 120 (2020) 8814, https://doi.org/10.1021/acs.chemrev.9b00550.  doi: 10.1021/acs.chemrev.9b00550

    35. [35]

      Q. Guan, G.-B. Wang, L.-L. Zhou, W.-Y. Li, Y.-B. Dong, Nanoscale Adv. 2 (2020) 3656, https://doi.org/10.1039/d0na00537a.  doi: 10.1039/d0na00537a

    36. [36]

      M. Guo, X. Guan, Q. Meng, M.L. Gao, Q. Li, H.L. Jiang, Angew. Chem. Int. Ed. 63 (2024) e202410097, https://doi.org/10.1002/anie.202410097.  doi: 10.1002/anie.202410097

    37. [37]

      A. Halder, M. Ghosh, A. Khayum M, S. Bera, M. Addicoat, H.S. Sasmal, S. Karak, S. Kurungot, R. Banerjee, J. Am. Chem. Soc. 140 (2018) 10941, https://doi.org/10.1021/jacs.8b06460.  doi: 10.1021/jacs.8b06460

    38. [38]

      E. Hamzehpoor, F. Effaty, T.H. Borchers, R.S. Stein, A. Wahrhaftig‐Lewis, X. Ottenwaelder, T. Friščić, D.F. Perepichka, Angew. Chem. Int. Ed. 63 (2024) e202404539, https://doi.org/10.1002/anie.202404539.  doi: 10.1002/anie.202404539

    39. [39]

      A. Hayat, S. Raza, M.A. Amin, Z. Ajmal, M.M. Alghamdi, A.A. El-Zahhar, H. Ali, D. Ghernaout, Y. Al-Hadeethi, M. Sohail, et al., Mater. Sci. Eng. R Rep. 157 (2024) 100771, https://doi.org/10.1016/j.mser.2024.100771.  doi: 10.1016/j.mser.2024.100771

    40. [40]

      M.M. Heravi, V. Zadsirjan, P. Hajiabbasi, H. Hamidi, Monatsh. Chem. 150 (2019) 535, https://doi.org/10.1007/s00706-019-2364-6.  doi: 10.1007/s00706-019-2364-6

    41. [41]

      T. Hisatomi, K. Domen, Nat. Catal. 2 (2019) 387, https://doi.org/10.1038/s41929-019-0242-6.  doi: 10.1038/s41929-019-0242-6

    42. [42]

      J. Hong, M. Liu, Y. Liu, S. Shang, X. Wang, C. Du, W. Gao, C. Hua, H. Xu, Z. You, et al., Angew. Chem. Int. Ed. 63 (2024) e202317876, https://doi.org/10.1002/anie.202317876.  doi: 10.1002/anie.202317876

    43. [43]

      K. Huang, D. Chen, X. Zhang, R. Shen, P. Zhang, D. Xu, X. Li, Acta Phys. -Chim. Sin. 40 (2024) 2407020, https://doi.org/10.3866/PKU.WHXB202407020.  doi: 10.3866/PKU.WHXB202407020

    44. [44]

      T. Huang, J. Kou, H. Yuan, H. Guo, K. Yuan, H. Li, F. Wang, Z. Dong, Adv. Funct. Mater. (2024) 2413943, https://doi.org/10.1002/adfm.202413943.  doi: 10.1002/adfm.202413943

    45. [45]

      F. Hussin, H.O. Lintang, S.L. Lee, L. Yuliati, J. Photochem. Photobiol. A 340 (2017) 128, https://doi.org/10.1016/j.jphotochem.2017.03.016.  doi: 10.1016/j.jphotochem.2017.03.016

    46. [46]

      A. Jati, S. Dam, S. Kumar, K. Kumar, B. Maji, Chem. Sci. 14 (2023) 8624, https://doi.org/10.1039/d3sc02440g.  doi: 10.1039/d3sc02440g

    47. [47]

      A. Jati, K. Dey, M. Nurhuda, M.A. Addicoat, R. Banerjee, B. Maji, J. Am. Chem. Soc. 144 (2022) 7822, https://doi.org/10.1021/jacs.2c01814.  doi: 10.1021/jacs.2c01814

    48. [48]

      A. Jiménez‐Almarza, A. López‐Magano, L. Marzo, S. Cabrera, R. Mas‐Ballesté, J. Alemán, ChemCatChem 11 (2019) 4916, https://doi.org/10.1002/cctc.201901061.  doi: 10.1002/cctc.201901061

    49. [49]

      C.C.C. Johansson Seechurn, M.O. Kitching, T.J. Colacot, V. Snieckus, Angew. Chem. Int. Ed. 51 (2012) 5062, https://doi.org/10.1002/anie.201107017.  doi: 10.1002/anie.201107017

    50. [50]

      L. Kong, X. Zhang, C. Wang, F. Wan, L. Li, Chin. J. Catal. 38 (2017) 2120, https://doi.org/10.1016/s1872-2067(17)62959-0.  doi: 10.1016/s1872-2067(17)62959-0

    51. [51]

      C. Krishnaraj, H. Sekhar Jena, L. Bourda, A. Laemont, P. Pachfule, J. Roeser, C.V. Chandran, S. Borgmans, S.M.J. Rogge, K. Leus, et al., J. Am. Chem. Soc. 142 (2020) 20107, https://doi.org/10.1021/jacs.0c09684.  doi: 10.1021/jacs.0c09684

    52. [52]

      P. Kuhn, M. Antonietti, A. Thomas, Angew. Chem. Int. Ed. 47 (2008) 3450, https://doi.org/10.1002/anie.200705710.  doi: 10.1002/anie.200705710

    53. [53]

      R. Kulkarni, Y. Noda, D. Kumar Barange, Y.S. Kochergin, P. Lyu, B. Balcarova, P. Nachtigall, M.J. Bojdys, Nat. Commun. 10 (2019) 3228, https://doi.org/10.1038/s41467-019-11264-z.  doi: 10.1038/s41467-019-11264-z

    54. [54]

      A. Laemont, G. Matthys, R. Lavendomme, P. Van Der Voort, Angew. Chem. Int. Ed. 63 (2024) e202412420, https://doi.org/10.1002/anie.202412420.  doi: 10.1002/anie.202412420

    55. [55]

      X. Lan, H. Li, Y. Liu, Y. Zhang, T. Zhang, Y. Chen, Angew. Chem. Int. Ed. 63 (2024) e202407092, https://doi.org/10.1002/anie.202407092.  doi: 10.1002/anie.202407092

    56. [56]

      N.S. Lewis, Science 315 (2007) 798, https://doi.org/10.1126/science.1137014.  doi: 10.1126/science.1137014

    57. [57]

      S.V. Ley, A.W. Thomas, Angew. Chem. Int. Ed. 42 (2003) 5400, https://doi.org/10.1002/anie.200300594.  doi: 10.1002/anie.200300594

    58. [58]

      H. Li, Z. Zhou, T. Ma, K. Wang, H. Zhang, A.H. Alawadhi, O.M. Yaghi, J. Am. Chem. Soc. 146 (2024) 35486, https://doi.org/10.1021/jacs.4c14971.  doi: 10.1021/jacs.4c14971

    59. [59]

      J. Li, S.Y. Gao, J. Liu, S. Ye, Y. Feng, D.H. Si, R. Cao, Adv. Funct. Mater. 33 (2023) 2305735, https://doi.org/10.1002/adfm.202305735.  doi: 10.1002/adfm.202305735

    60. [60]

      J. Li, X. Jing, Q. Li, S. Li, X. Gao, X. Feng, B. Wang, Chem. Soc. Rev. 49 (2020) 3565, https://doi.org/10.1039/d0cs00017e.  doi: 10.1039/d0cs00017e

    61. [61]

      J. Li, Z. Zhang, J. Jia, X. Liu, Chem. Res. Chin. Univ. 38 (2022) 275, https://doi.org/10.1007/s40242-022-1434-1.  doi: 10.1007/s40242-022-1434-1

    62. [62]

      L. Li, Q. Shan, J. Zang, L. Yu, D.J. Young, Z.-G. Ren, H.-X. Li, Catal. Sci. Technol. 14 (2024) 7212, https://doi.org/10.1039/d4cy01083c.  doi: 10.1039/d4cy01083c

    63. [63]

      Q. Li, Y. Ouyang, H. Li, L. Wang, J. Zeng, Angew. Chem. Int. Ed. 61 (2021) e202108069, https://doi.org/10.1002/anie.202108069.  doi: 10.1002/anie.202108069

    64. [64]

      S. Li, X. Chen, Y. Yuan, Acta Phys. -Chim. Sin. 39 (2023) 2303032, https://doi.org/10.3866/pku.Whxb202303032.  doi: 10.3866/pku.Whxb202303032

    65. [65]

      T. Li, P.L. Zhang, L.Z. Dong, Y.Q. Lan, Angew. Chem. Int. Ed. 63 (2024) e202318180, https://doi.org/10.1002/anie.202318180.  doi: 10.1002/anie.202318180

    66. [66]

      X. Li, J. Yu, M. Jaroniec, X. Chen, Chem. Rev. 119 (2019) 3962, https://doi.org/10.1021/acs.chemrev.8b00400.  doi: 10.1021/acs.chemrev.8b00400

    67. [67]

      Z. Li, Y. Zhi, P. Shao, H. Xia, G. Li, X. Feng, X. Chen, Z. Shi, X. Liu, Appl. Catal. B Environ. 245 (2019) 334, https://doi.org/10.1016/j.apcatb.2018.12.065.  doi: 10.1016/j.apcatb.2018.12.065

    68. [68]

      C.Y. Lin, D. Zhang, Z. Zhao, Z. Xia, Adv. Mater. 30 (2018) 1703646, https://doi.org/10.1002/adma.201703646.  doi: 10.1002/adma.201703646

    69. [69]

      Q. Lin, Y. Yusran, J. Xing, Y. Li, J. Zhang, T. Su, L. Yang, J. Suo, L. Zhang, Q. Li, et al., ACS Appl. Mater. Interfaces. 16 (2024) 5869, https://doi.org/10.1021/acsami.3c16724.  doi: 10.1021/acsami.3c16724

    70. [70]

      M. Liu, Q. Xu, G. Zeng, Angew. Chem. Int. Ed. 63 (2024) e202404886, https://doi.org/10.1002/anie.202404886.  doi: 10.1002/anie.202404886

    71. [71]

      S. Liu, J. Guo, Chem. Res. Chin. Univ. 38 (2022) 373, https://doi.org/10.1007/s40242-022-2007-z.  doi: 10.1007/s40242-022-2007-z

    72. [72]

      W. Liu, X. Li, C. Wang, H. Pan, W. Liu, K. Wang, Q. Zeng, R. Wang, J. Jiang, J. Am. Chem. Soc. 141 (2019) 17431, https://doi.org/10.1021/jacs.9b09502.  doi: 10.1021/jacs.9b09502

    73. [73]

      X. Liu, H. Qin, W. Fan, Sci. Bull. 61 (2016) 645, https://doi.org/10.1007/s11434-016-1053-7.  doi: 10.1007/s11434-016-1053-7

    74. [74]

      Y. Liu, S. Xing, J. Zhang, W. Liu, Y. Xu, Y. Zhang, K. Yang, L. Yang, K. Jiang, X. Shao, Org. Chem. Front. 9 (2022) 1375, https://doi.org/10.1039/d1qo01873f.  doi: 10.1039/d1qo01873f

    75. [75]

      A. López-Magano, A. Jiménez-Almarza, J. Alemán, R. Mas-Ballesté, Catalysts 10 (2020) 720, https://doi.org/10.3390/catal10070720.  doi: 10.3390/catal10070720

    76. [76]

      A. López‐Magano, S. Daliran, A.R. Oveisi, R. Mas‐Ballesté, A. Dhakshinamoorthy, J. Alemán, H. Garcia, R. Luque, Adv. Mater. 35 (2023) 2209475, https://doi.org/10.1002/adma.202209475.  doi: 10.1002/adma.202209475

    77. [77]

      J. Low, J. Yu, M. Jaroniec, S. Wageh, A.A. Al‐Ghamdi, Adv. Mater. 29 (2017) 1601694, https://doi.org/10.1002/adma.201601694.  doi: 10.1002/adma.201601694

    78. [78]

      Z. Lu, H. Lv, Q. Liu, Z. Wang, Acta Phys. -Chim. Sin. 40 (2024) 2405005, https://doi.org/10.3866/pku.Whxb202405005.  doi: 10.3866/pku.Whxb202405005

    79. [79]

      . Ma, L. Qin, T. Zhou, J. Zhang, Energ. Environ. Sci. 17 (2024) 8992, https://doi.org/10.1039/d4ee03766a.  doi: 10.1039/d4ee03766a

    80. [80]

      X. Ma, J. Kang, Y. Wu, C. Pang, S. Li, J. Li, Y. Xiong, J. Luo, M. Wang, Z. Xu, Trends Anal. Chem. 157 (2022) 116793, https://doi.org/10.1016/j.trac.2022.116793.  doi: 10.1016/j.trac.2022.116793

    81. [81]

      H. Mai, D. Chen, Y. Tachibana, H. Suzuki, R. Abe, R.A. Caruso, Chem. Soc. Rev. 50 (2021) 13692, https://doi.org/10.1039/d1cs00684c.  doi: 10.1039/d1cs00684c

    82. [82]

      .J. Martin, G. Liu, S.J.A. Moniz, Y. Bi, A.M. Beale, J. Ye, J. Tang, Chem. Soc. Rev. 44 (2015) 7808, https://doi.org/10.1039/c5cs00380f.  doi: 10.1039/c5cs00380f

    83. [83]

      L. Marzo, S.K. Pagire, O. Reiser, B. König, Angew. Chem. Int. Ed. 57 (2018) 10034, https://doi.org/10.1002/anie.201709766.  doi: 10.1002/anie.201709766

    84. [84]

      J.M.R. Narayanam, C.R.J. Stephenson, Chem. Soc. Rev. 40 (2011) 102, https://doi.org/10.1039/b913880n.  doi: 10.1039/b913880n

    85. [85]

      K.-K. Niu, T.-X. Luan, J. Cui, H. Liu, L.-B. Xing, P.-Z. Li, ACS Catal. 14 (2024) 2631, https://doi.org/10.1021/acscatal.3c05454.  doi: 10.1021/acscatal.3c05454

    86. [86]

      K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306 (2004) 666, https://doi.org/10.1126/science.1102896.  doi: 10.1126/science.1102896

    87. [87]

      . Pang, G. Liu, D. Huang, Y. Zhu, X. Zhao, W. Wang, Y. Xiang, Angew. Chem. Int. Ed. 62 (2023) e202313520, https://doi.org/10.1002/anie.202313520.  doi: 10.1002/anie.202313520

    88. [88]

      H. Park, H.-i. Kim, G.-h. Moon, W. Choi, Energ. Environ. Sci. 9 (2016) 411, https://doi.org/10.1039/c5ee02575c.  doi: 10.1039/c5ee02575c

    89. [89]

      . Peng, L. Yuan, K.K. Liu, Z.J. Guan, S. Jin, Y. Fang, Angew. Chem. Int. Ed. 63 (2024) e202423055, https://doi.org/10.1002/anie.202423055.  doi: 10.1002/anie.202423055

    90. [90]

      S.P. Qi, R.T. Guo, Z.X. Bi, Z.R. Zhang, C.F. Li, W.G. Pan, Small 19 (2023) 2303632, https://doi.org/10.1002/smll.202303632.  doi: 10.1002/smll.202303632

    91. [91]

      Y. Qian, Y. Han, X. Zhang, G. Yang, G. Zhang, H.-L. Jiang, Nat. Commun. 14 (2023) 3083, https://doi.org/10.1038/s41467-023-38884-w.  doi: 10.1038/s41467-023-38884-w

    92. [92]

      Y. Qian, H.-L. Jiang, Acc. Chem. Res. 57 (2024) 1214, https://doi.org/10.1021/acs.accounts.4c00061.  doi: 10.1021/acs.accounts.4c00061

    93. [93]

      J. Qin, Y. An, Y. Zhang, Acta Phys. -Chim. Sin. 40 (2024) 2408002, https://doi.org/10.3866/PKU.WHXB202408002.  doi: 10.3866/PKU.WHXB202408002

    94. [94]

      L. Qin, C. Ma, J. Zhang, T. Zhou, Adv. Funct. Mater. 34 (2024) 2401562, https://doi.org/10.1002/adfm.202401562.  doi: 10.1002/adfm.202401562

    95. [95]

      . Roy, B. Mishra, S. Maji, A. Sinha, S. Dutta, S. Mondal, A. Banerjee, P. Pachfule, D. Adhikari, Angew. Chem. Int. Ed. 63 (2024) e202410300, https://doi.org/10.1002/anie.202410300.  doi: 10.1002/anie.202410300

    96. [96]

      P. Ruiz-Castillo, S.L. Buchwald, Chem. Rev. 116 (2016) 12564, https://doi.org/10.1021/acs.chemrev.6b00512.  doi: 10.1021/acs.chemrev.6b00512

    97. [97]

      K. Seob Song, P.W. Fritz, D.F. Abbott, L. Nga Poon, C.M. Caridade, F. Gándara, V. Mougel, A. Coskun, Angew. Chem. Int. Ed. 62 (2023) e202309775, https://doi.org/10.1002/anie.202309775.  doi: 10.1002/anie.202309775

    98. [98]

      D. Shindell, C.J. Smith, Nature 573 (2019) 408, https://doi.org/10.1038/s41586-019-1554-z.  doi: 10.1038/s41586-019-1554-z

    99. [99]

      H. Song, X. Meng, Z.-j. Wang, H. Liu, J. Ye, Joule 3 (2019) 1606, https://doi.org/10.1016/j.joule.2019.06.023.  doi: 10.1016/j.joule.2019.06.023

    100. [100]

      Y. Song, F. Xin, L. Zhang, Y. Wang, ChemCatChem 9 (2017) 4139, https://doi.org/10.1002/cctc.201700856.  doi: 10.1002/cctc.201700856

    101. [101]

      L. Stegbauer, K. Schwinghammer, B.V. Lotsch, Chem. Sci. 5 (2014) 2789, https://doi.org/10.1039/c4sc00016a.  doi: 10.1039/c4sc00016a

    102. [102]

      S. Suleman, Y. Zhang, Y. Qian, J. Zhang, Z. Lin, Ö. Metin, Z. Meng, H.L. Jiang, Angew. Chem. Int. Ed. 63 (2023) e202314988, https://doi.org/10.1002/anie.202314988.  doi: 10.1002/anie.202314988

    103. [103]

      C. Sun, L. Karuppasamy, L. Gurusamy, H.-J. Yang, C.-H. Liu, J. Dong, J.J. Wu, Sep. Purif. Technol. 271 (2021) 118873, https://doi.org/10.1016/j.seppur.2021.118873.  doi: 10.1016/j.seppur.2021.118873

    104. [104]

      Y. Tachibana, L. Vayssieres, J.R. Durrant, Nat. Photonics 6 (2012) 511, https://doi.org/10.1038/nphoton.2012.175.  doi: 10.1038/nphoton.2012.175

    105. [105]

      D. Tan, R. Zhuang, R. Chen, M. Ban, W. Feng, F. Xu, X. Chen, Q. Wang, Adv. Funct. Mater. 34 (2023) 2311655, https://doi.org/10.1002/adfm.202311655.  doi: 10.1002/adfm.202311655

    106. [106]

      P.-J. Tian, X.-H. Han, Q.-Y. Qi, X. Zhao, Chem. Sci. 15 (2024) 9669, https://doi.org/10.1039/d4sc01780c.  doi: 10.1039/d4sc01780c

    107. [107]

      C. Wang, J. Tang, Z. Chen, Y. Jin, J. Liu, H. Xu, H. Wang, X. He, Q. Zhang, Energy Storage Mater. 55 (2023) 498, https://doi.org/10.1016/j.ensm.2022.12.015.  doi: 10.1016/j.ensm.2022.12.015

    108. [108]

      G.-B. Wang, Y.-J. Wang, J.-L. Kan, K.-H. Xie, H.-P. Xu, F. Zhao, M.-C. Wang, Y. Geng, Y.-B. Dong, J. Am. Chem. Soc. 145 (2023) 4951, https://doi.org/10.1021/jacs.2c13541.  doi: 10.1021/jacs.2c13541

    109. [109]

      H. Wang, H. Wang, Z. Wang, L. Tang, G. Zeng, P. Xu, M. Chen, T. Xiong, C. Zhou, X. Li, et al., Chem. Soc. Rev. 49 (2020) 4135, https://doi.org/10.1039/d0cs00278j.  doi: 10.1039/d0cs00278j

    110. [110]

      J.-C. Wang, T. Sun, J. Zhang, Z. Chen, J.-Q. Du, J.-L. Kan, Y.-B. Dong, Chem. Sci. 15 (2024) 18634, https://doi.org/10.1039/d4sc04358h.  doi: 10.1039/d4sc04358h

    111. [111]

      M. Wang, G. Liang, M. Wang, M. Hu, L. Zhu, Z. Li, Z. Zhang, L. He, M. Du, Chem. Eng. J. 448 (2022) 137779, https://doi.org/10.1016/j.cej.2022.137779.  doi: 10.1016/j.cej.2022.137779

    112. [112]

      M. Wang, T. Zeng, Y. Yu, X. Wang, Y. Zhao, H. Xi, Y.-B. Zhang, J. Am. Chem. Soc. 146 (2023) 1035, https://doi.org/10.1021/jacs.3c11944.  doi: 10.1021/jacs.3c11944

    113. [113]

      Q. Wang, K. Domen, Chem. Rev. 120 (2019) 919, https://doi.org/10.1021/acs.chemrev.9b00201.  doi: 10.1021/acs.chemrev.9b00201

    114. [114]

      T. Wang, G.-X. Ren, Z. Shadike, J.-L. Yue, M.-H. Cao, J.-N. Zhang, M.-W. Chen, X.-Q. Yang, S.-M. Bak, P. Northrup, et al., Nat. Commun. 10 (2019) 4458, https://doi.org/10.1038/s41467-019-12310-6.  doi: 10.1038/s41467-019-12310-6

    115. [115]

      W. Wang, D. Huang, W. Zheng, X. Zhao, K. He, H. Pang, Y. Xiang, Chem. Mater. 35 (2023) 7154, https://doi.org/10.1021/acs.chemmater.3c01425.  doi: 10.1021/acs.chemmater.3c01425

    116. [116]

      W. Wang, M.O. Tadé, Z. Shao, Chem. Soc. Rev. 44 (2015) 5371, https://doi.org/10.1039/c5cs00113g.  doi: 10.1039/c5cs00113g

    117. [117]

      X. Wang, S. Dong, K. Qi, V. Popkov, X. Xiang, Acta Phys. -Chim. Sin. 40 (2024) 2408005, https://doi.org/10.3866/PKU.WHXB202408005.  doi: 10.3866/PKU.WHXB202408005

    118. [118]

      X. Wang, X. Han, J. Zhang, X. Wu, Y. Liu, Y. Cui, J. Am. Chem. Soc. 138 (2016) 12332, https://doi.org/10.1021/jacs.6b07714.  doi: 10.1021/jacs.6b07714

    119. [119]

      Y.A. Wang, Q. Wu, X. Wang, M. Jiang, R. Zhang, X.J. Chen, R.P. Liang, J.D. Qiu, Angew. Chem. Int. Ed. 63 (2024) e202413071, https://doi.org/10.1002/anie.202413071.  doi: 10.1002/anie.202413071

    120. [120]

      Z. Wang, J. Wang, J. Zhang, K. Dai, Acta Phys. -Chim. Sin. 39 (2022) 2209037, https://doi.org/10.3866/PKU.WHXB202209037.  doi: 10.3866/PKU.WHXB202209037

    121. [121]

      P.-F. Wei, M.-Z. Qi, Z.-P. Wang, S.-Y. Ding, W. Yu, Q. Liu, L.-K. Wang, H.-Z. Wang, W.-K. An, W. Wang, J. Am. Chem. Soc. 140 (2018) 4623, https://doi.org/10.1021/jacs.8b00571.  doi: 10.1021/jacs.8b00571

    122. [122]

      D. Wu, S. Zhang, W.Y. Hernández, W. Baaziz, O. Ersen, M. Marinova, A.Y. Khodakov, V.V. Ordomsky, ACS Catal. 11 (2020) 19, https://doi.org/10.1021/acscatal.0c03955.  doi: 10.1021/acscatal.0c03955

    123. [123]

      W. Xia, C. Ji, R. Wang, S. Qiu, Q. Fang, Acta Phys. -Chim. Sin. 39 (2023) 2212057, https://doi.org/10.3866/PKU.WHXB202212057.  doi: 10.3866/PKU.WHXB202212057

    124. [124]

      Y. Xia, K. Zhang, H. Yang, L. Shi, Q. Yi, Acta Phys. -Chim. Sin. 40 (2024) 2407012, https://doi.org/10.3866/PKU.WHXB202407012.  doi: 10.3866/PKU.WHXB202407012

    125. [125]

      L. Xiao, L. Qi, J. Sun, A. Husile, S. Zhang, Z. Wang, J. Guan, Nano Energy 120 (2024) 109155, https://doi.org/10.1016/j.nanoen.2023.109155.  doi: 10.1016/j.nanoen.2023.109155

    126. [126]

      F. Xie, C. Yuan, H. Tan, A.Z. Moshfegh, B. Zhu, J. Yu, Acta Phys. -Chim. Sin. 40 (2024) 2407013, https://doi.org/10.3866/PKU.WHXB202407013.  doi: 10.3866/PKU.WHXB202407013

    127. [127]

      K. Xiong, K. Zhang, F. Zhang, B. Zeng, X. Lang, J. Colloid Interface Sci. 681 (2025) 250, https://doi.org/10.1016/j.jcis.2024.11.105.  doi: 10.1016/j.jcis.2024.11.105

    128. [128]

      Z. Xiong, B. Sun, H. Zou, R. Wang, Q. Fang, Z. Zhang, S. Qiu, J. Am. Chem. Soc. 144 (2022) 6583, https://doi.org/10.1021/jacs.2c02089.  doi: 10.1021/jacs.2c02089

    129. [129]

      F. Xue, J. Xiong, G. Mo, P. Peng, R. Chen, Z. Wang, Chin. J. Org. Chem. 33 (2013) 2291, https://doi.org/10.6023/cjoc201306023.  doi: 10.6023/cjoc201306023

    130. [130]

      L. Yang, J. Yuan, G. Wang, Q. Cao, C. Zhang, M. Li, J. Shao, Y. Xu, H. Li, J. Lu, Adv. Funct. Mater. 33 (2023) 2300954, https://doi.org/10.1002/adfm.202300954.  doi: 10.1002/adfm.202300954

    131. [131]

      Q. Yang, M. Luo, K. Liu, H. Cao, H. Yan, Appl. Catal. B Environ. 276 (2020) 119174, https://doi.org/10.1016/j.apcatb.2020.119174.  doi: 10.1016/j.apcatb.2020.119174

    132. [132]

      S. Yang, W. Hu, X. Zhang, P. He, B. Pattengale, C. Liu, M. Cendejas, I. Hermans, X. Zhang, J. Zhang, et al., J. Am. Chem. Soc. 140 (2018) 14614, https://doi.org/10.1021/jacs.8b09705.  doi: 10.1021/jacs.8b09705

    133. [133]

      W. Yang, J. Zhang, Q. Xu, Y. Yang, L. Zhang, Acta Phys. -Chim. Sin. 40 (2024) 2312014, https://doi.org/10.3866/PKU.WHXB202312014.  doi: 10.3866/PKU.WHXB202312014

    134. [134]

      C.I. Yeo, Y.S. Tan, H.T.A. Awan, A. Hanan, W.P. Wong, R. Walvekar, B.H. Goh, M. Khalid, Coord. Chem. Rev. 521 (2024) 216167, https://doi.org/10.1016/j.ccr.2024.216167.  doi: 10.1016/j.ccr.2024.216167

    135. [135]

      Z. Yong, T. Ma, Angew. Chem. Int. Ed. 62 (2023) e202308980, https://doi.org/10.1002/anie.202308980.  doi: 10.1002/anie.202308980

    136. [136]

      J.Y. Yue, J.X. Luo, Z.X. Pan, R.Z. Zhang, P. Yang, Q. Xu, B. Tang, Angew. Chem. Int. Ed. 63 (2024) e202405763, https://doi.org/10.1002/anie.202405763.  doi: 10.1002/anie.202405763

    137. [137]

      W. Zhang, P. Ai, L. Yuan, S. Peng, Y. Li, Fuel 369 (2024) 131785, https://doi.org/10.1016/j.fuel.2024.131785.  doi: 10.1016/j.fuel.2024.131785

    138. [138]

      W. Zhang, X. Mei, L. Yuan, G. Wang, Y. Li, S. Peng, Appl. Surf. Sci. 593 (2022) 153459, https://doi.org/10.1016/j.apsusc.2022.153459.  doi: 10.1016/j.apsusc.2022.153459

    139. [139]

      Y. Zhang, P. Li, P. Cui, X. Hu, C. Shu, R. Sun, M. Peng, B. Tan, X. Wang, Angew. Chem. Int. Ed. 63 (2024) e202413131 https://doi.org/10.1002/anie.202413131.  doi: 10.1002/anie.202413131

    140. [140]

      W. Zhao, P. Yan, H. Yang, M. Bahri, A.M. James, H. Chen, L. Liu, B. Li, Z. Pang, R. Clowes, et al., Nat. Synth. 1 (2022) 87, https://doi.org/10.1038/s44160-021-00005-0.  doi: 10.1038/s44160-021-00005-0

    141. [141]

      Y. Zhao, X. Xu, K. Zhang, Z. Li, H. Wang, Y. Zhao, J. Qiu, J. Wang, ACS Catal. 14 (2024) 3556, https://doi.org/10.1021/acscatal.3c05648.  doi: 10.1021/acscatal.3c05648

    142. [142]

      Y. Zhong, W. Dong, S. Ren, L. Li, Adv. Mater. 36 (2023) 2308251, https://doi.org/10.1002/adma.202308251.  doi: 10.1002/adma.202308251

    143. [143]

      Z. Zhou, T. Ma, H. Zhang, S. Chheda, H. Li, K. Wang, S. Ehrling, R. Giovine, C. Li, A.H. Alawadhi, et al., Nature 635 (2024) 96, https://doi.org/10.1038/s41586-024-08080-x.  doi: 10.1038/s41586-024-08080-x

    144. [144]

      Q. Zhu, Y.-L. Li, J. Yang, X.-M. Jia, Y.-H. Luo, D.-E. Zhang, Solid State Sci. 147 (2024) 107398, https://doi.org/10.1016/j.solidstatesciences.2023.107398.  doi: 10.1016/j.solidstatesciences.2023.107398

    145. [145]

      Y.Q. Zou, J.R. Chen, X.P. Liu, L.Q. Lu, R.L. Davis, K.A. Jørgensen, W.J. Xiao, Angew. Chem. Int. Ed. 51 (2011) 784, https://doi.org/10.1002/anie.201107028.  doi: 10.1002/anie.201107028

  • 加载中
    1. [1]

      Zhenxing Liu Jiaen Hu Zishi Cheng Xinqi Hao . 基础有机化学教学中烯烃的氧化反应. University Chemistry, 2025, 40(6): 139-144. doi: 10.12461/PKU.DXHX202408107

    2. [2]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    3. [3]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    4. [4]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    5. [5]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    6. [6]

      Fei XieChengcheng YuanHaiyan TanAlireza Z. MoshfeghBicheng ZhuJiaguo Yud-Band Center Regulated O2 Adsorption on Transition Metal Single Atoms Loaded COF: A DFT Study. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-0. doi: 10.3866/PKU.WHXB202407013

    7. [7]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    8. [8]

      Guodong Xu Chengcai Sheng Xiaomeng Zhao Tuojiang Zhang Zongtang Liu Jun Dong . Reform of Comprehensive Organic Chemistry Experiments in the Context of Emerging Engineering Education: A Case Study on the Improved Preparation of Benzocaine. University Chemistry, 2024, 39(11): 286-295. doi: 10.12461/PKU.DXHX202403094

    9. [9]

      Yueshuai Xu Wei Liu Xudong Chen Zhikun Zheng . 水相中制备共价有机框架单晶的实验教学设计. University Chemistry, 2025, 40(6): 256-265. doi: 10.12461/PKU.DXHX202408045

    10. [10]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    11. [11]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    12. [12]

      Wei Li Jinfan Xu Yongjun Zhang Ying Guan . 共价有机框架整体材料的制备及食品安全非靶向筛查应用——推荐一个仪器分析综合化学实验. University Chemistry, 2025, 40(6): 276-285. doi: 10.12461/PKU.DXHX202406013

    13. [13]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    14. [14]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    15. [15]

      Jiajia Wang Sibo Huang Xijing Gao Chaoxun Liu Haibo Zhang . 光催化硝酸根还原产氨的综合实验设计. University Chemistry, 2025, 40(8): 241-248. doi: 10.12461/PKU.DXHX202410050

    16. [16]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    17. [17]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    18. [18]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    19. [19]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    20. [20]

      Tong ZhouXue LiuLiang ZhaoMingtao QiaoWanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020

Metrics
  • PDF Downloads(1)
  • Abstract views(70)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return