Citation: Jiajie Cai, Chang Cheng, Bowen Liu, Jianjun Zhang, Chuanjia Jiang, Bei Cheng. CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics[J]. Acta Physico-Chimica Sinica, ;2025, 41(8): 100084. doi: 10.1016/j.actphy.2025.100084 shu

CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics

  • Corresponding author: Jianjun Zhang, zhangjianjun@cug.edu.cn Chuanjia Jiang, jiangcj@nankai.edu.cn Bei Cheng, chengbei2013@whut.edu.cn
  • Received Date: 20 February 2025
    Revised Date: 10 March 2025
    Accepted Date: 24 March 2025

    Fund Project: the National Key Research and Development Program of China 2022YFB3803600the National Natural Science Foundation of China 22238009the National Natural Science Foundation of China 22361142704the National Natural Science Foundation of China 22261142666the National Natural Science Foundation of China 22278324the National Natural Science Foundation of China 52073223the Natural Science Foundation of Hubei Province of China 2022CFA001the Fundamental Research Funds for the Central Universities 63241632

  • Photocatalytic hydrogen (H2) production is a clean energy technology, with great potential for addressing the global energy crisis and related environmental problems. However, single-component photocatalysts often suffer from low efficiency primarily due to fast charge carrier recombination and the tradeoff between light-absorbing capacity and redox capabilities. Constructing heterojunctions provides a promising strategy to overcome these drawbacks, and S-scheme heterojunctions have recently stood out, demonstrating the capability to efficiently facilitate electron/hole separation, while maximizing the redox capability. Among them, polymer-based S-scheme photocatalysts are emerging, though the charge carrier dynamics in inorganic-organic S-scheme heterojunctions remain to be elucidated. Herein, we fabricated an S-scheme heterojunction comprised of the conjugated polymer dibenzothiophene-S, S-dioxide-alt-benzodithiophene (DBTSO-BDTO) and cadmium sulfide (CdS) for photocatalytic H2 production. The S-scheme mechanism was verified using in situ irradiated X-ray photoelectron spectroscopy, and the charge carrier transfer dynamics were analyzed in depth using femtosecond transient absorption spectroscopy, which revealed that a considerable fraction of electrons undergo interfacial charge transfer in the CdS/DBTSO-BDTO composite. Owing to the improved charge separation efficiency and redox capability, the performance of the composite surpassed that of DBTSO-BDTO and CdS, and the H2 evolution rate of the optimized CdS/DBTSO-BDTO material reached 3313 μmol·h−1·g−1, three times that of pure CdS. The findings provide new insights into the electron transfer mechanisms of S-scheme heterojunctions, and can guide the design of polymer-based photocatalysts for solar fuel production.
  • 加载中
    1. [1]

      Z.Y. Yu, Y. Duan, X.Y. Feng, X.X. Yu, M.R. Gao, S.H. Yu, Adv. Mater. 33 (2021) 2007100, https://doi.org/10.1002/adma.202007100.  doi: 10.1002/adma.202007100

    2. [2]

      Y.X. Wu, M.R. Qu, S.J. Jiang, J.J. Zhang, S.Q. Song, Sci. China Mater. 67 (2024) 524, https://doi.org/10.1007/s40843-023-2760-1.  doi: 10.1007/s40843-023-2760-1

    3. [3]

      B.B. Zhao, W. Zhong, F. Chen, P. Wang, C.B. Bie, H.G. Yu, Chin. J. Catal. 52 (2023) 127, https://doi.org/10.1016/s1872-2067(23)64491-2.  doi: 10.1016/s1872-2067(23)64491-2

    4. [4]

      H. Nishiyama, T. Yamada, M. Nakabayashi, Y. Maehara, M. Yamaguchi, Y.Kuromiya, Y. Nagatsuma, H. Tokudome, S. Akiyama, T. Watanabe, R. Narushima, S. Okunaka, N. Shibata, T. Takata, T. Hisatomi, K. Domen, Nature 598 (2021) 304, https://doi.org/10.1038/s41586-021-03907-3.  doi: 10.1038/s41586-021-03907-3

    5. [5]

      P. Zhou, I.A. Navid, Y.J. Ma, Y.X. Xiao, P. Wang, Z.W. Ye, B.W. Zhou, K. Sun, Z.T. Mi, Nature 613 (2023) 66, https://doi.org/10.1038/s41586-022-05399-1.  doi: 10.1038/s41586-022-05399-1

    6. [6]

      G.T. Sun, Z.G. Tai, J.J. Zhang, B. Cheng, H.G. Yu, J.G. Yu, Appl. Catal. B Environ. 358 (2024) 124459, https://doi.org/10.1016/j.apcatb.2024.124459.  doi: 10.1016/j.apcatb.2024.124459

    7. [7]

      Z.H. Yu, C. Guan, X.Y. Yue, Q.J. Xiang, Chin. J. Catal. 50 (2023) 361, https://doi.org/10.1016/s1872-2067(23)64448-1.  doi: 10.1016/s1872-2067(23)64448-1

    8. [8]

      Y.W. Zhu, L.L. Wang, Y.T. Liu, L.H. Shao, X.N. Xia, Appl. Catal. B Environ. 241 (2019) 483, https://doi.org/10.1016/j.apcatb.2018.09.062.  doi: 10.1016/j.apcatb.2018.09.062

    9. [9]

      S. Cao, B. Zhong, C.B. Bie, B. Cheng, F.Y. Xu, Acta Phys. Chim. Sin. 40 (2024) 2307016, https://doi.org/10.3866/PKU.WHXB202307016.  doi: 10.3866/PKU.WHXB202307016

    10. [10]

      H.F. Liu, X. Huang, J.Z. Chen, Chin. J. Catal. 51 (2023) 49, https://doi.org/10.1016/s1872-2067(23)64483-3.  doi: 10.1016/s1872-2067(23)64483-3

    11. [11]

      Q. Li, B.D. Guo, J.G. Yu, J.R. Ran, B.H. Zhang, H.J. Yan, J.R. Gong, J. Am. Chem. Soc. 133 (2011) 10878, https://doi.org/10.1021/ja2025454.  doi: 10.1021/ja2025454

    12. [12]

      N.Z. Bao, L.M. Shen, T. Takata, K. Domen, Chem. Mater. 20 (2008) 110, https://doi.org/10.1021/cm7029344.  doi: 10.1021/cm7029344

    13. [13]

      X. Zong, H.J. Yan, G.P. Wu, G.J. Ma, F.Y. Wen, W. Lu, L. Can, J. Am. Chem. Soc. 130 (2008) 7176, doi: 10.1021/ja8007825.  doi: 10.1021/ja8007825

    14. [14]

      Y.J. Ren, Y.F. Li, G.X. Pan, N. Wang, Y. Xing, Z.Y. Zhang, J. Mater. Sci. Technol. 171 (2024) 162, https://doi.org/10.1016/j.jmst.2023.06.052.  doi: 10.1016/j.jmst.2023.06.052

    15. [15]

      R.C. Shen, D.D. Ren, Y.N. Ding, Y.T. Guan, Y.H. Ng, P. Zhang, X. Li, Sci. China Mater. 63 (2020) 2153, https://doi.org/10.1007/s40843-020-1456-x.  doi: 10.1007/s40843-020-1456-x

    16. [16]

      K. Sharma, V. Hasija, M. Malhotra, P.K. Verma, A.A. Parwaz Khan, S. Thakur, Q. Van Le, H.H. Phan Quang, V.-H. Nguyen, P. Singh, P. Raizada, Int. J. Hydrogen Energy 52 (2024) 804, https://doi.org/10.1016/j.ijhydene.2023.09.033.  doi: 10.1016/j.ijhydene.2023.09.033

    17. [17]

      M.Y. Qi, Q. Lin, Z.R. Tang, Y.J. Xu, Appl. Catal. B Environ. 307 (2022) 121158, https://doi.org/10.1016/j.apcatb.2022.121158.  doi: 10.1016/j.apcatb.2022.121158

    18. [18]

      Q. Liang, G.Y. Jiang, Z. Zhao, Z.Y. Li, M. MacLachlan, J. Catal. Sci. Technol. 5 (2015) 3368, https://doi.org/10.1039/c5cy00470e.  doi: 10.1039/c5cy00470e

    19. [19]

      G.T. Sun, J.J. Zhang, B. Cheng, H.G. Yu, J.G. Yu, J.S. Xu, Chem. Eng. J. 476 (2023) 146818, https://doi.org/10.1016/j.cej.2023.146818.  doi: 10.1016/j.cej.2023.146818

    20. [20]

      L.J. Sun, X.H. Yu, L.Y. Tang, W.K. Wang, Q.Q. Liu, Chin. J. Catal. 52 (2023) 164, https://doi.org/10.1016/s1872-2067(23)64507-3.  doi: 10.1016/s1872-2067(23)64507-3

    21. [21]

      X.L. Xiang, L.X. Wang, J.J. Zhang, B. Cheng, J.G. Yu, W. Macyk, Adv. Photonics Res. 3 (2022) 2200065, https://doi.org/10.1002/adpr.202200065.  doi: 10.1002/adpr.202200065

    22. [22]

      X.L. Xiang, L.Y. Zhang, C. Luo, J.J. Zhang, B. Cheng, G.J. Liang, Z.Y. Zhang, J.G. Yu, Appl. Catal. B Environ. 340 (2024) 123196, https://doi.org/10.1016/j.apcatb.2023.123196.  doi: 10.1016/j.apcatb.2023.123196

    23. [23]

      C. Cheng, B.W. He, J.J. Fan, B. Cheng, S.W. Cao, J.G. Yu, Adv. Mater. 33 (2021) 2100317, https://doi.org/10.1002/adma.202100317.  doi: 10.1002/adma.202100317

    24. [24]

      X.Y. Deng, J.J. Zhang, K.Z. Qi, G.J. Liang, F.Y. Xu, J.G. Yu, Nat. Commun. 15 (2024) 4807, https://doi.org/10.1038/s41467-024-49004-7.  doi: 10.1038/s41467-024-49004-7

    25. [25]

      K. Meng, J.J. Zhang, B. Cheng, X.G. Ren, Z.S. Xia, F.Y. Xu, L.Y. Zhang, J.G. Yu, Adv. Mater. 36 (2024) e2406460, https://doi.org/10.1002/adma.202406460.  doi: 10.1002/adma.202406460

    26. [26]

      M.L. Gu, Y. Yang, B. Cheng, L.Y. Zhang, P. Xiao, T. Chen, Chin. J. Catal. 59 (2024) 185, https://doi.org/10.1016/s1872-2067(23)64610-8.  doi: 10.1016/s1872-2067(23)64610-8

    27. [27]

      J.W. Fu, Q.L. Xu, J.X. Low, C.J. Jiang, J.G. Yu, Appl. Catal. B Environ. 243 (2019) 556, https://doi.org/10.1016/j.apcatb.2018.11.011.  doi: 10.1016/j.apcatb.2018.11.011

    28. [28]

      Z. Wang, X. Yue, Q. Xiang, Coord. Chem. Rev. 504 (2024), 125674, doi: 10.1016/j.ccr.2024.215674.  doi: 10.1016/j.ccr.2024.215674

    29. [29]

      Z. Yu, F. Li, Q. Xiang, J. Mater. Sci. Technol. 175 (2024) 244, https://doi.org/10.1016/j.jmst.2023.08.023.  doi: 10.1016/j.jmst.2023.08.023

    30. [30]

      S. Wageh, A.A. Al-Ghamdi, O.A. Al-Hartomy, M.F. Alotaibi, L.X. Wang, Chin. J. Catal. 43 (2022) 586, https://doi.org/10.1016/s1872-2067(21)63925-6.  doi: 10.1016/s1872-2067(21)63925-6

    31. [31]

      X.H. Wu, G.Q. Chen, J. Wang, J.M. Li, G.H. Wang, Acta Phys. Chim. Sin. 39 (2023) 2212016, https://doi.org/10.3866/PKU.WHXB202212016.  doi: 10.3866/PKU.WHXB202212016

    32. [32]

      Q.L. Xu, R.G. He, Y.J. Li, Acta Phys. Chim. Sin. 39 (2023) 2211009, https://doi.org/10.3866/PKU.WHXB202211009.  doi: 10.3866/PKU.WHXB202211009

    33. [33]

      C. Cheng, J.J. Zhang, B.C. Zhu, G.J. Liang, L.Y. Zhang, J.G. Yu, Angew. Chem. Int. Ed. 62 (2023) e202218688, https://doi.org/10.1002/anie.202218688.  doi: 10.1002/anie.202218688

    34. [34]

      J.T. Yan, J.J. Zhang, J. Mater. Sci. Technol. 193 (2024) 18, https://doi.org/10.1016/j.jmst.2023.12.054.  doi: 10.1016/j.jmst.2023.12.054

    35. [35]

      Y. Wu, C. Cheng, K.Z. Qi, B. Cheng, J.J. Zhang, J.G. Yu, L.Y. Zhang, Acta Phys. Chim. Sin. 40 (2024) 2406027, doi: 10.3866/PKU.WHXB202406027.  doi: 10.3866/PKU.WHXB202406027

    36. [36]

      C. Cheng, X.C. Wang, F. Wang, Appl. Surf. Sci. 495 (2019) 143537, https://doi.org/10.1016/j.apsusc.2019.143537.  doi: 10.1016/j.apsusc.2019.143537

    37. [37]

      X.Y. Xiong, Y.R. Jin, H.W. Wang, P. He, X. Xiang, P.C. Hu, K.F. Liu, Q.Q. Wei, B.Z. Wang, Mater. Chem. Phys. 281 (2022) 125824, https://doi.org/10.1016/j.matchemphys.2022.125824.  doi: 10.1016/j.matchemphys.2022.125824

    38. [38]

      Q. Li, J. Li, W.R. Wang, L.N. Liu, Z.W. Xu, G.H. Xie, J.J. Li, J.H. Yao, W.S. Li, Chin. J. Chem. 40 (2022) 2457, https://doi.org/10.1002/cjoc.202200355.  doi: 10.1002/cjoc.202200355

    39. [39]

      T. Senasu, K. Hemavibool, S. Nanan, RSC Adv. 8 (2018) 22592, https://doi.org/10.1039/c8ra02061b.  doi: 10.1039/c8ra02061b

    40. [40]

      Y. Yang, J.S. Wu, B. Cheng, L.Y. Zhang, A.A. Al-Ghamdi, S. Wageh, Y.J. Li, Chin. J. Struct. Chem. 41 (2022) 2206006, https://doi.org/10.14102/j.cnki.0254-5861.2022-0124.  doi: 10.14102/j.cnki.0254-5861.2022-0124

    41. [41]

      B.W. Liu, J.J. Cai, J.J. Zhang, H.Y. Tan, B. Cheng, J.S. Xu, Chin. J. Catal. 51 (2023) 204, https://doi.org/10.1016/s1872-2067(23)64466-3.  doi: 10.1016/s1872-2067(23)64466-3

    42. [42]

      M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J.Rouquerol, K.S.W. Sing, Pure Appl. Chem. 87 (2015) 1051, https://doi.org/10.1515/pac-2014-1117.  doi: 10.1515/pac-2014-1117

    43. [43]

      L.W. Wang, R.R. Zheng, Q.F. Niu, H.L. Yuan, M. Meng, Mater. Lett. 362 (2024) 136179, https://doi.org/10.1016/j.matlet.2024.136179.  doi: 10.1016/j.matlet.2024.136179

    44. [44]

      L. Wang, H.H. Zhou, H.Z. Zhang, Y.L. Song, H. Zhang, L.K. Luo, Y.F. Yang, S.Q. Bai, Y. Wang, S.X. Liu, Nanoscale 12 (2020) 13791, https://doi.org/10.1039/d0nr03196h.  doi: 10.1039/d0nr03196h

    45. [45]

      B.C. Zhu, J. Sun, Y.Y. Zhao, L.Y. Zhang, J.G. Yu, Adv. Mater. 36 (2024) 2310600, https://doi.org/10.1002/adma.202310600.  doi: 10.1002/adma.202310600

    46. [46]

      G.T. Sun, Z.G. Tai, F. Li, Q. Ye, T. Wang, Z.Y. Fang, L.C. Jia, W. Liu, H.Q. Wang, Small 19 (2023) e2207758, https://doi.org/10.1002/smll.202207758.  doi: 10.1002/smll.202207758

    47. [47]

      B.W. He, P. Xiao, S.J. Wan, J.J. Zhang, T. Chen, L.Y. Zhang, J.G. Yu, Angew. Chem. Int. Ed. 62 (2023) e202313172, https://doi.org/10.1002/anie.202313172.  doi: 10.1002/anie.202313172

    48. [48]

      W.L. Yu, C.B. Bie, Acta Phys. Chim. Sin. 40 (2024) 2307022, https://doi.org/10.3866/PKU.WHXB202307022.  doi: 10.3866/PKU.WHXB202307022

    49. [49]

      B.C. Zhu, J.J. Liu, J. Sun, F. Xie, H.Y. Tan, B. Cheng, J.J. Zhang, J. Mater. Sci. Technol. 162 (2023) 90, https://doi.org/10.1016/j.jmst.2023.03.054.  doi: 10.1016/j.jmst.2023.03.054

    50. [50]

      Z. Meng, J.J. Zhang, C.C. Jiang, C. Trapalis, L.Y. Zhang, J.G. Yu, Small (2023) e2308952, https://doi.org/10.1002/smll.202308952.  doi: 10.1002/smll.202308952

    51. [51]

      W.C. Wang, Y. Tao, J.C. Fan, Z.P. Yan, H. Shang, D.L. Phillips, M. Chen, G.S. Li, Adv. Funct. Mater. 32 (2022) 2201357, https://doi.org/10.1002/adfm.202201357.  doi: 10.1002/adfm.202201357

    52. [52]

      C.B. Bie, B.C. Zhu, L.X. Wang, H.G. Yu, C.H. Jiang, T. Chen, J.G. Yu, Angew. Chem. Int. Ed. 61 (2022) e202212045, https://doi.org/10.1002/anie.202212045.  doi: 10.1002/anie.202212045

    53. [53]

      L. Zhu, Z.F. Liang, H. Li, Q.N. Xu, D.C. Jiang, H.W. Du, C.H. Zhu, H.Q. Li, Z. Lu, Y.P. Yuan, Small 19 (2023) 2301017, https://doi.org/10.1002/smll.202301017.  doi: 10.1002/smll.202301017

    54. [54]

      J.J. Cai, B.W. Liu, S.M. Zhang, L.X. Wang, Z. Wu, J.J. Zhang, B. Cheng, J. Mater. Sci. Technol. 197 (2024) 183, https://doi.org/10.1016/j.jmst.2024.02.012.  doi: 10.1016/j.jmst.2024.02.012

    55. [55]

      K.F. Wu, H.M. Zhu, Z. Liu, W. Rodríguez, T.Q. Lian, J. Am. Chem. Soc. 134 (2012) 10337, https://doi.org/10.1021/ja303306u.  doi: 10.1021/ja303306u

    56. [56]

      B.C. Qiu, L. Cai, N. Zhang, X.M. Tao, Y. Chai, Adv. Sci. 7 (2020) 1903568, https://doi.org/10.1002/advs.201903568.  doi: 10.1002/advs.201903568

    57. [57]

      J.J. Zhang, J.J. Liu, Z. Meng, S. Jana, L.X. Wang, B.C. Zhu, J. Mater. Sci. Technol. 159 (2023) 1, https://doi.org/10.1016/j.jmst.2023.02.044.  doi: 10.1016/j.jmst.2023.02.044

    58. [58]

      J.J. Zhang, G.Y. Yang, B.W. He, B. Cheng, Y.J. Li, G.J. Liang, L.X. Wang, Chin. J. Catal. 43 (2022) 2530, https://doi.org/10.1016/s1872-2067(22)64108-1.  doi: 10.1016/s1872-2067(22)64108-1

    59. [59]

      C. Cheng, B.C. Zhu, B. Cheng, W. Macyk, L.X. Wang, J.G. Yu, ACS Catal. 13 (2022) 459, https://doi.org/10.1021/acscatal.2c05001.  doi: 10.1021/acscatal.2c05001

    60. [60]

      J.Y. Qiu, K. Meng, Y. Zhang, B. Cheng, J.J. Zhang, L.X. Wang, J.G. Yu, Adv. Mater. 36 (2024) 2400288, https://doi.org/10.1002/adma.202400288.  doi: 10.1002/adma.202400288

    61. [61]

      M.M. Luo, G.J. Jiang, M. Yu, Y.P. Yan, Z.J. Qin, Y. Li, Q. Zhang, J. Mater. Sci. Technol. 161 (2023) 220, https://doi.org/10.1016/j.jmst.2023.03.038.  doi: 10.1016/j.jmst.2023.03.038

    62. [62]

      J.H. Hua, Z.L. Wang, J.F. Zhang, K. Dai, C.F. Shao, K. Fan, J. Mater. Sci. Technol. 156 (2023) 64, https://doi.org/10.1016/j.jmst.2023.03.003.  doi: 10.1016/j.jmst.2023.03.003

    63. [63]

      T. Sun, C.X. Li, Y.P. Bao, J. Fan, E.Z. Liu, Acta Phys. Chim. Sin. 39 (2023) 2212009, https://doi.org/10.3866/PKU.WHXB202212009.  doi: 10.3866/PKU.WHXB202212009

  • 加载中
    1. [1]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    2. [2]

      Shuang CaoBo ZhongChuanbiao BieBei ChengFeiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016

    3. [3]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

    4. [4]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    5. [5]

      Fanpeng MengFei ZhaoJingkai LinJinsheng ZhaoHuayang ZhangShaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095

    6. [6]

      Xinyu MiaoHao YangJie HeJing WangZhiliang Jin . Adjusting the electronic structure of Keggin-type polyoxometalates to construct S-scheme heterojunction for photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-0. doi: 10.1016/j.actphy.2025.100051

    7. [7]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    8. [8]

      Kaihui HuangDejun ChenXin ZhangRongchen ShenPeng ZhangDifa XuXin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-0. doi: 10.3866/PKU.WHXB202407020

    9. [9]

      Yi YangXin ZhouMiaoli GuBei ChengZhen WuJianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064

    10. [10]

      You WuChang ChengKezhen QiBei ChengJianjun ZhangJiaguo YuLiuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027

    11. [11]

      Changjun YouChunchun WangMingjie CaiYanping LiuBaikang ZhuShijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014

    12. [12]

      Yang XiaKangyan ZhangHeng YangLijuan ShiQun Yi . Improving Photocatalytic H2O2 Production over iCOF/Bi2O3 S-Scheme Heterojunction in Pure Water via Dual Channel Pathways. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-0. doi: 10.3866/PKU.WHXB202407012

    13. [13]

      Menglan WeiXiaoxia OuYimeng WangMengyuan ZhangFei TengKaixuan Wang . S-scheme heterojunction g-C3N4/Bi2WO6 highly efficient degradation of levofloxacin: performance, mechanism and degradation pathway. Acta Physico-Chimica Sinica, 2025, 41(9): 100105-0. doi: 10.1016/j.actphy.2025.100105

    14. [14]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

    15. [15]

      Jizhou LiuChenbin AiChenrui HuBei ChengJianjun Zhang . Accelerated Interfacial Electron Transfer in Perovskite Solar Cell by Ammonium Hexachlorostannate Modification and fs-TAS Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-0. doi: 10.3866/PKU.WHXB202402006

    16. [16]

      Jingzhuo TianChaohong GuanHaobin HuEnzhou LiuDongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-0. doi: 10.1016/j.actphy.2025.100068

    17. [17]

      Jingzhao ChengShiyu GaoBei ChengKai YangWang WangShaowen Cao . Construction of 4-Amino-1H-imidazole-5-carbonitrile Modified Carbon Nitride-Based Donor-Acceptor Photocatalyst for Efficient Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-0. doi: 10.3866/PKU.WHXB202406026

    18. [18]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    19. [19]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    20. [20]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

Metrics
  • PDF Downloads(0)
  • Abstract views(69)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return