CdS/DBTSO-BDTO S型异质结光催化制氢及其电荷转移动力学

蔡家杰 程畅 刘博文 张建军 姜传佳 程蓓

引用本文: 蔡家杰, 程畅, 刘博文, 张建军, 姜传佳, 程蓓. CdS/DBTSO-BDTO S型异质结光催化制氢及其电荷转移动力学[J]. 物理化学学报, 2025, 41(8): 100084. doi: 10.1016/j.actphy.2025.100084 shu
Citation:  Jiajie Cai, Chang Cheng, Bowen Liu, Jianjun Zhang, Chuanjia Jiang, Bei Cheng. CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics[J]. Acta Physico-Chimica Sinica, 2025, 41(8): 100084. doi: 10.1016/j.actphy.2025.100084 shu

CdS/DBTSO-BDTO S型异质结光催化制氢及其电荷转移动力学

    通讯作者: 张建军, zhangjianjun@cug.edu.cn; 姜传佳, jiangcj@nankai.edu.cn; 程蓓, chengbei2013@whut.edu.cn
  • 基金项目:

    国家重点研发计划项目 2022YFB3803600

    国家自然科学基金项目 22238009

    国家自然科学基金项目 22361142704

    国家自然科学基金项目 22261142666

    国家自然科学基金项目 22278324

    国家自然科学基金项目 52073223

    湖北省自然科学基金项目 2022CFA001

    中央高校基本科研业务费项目 63241632

摘要: 光催化分解水产氢具有广阔的应用前景。然而,单一光催化剂由于光生电子与空穴易复合,导致光催化产氢效率较低,严重制约了该技术的实际应用。构建异质结是克服这些缺点的有效策略,最近S型异质结脱颖而出,显示出了高效的促进电子和空穴分离的能力,同时最大限度地提高光催化剂的氧化还原能力。其中,基于聚合物的S型光催化剂正在兴起,但无机-有机S型异质结中的载流子动力学仍有待阐明。在本工作中,我们制备了由共轭聚合物双氧硫芴苯并二噻吩二酮(dibenzothiophene-S, S-dioxide-alt-benzodithiophene, DBTSO-BDTO)和硫化镉(CdS)组成的S型异质结,并研究了其光催化制氢的性能和界面电荷传输机制。利用原位辐照X射线光电子能谱验证了S型电子转移机理,并利用飞秒瞬态吸收光谱深入分析了S型异质结中载流子的动力学,证实有大量光生电子发生了界面电荷转移。由于S型异质结对载流子效率的提高和氧化还原能力的增强,复合材料的性能超过了DBTSO-BDTO和CdS,并且最优化复合材料的析氢速率达到3313 μmol·h−1·g−1,约为纯CdS的3倍。本工作为S型异质结的电子转移机制提供了新的视角,并可指导用于太阳能燃料生产的聚合物基光催化剂的开发。

English

    1. [1]

      Z.Y. Yu, Y. Duan, X.Y. Feng, X.X. Yu, M.R. Gao, S.H. Yu, Adv. Mater. 33 (2021) 2007100, https://doi.org/10.1002/adma.202007100. doi: 10.1002/adma.202007100

    2. [2]

      Y.X. Wu, M.R. Qu, S.J. Jiang, J.J. Zhang, S.Q. Song, Sci. China Mater. 67 (2024) 524, https://doi.org/10.1007/s40843-023-2760-1. doi: 10.1007/s40843-023-2760-1

    3. [3]

      B.B. Zhao, W. Zhong, F. Chen, P. Wang, C.B. Bie, H.G. Yu, Chin. J. Catal. 52 (2023) 127, https://doi.org/10.1016/s1872-2067(23)64491-2. doi: 10.1016/s1872-2067(23)64491-2

    4. [4]

      H. Nishiyama, T. Yamada, M. Nakabayashi, Y. Maehara, M. Yamaguchi, Y.Kuromiya, Y. Nagatsuma, H. Tokudome, S. Akiyama, T. Watanabe, R. Narushima, S. Okunaka, N. Shibata, T. Takata, T. Hisatomi, K. Domen, Nature 598 (2021) 304, https://doi.org/10.1038/s41586-021-03907-3. doi: 10.1038/s41586-021-03907-3

    5. [5]

      P. Zhou, I.A. Navid, Y.J. Ma, Y.X. Xiao, P. Wang, Z.W. Ye, B.W. Zhou, K. Sun, Z.T. Mi, Nature 613 (2023) 66, https://doi.org/10.1038/s41586-022-05399-1. doi: 10.1038/s41586-022-05399-1

    6. [6]

      G.T. Sun, Z.G. Tai, J.J. Zhang, B. Cheng, H.G. Yu, J.G. Yu, Appl. Catal. B Environ. 358 (2024) 124459, https://doi.org/10.1016/j.apcatb.2024.124459. doi: 10.1016/j.apcatb.2024.124459

    7. [7]

      Z.H. Yu, C. Guan, X.Y. Yue, Q.J. Xiang, Chin. J. Catal. 50 (2023) 361, https://doi.org/10.1016/s1872-2067(23)64448-1. doi: 10.1016/s1872-2067(23)64448-1

    8. [8]

      Y.W. Zhu, L.L. Wang, Y.T. Liu, L.H. Shao, X.N. Xia, Appl. Catal. B Environ. 241 (2019) 483, https://doi.org/10.1016/j.apcatb.2018.09.062. doi: 10.1016/j.apcatb.2018.09.062

    9. [9]

      S. Cao, B. Zhong, C.B. Bie, B. Cheng, F.Y. Xu, Acta Phys. Chim. Sin. 40 (2024) 2307016, https://doi.org/10.3866/PKU.WHXB202307016. doi: 10.3866/PKU.WHXB202307016

    10. [10]

      H.F. Liu, X. Huang, J.Z. Chen, Chin. J. Catal. 51 (2023) 49, https://doi.org/10.1016/s1872-2067(23)64483-3. doi: 10.1016/s1872-2067(23)64483-3

    11. [11]

      Q. Li, B.D. Guo, J.G. Yu, J.R. Ran, B.H. Zhang, H.J. Yan, J.R. Gong, J. Am. Chem. Soc. 133 (2011) 10878, https://doi.org/10.1021/ja2025454. doi: 10.1021/ja2025454

    12. [12]

      N.Z. Bao, L.M. Shen, T. Takata, K. Domen, Chem. Mater. 20 (2008) 110, https://doi.org/10.1021/cm7029344. doi: 10.1021/cm7029344

    13. [13]

      X. Zong, H.J. Yan, G.P. Wu, G.J. Ma, F.Y. Wen, W. Lu, L. Can, J. Am. Chem. Soc. 130 (2008) 7176, doi: 10.1021/ja8007825.

    14. [14]

      Y.J. Ren, Y.F. Li, G.X. Pan, N. Wang, Y. Xing, Z.Y. Zhang, J. Mater. Sci. Technol. 171 (2024) 162, https://doi.org/10.1016/j.jmst.2023.06.052. doi: 10.1016/j.jmst.2023.06.052

    15. [15]

      R.C. Shen, D.D. Ren, Y.N. Ding, Y.T. Guan, Y.H. Ng, P. Zhang, X. Li, Sci. China Mater. 63 (2020) 2153, https://doi.org/10.1007/s40843-020-1456-x. doi: 10.1007/s40843-020-1456-x

    16. [16]

      K. Sharma, V. Hasija, M. Malhotra, P.K. Verma, A.A. Parwaz Khan, S. Thakur, Q. Van Le, H.H. Phan Quang, V.-H. Nguyen, P. Singh, P. Raizada, Int. J. Hydrogen Energy 52 (2024) 804, https://doi.org/10.1016/j.ijhydene.2023.09.033. doi: 10.1016/j.ijhydene.2023.09.033

    17. [17]

      M.Y. Qi, Q. Lin, Z.R. Tang, Y.J. Xu, Appl. Catal. B Environ. 307 (2022) 121158, https://doi.org/10.1016/j.apcatb.2022.121158. doi: 10.1016/j.apcatb.2022.121158

    18. [18]

      Q. Liang, G.Y. Jiang, Z. Zhao, Z.Y. Li, M. MacLachlan, J. Catal. Sci. Technol. 5 (2015) 3368, https://doi.org/10.1039/c5cy00470e. doi: 10.1039/c5cy00470e

    19. [19]

      G.T. Sun, J.J. Zhang, B. Cheng, H.G. Yu, J.G. Yu, J.S. Xu, Chem. Eng. J. 476 (2023) 146818, https://doi.org/10.1016/j.cej.2023.146818. doi: 10.1016/j.cej.2023.146818

    20. [20]

      L.J. Sun, X.H. Yu, L.Y. Tang, W.K. Wang, Q.Q. Liu, Chin. J. Catal. 52 (2023) 164, https://doi.org/10.1016/s1872-2067(23)64507-3. doi: 10.1016/s1872-2067(23)64507-3

    21. [21]

      X.L. Xiang, L.X. Wang, J.J. Zhang, B. Cheng, J.G. Yu, W. Macyk, Adv. Photonics Res. 3 (2022) 2200065, https://doi.org/10.1002/adpr.202200065. doi: 10.1002/adpr.202200065

    22. [22]

      X.L. Xiang, L.Y. Zhang, C. Luo, J.J. Zhang, B. Cheng, G.J. Liang, Z.Y. Zhang, J.G. Yu, Appl. Catal. B Environ. 340 (2024) 123196, https://doi.org/10.1016/j.apcatb.2023.123196. doi: 10.1016/j.apcatb.2023.123196

    23. [23]

      C. Cheng, B.W. He, J.J. Fan, B. Cheng, S.W. Cao, J.G. Yu, Adv. Mater. 33 (2021) 2100317, https://doi.org/10.1002/adma.202100317. doi: 10.1002/adma.202100317

    24. [24]

      X.Y. Deng, J.J. Zhang, K.Z. Qi, G.J. Liang, F.Y. Xu, J.G. Yu, Nat. Commun. 15 (2024) 4807, https://doi.org/10.1038/s41467-024-49004-7. doi: 10.1038/s41467-024-49004-7

    25. [25]

      K. Meng, J.J. Zhang, B. Cheng, X.G. Ren, Z.S. Xia, F.Y. Xu, L.Y. Zhang, J.G. Yu, Adv. Mater. 36 (2024) e2406460, https://doi.org/10.1002/adma.202406460. doi: 10.1002/adma.202406460

    26. [26]

      M.L. Gu, Y. Yang, B. Cheng, L.Y. Zhang, P. Xiao, T. Chen, Chin. J. Catal. 59 (2024) 185, https://doi.org/10.1016/s1872-2067(23)64610-8. doi: 10.1016/s1872-2067(23)64610-8

    27. [27]

      J.W. Fu, Q.L. Xu, J.X. Low, C.J. Jiang, J.G. Yu, Appl. Catal. B Environ. 243 (2019) 556, https://doi.org/10.1016/j.apcatb.2018.11.011. doi: 10.1016/j.apcatb.2018.11.011

    28. [28]

      Z. Wang, X. Yue, Q. Xiang, Coord. Chem. Rev. 504 (2024), 125674, doi: 10.1016/j.ccr.2024.215674.

    29. [29]

      Z. Yu, F. Li, Q. Xiang, J. Mater. Sci. Technol. 175 (2024) 244, https://doi.org/10.1016/j.jmst.2023.08.023. doi: 10.1016/j.jmst.2023.08.023

    30. [30]

      S. Wageh, A.A. Al-Ghamdi, O.A. Al-Hartomy, M.F. Alotaibi, L.X. Wang, Chin. J. Catal. 43 (2022) 586, https://doi.org/10.1016/s1872-2067(21)63925-6. doi: 10.1016/s1872-2067(21)63925-6

    31. [31]

      X.H. Wu, G.Q. Chen, J. Wang, J.M. Li, G.H. Wang, Acta Phys. Chim. Sin. 39 (2023) 2212016, https://doi.org/10.3866/PKU.WHXB202212016. doi: 10.3866/PKU.WHXB202212016

    32. [32]

      Q.L. Xu, R.G. He, Y.J. Li, Acta Phys. Chim. Sin. 39 (2023) 2211009, https://doi.org/10.3866/PKU.WHXB202211009. doi: 10.3866/PKU.WHXB202211009

    33. [33]

      C. Cheng, J.J. Zhang, B.C. Zhu, G.J. Liang, L.Y. Zhang, J.G. Yu, Angew. Chem. Int. Ed. 62 (2023) e202218688, https://doi.org/10.1002/anie.202218688. doi: 10.1002/anie.202218688

    34. [34]

      J.T. Yan, J.J. Zhang, J. Mater. Sci. Technol. 193 (2024) 18, https://doi.org/10.1016/j.jmst.2023.12.054. doi: 10.1016/j.jmst.2023.12.054

    35. [35]

      Y. Wu, C. Cheng, K.Z. Qi, B. Cheng, J.J. Zhang, J.G. Yu, L.Y. Zhang, Acta Phys. Chim. Sin. 40 (2024) 2406027, doi: 10.3866/PKU.WHXB202406027.

    36. [36]

      C. Cheng, X.C. Wang, F. Wang, Appl. Surf. Sci. 495 (2019) 143537, https://doi.org/10.1016/j.apsusc.2019.143537. doi: 10.1016/j.apsusc.2019.143537

    37. [37]

      X.Y. Xiong, Y.R. Jin, H.W. Wang, P. He, X. Xiang, P.C. Hu, K.F. Liu, Q.Q. Wei, B.Z. Wang, Mater. Chem. Phys. 281 (2022) 125824, https://doi.org/10.1016/j.matchemphys.2022.125824. doi: 10.1016/j.matchemphys.2022.125824

    38. [38]

      Q. Li, J. Li, W.R. Wang, L.N. Liu, Z.W. Xu, G.H. Xie, J.J. Li, J.H. Yao, W.S. Li, Chin. J. Chem. 40 (2022) 2457, https://doi.org/10.1002/cjoc.202200355. doi: 10.1002/cjoc.202200355

    39. [39]

      T. Senasu, K. Hemavibool, S. Nanan, RSC Adv. 8 (2018) 22592, https://doi.org/10.1039/c8ra02061b. doi: 10.1039/c8ra02061b

    40. [40]

      Y. Yang, J.S. Wu, B. Cheng, L.Y. Zhang, A.A. Al-Ghamdi, S. Wageh, Y.J. Li, Chin. J. Struct. Chem. 41 (2022) 2206006, https://doi.org/10.14102/j.cnki.0254-5861.2022-0124. doi: 10.14102/j.cnki.0254-5861.2022-0124

    41. [41]

      B.W. Liu, J.J. Cai, J.J. Zhang, H.Y. Tan, B. Cheng, J.S. Xu, Chin. J. Catal. 51 (2023) 204, https://doi.org/10.1016/s1872-2067(23)64466-3. doi: 10.1016/s1872-2067(23)64466-3

    42. [42]

      M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J.Rouquerol, K.S.W. Sing, Pure Appl. Chem. 87 (2015) 1051, https://doi.org/10.1515/pac-2014-1117. doi: 10.1515/pac-2014-1117

    43. [43]

      L.W. Wang, R.R. Zheng, Q.F. Niu, H.L. Yuan, M. Meng, Mater. Lett. 362 (2024) 136179, https://doi.org/10.1016/j.matlet.2024.136179. doi: 10.1016/j.matlet.2024.136179

    44. [44]

      L. Wang, H.H. Zhou, H.Z. Zhang, Y.L. Song, H. Zhang, L.K. Luo, Y.F. Yang, S.Q. Bai, Y. Wang, S.X. Liu, Nanoscale 12 (2020) 13791, https://doi.org/10.1039/d0nr03196h. doi: 10.1039/d0nr03196h

    45. [45]

      B.C. Zhu, J. Sun, Y.Y. Zhao, L.Y. Zhang, J.G. Yu, Adv. Mater. 36 (2024) 2310600, https://doi.org/10.1002/adma.202310600. doi: 10.1002/adma.202310600

    46. [46]

      G.T. Sun, Z.G. Tai, F. Li, Q. Ye, T. Wang, Z.Y. Fang, L.C. Jia, W. Liu, H.Q. Wang, Small 19 (2023) e2207758, https://doi.org/10.1002/smll.202207758. doi: 10.1002/smll.202207758

    47. [47]

      B.W. He, P. Xiao, S.J. Wan, J.J. Zhang, T. Chen, L.Y. Zhang, J.G. Yu, Angew. Chem. Int. Ed. 62 (2023) e202313172, https://doi.org/10.1002/anie.202313172. doi: 10.1002/anie.202313172

    48. [48]

      W.L. Yu, C.B. Bie, Acta Phys. Chim. Sin. 40 (2024) 2307022, https://doi.org/10.3866/PKU.WHXB202307022. doi: 10.3866/PKU.WHXB202307022

    49. [49]

      B.C. Zhu, J.J. Liu, J. Sun, F. Xie, H.Y. Tan, B. Cheng, J.J. Zhang, J. Mater. Sci. Technol. 162 (2023) 90, https://doi.org/10.1016/j.jmst.2023.03.054. doi: 10.1016/j.jmst.2023.03.054

    50. [50]

      Z. Meng, J.J. Zhang, C.C. Jiang, C. Trapalis, L.Y. Zhang, J.G. Yu, Small (2023) e2308952, https://doi.org/10.1002/smll.202308952. doi: 10.1002/smll.202308952

    51. [51]

      W.C. Wang, Y. Tao, J.C. Fan, Z.P. Yan, H. Shang, D.L. Phillips, M. Chen, G.S. Li, Adv. Funct. Mater. 32 (2022) 2201357, https://doi.org/10.1002/adfm.202201357. doi: 10.1002/adfm.202201357

    52. [52]

      C.B. Bie, B.C. Zhu, L.X. Wang, H.G. Yu, C.H. Jiang, T. Chen, J.G. Yu, Angew. Chem. Int. Ed. 61 (2022) e202212045, https://doi.org/10.1002/anie.202212045. doi: 10.1002/anie.202212045

    53. [53]

      L. Zhu, Z.F. Liang, H. Li, Q.N. Xu, D.C. Jiang, H.W. Du, C.H. Zhu, H.Q. Li, Z. Lu, Y.P. Yuan, Small 19 (2023) 2301017, https://doi.org/10.1002/smll.202301017. doi: 10.1002/smll.202301017

    54. [54]

      J.J. Cai, B.W. Liu, S.M. Zhang, L.X. Wang, Z. Wu, J.J. Zhang, B. Cheng, J. Mater. Sci. Technol. 197 (2024) 183, https://doi.org/10.1016/j.jmst.2024.02.012. doi: 10.1016/j.jmst.2024.02.012

    55. [55]

      K.F. Wu, H.M. Zhu, Z. Liu, W. Rodríguez, T.Q. Lian, J. Am. Chem. Soc. 134 (2012) 10337, https://doi.org/10.1021/ja303306u. doi: 10.1021/ja303306u

    56. [56]

      B.C. Qiu, L. Cai, N. Zhang, X.M. Tao, Y. Chai, Adv. Sci. 7 (2020) 1903568, https://doi.org/10.1002/advs.201903568. doi: 10.1002/advs.201903568

    57. [57]

      J.J. Zhang, J.J. Liu, Z. Meng, S. Jana, L.X. Wang, B.C. Zhu, J. Mater. Sci. Technol. 159 (2023) 1, https://doi.org/10.1016/j.jmst.2023.02.044. doi: 10.1016/j.jmst.2023.02.044

    58. [58]

      J.J. Zhang, G.Y. Yang, B.W. He, B. Cheng, Y.J. Li, G.J. Liang, L.X. Wang, Chin. J. Catal. 43 (2022) 2530, https://doi.org/10.1016/s1872-2067(22)64108-1. doi: 10.1016/s1872-2067(22)64108-1

    59. [59]

      C. Cheng, B.C. Zhu, B. Cheng, W. Macyk, L.X. Wang, J.G. Yu, ACS Catal. 13 (2022) 459, https://doi.org/10.1021/acscatal.2c05001. doi: 10.1021/acscatal.2c05001

    60. [60]

      J.Y. Qiu, K. Meng, Y. Zhang, B. Cheng, J.J. Zhang, L.X. Wang, J.G. Yu, Adv. Mater. 36 (2024) 2400288, https://doi.org/10.1002/adma.202400288. doi: 10.1002/adma.202400288

    61. [61]

      M.M. Luo, G.J. Jiang, M. Yu, Y.P. Yan, Z.J. Qin, Y. Li, Q. Zhang, J. Mater. Sci. Technol. 161 (2023) 220, https://doi.org/10.1016/j.jmst.2023.03.038. doi: 10.1016/j.jmst.2023.03.038

    62. [62]

      J.H. Hua, Z.L. Wang, J.F. Zhang, K. Dai, C.F. Shao, K. Fan, J. Mater. Sci. Technol. 156 (2023) 64, https://doi.org/10.1016/j.jmst.2023.03.003. doi: 10.1016/j.jmst.2023.03.003

    63. [63]

      T. Sun, C.X. Li, Y.P. Bao, J. Fan, E.Z. Liu, Acta Phys. Chim. Sin. 39 (2023) 2212009, https://doi.org/10.3866/PKU.WHXB202212009. doi: 10.3866/PKU.WHXB202212009

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  58
  • HTML全文浏览量:  10
文章相关
  • 发布日期:  2025-08-15
  • 收稿日期:  2025-02-20
  • 接受日期:  2025-03-24
  • 修回日期:  2025-03-10
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章