具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性

王玉 石海洋 陈子涵 陈峰 王苹 王雪飞

引用本文: 王玉, 石海洋, 陈子涵, 陈峰, 王苹, 王雪飞. 具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性[J]. 物理化学学报, 2025, 41(7): 100081. doi: 10.1016/j.actphy.2025.100081 shu
Citation:  Yu Wang, Haiyang Shi, Zihan Chen, Feng Chen, Ping Wang, Xuefei Wang. Hollow AgPt@Pt core-shell cocatalyst with electron-rich Ptδ shell for boosting selectivity of photocatalytic H2O2 production for faceted BiVO4[J]. Acta Physico-Chimica Sinica, 2025, 41(7): 100081. doi: 10.1016/j.actphy.2025.100081 shu

具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性

    通讯作者: 王雪飞, xuefei@whut.edu.cn
  • 基金项目:

    国家自然科学基金 22178276

    国家资助博士后研究人员计划 GZC20240888

    武汉理工大学国家大学生创新创业训练计划 S202410497023

摘要: 铂(Pt)作为优异的氧还原助催化剂,在光催化产H2O2方面具有巨大潜力。然而,Pt对O2的吸附能力过强,易使O―O键裂解,从而降低2电子氧还原反应(ORR)生成H2O2的选择性。在本研究中,通过调节助剂结构改变Pt的电子结构,从而削弱Pt―O键的强度。本文通过两步光沉积法在BiVO4的(010)面上连续修饰了铂和银助催化剂。由于在此过程中存在置换反应,最终合成了一种具有中空AgPt合金核和富电子Ptδ壳(AgPt@Pt)结构的协同催化剂。光催化实验结果表明:修饰空心结构AgPt@Pt助剂的BiVO4产生H2O2的速率达到了1021.5 μmol∙L−1,且其对应的量子效率(AQE)为5.07%,是Pt/BiVO4光催化剂(35.7 μmol∙L−1)的28.6倍。此外,密度泛函理论计算和X射线光电子能谱表征表明:AgPt合金向Pt壳转移电子,生成富电子的Ptδ活性位点,进而增加了AgPt@Pt助催化剂中Pt―Oads反键轨道的占有率。这种电子再分布削弱了O2在Pt上的吸附强度,促进了2电子ORR反应,并显著提高了H2O2的生成效率。这一合成策略为制备具有更高H2O2选择性的铂基纳米助催化剂提供了可靠的方法。

English

    1. [1]

      X. Zhu, B. Xiao, J. Su, S. Wang, Q. Zhang, J. Wang, Acta Phys. Chim. Sin. 40 (2024) 2407005, https://doi.org/10.3866/PKU.WHXB202407005. doi: 10.3866/PKU.WHXB202407005

    2. [2]

      A. Fink, R. Delima, A. Rousseau, C. Hunt, N. LeSage, A. Huang, M. Stolar, C. Berlinguette, Nat. Commun. 15 (2024) 766, https://doi.org/10.1038/s41467-024-44741-1. doi: 10.1038/s41467-024-44741-1

    3. [3]

      Y. Luo, X. Wang, P. Wang, F. Chen, H. Yu, Chem. Eng. J. 497 (2024) 154886, https://doi.org/10.1016/j.cej.2024.154886. doi: 10.1016/j.cej.2024.154886

    4. [4]

      Y. Ma, S. Wang, Y. Zhang, B. Cheng, L. Zhang, J. Materiomics 11 (2025) 100978, https://doi.org/10.1016/j.jmat.2024.100978. doi: 10.1016/j.jmat.2024.100978

    5. [5]

      X. Zhou, C. Ai, X Wang, Z. Wu, J. Zhang, J. Materiomics 11 (2025) 100974, https://doi.org/10.1016/j.jmat.2024.100974. doi: 10.1016/j.jmat.2024.100974

    6. [6]

      S. Ho-Kimura, ACS Appl. Energy Mater. 7 (2024) 1902, https://doi.org/10.1021/acsaem.3c02981. doi: 10.1021/acsaem.3c02981

    7. [7]

      C. Cheng, J. Yu, D. Xu, L. Wang, G. Liang, L. Zhang, M. Jaroniec, Nat. Commun. 15 (2024) 1313, https://doi.org/10.1038/s41467-024-45604-5. doi: 10.1038/s41467-024-45604-5

    8. [8]

      J. Qiu, K. Meng, Y. Zhang, B. Cheng, J. Zhang, L. Wang, J. Yu, Adv. Mater. 36 (2024) 2400288, https://doi.org/10.1002/adma.202400288. doi: 10.1002/adma.202400288

    9. [9]

      Y. Yang, B. Cheng, J. Yu, L. Wang, W. Ho, Nano Res. 16 (2023) 4506, https://doi.org/10.1007/s12274-021-3733-0. doi: 10.1007/s12274-021-3733-0

    10. [10]

      X. Zhang, D. Gao, B. Zhu, B. Cheng, J. Yu, H. Yu, Nat. Commun. 15 (2024) 3212, https://doi.org/10.1038/s41467-024-47624-7. doi: 10.1038/s41467-024-47624-7

    11. [11]

      H. Shi, S. Li, M. Wang, X. Yin, J. Huang, W. Qi, X. Wang, P. Wang, F. Chen, H. Yu, Catal. Sci. Technol. 13 (2023) 3884, https://doi.org/10.1039/D3CY00331K. doi: 10.1039/D3CY00331K

    12. [12]

      L. Lin, Z. Sun, H. Chen, L. Zhao, M. Sun, Y. Yang, Z. Liao, X. Wu, X. Li, C. Tang, Acta Phys. Chim. Sin. 40 (2024) 2305019, https://doi.org/10.3866/PKU.WHXB202305019. doi: 10.3866/PKU.WHXB202305019

    13. [13]

      Y. Zhao, Y. Zhang, H. Tan, C. Ai, J. Zhang, J. Materiomics 11 (2025) 100970, https://doi.org/10.1016/j.jmat.2024.100970. doi: 10.1016/j.jmat.2024.100970

    14. [14]

      K. Meng, J. Zhang, B. Cheng, X. Ren, Z. Xia, F. Xu, L. Zhang, J. Yu, Adv. Mater. 36 (2024) 2406460, https://doi.org/10.1002/adma.202406460. doi: 10.1002/adma.202406460

    15. [15]

      J. Huang, H. Shi, X. Wang, P. Wang, F. Chen, H. Yu, Catal. Sci. Technol. 14 (2024) 2514, https://doi.org/10.1039/D4CY00141A. doi: 10.1039/D4CY00141A

    16. [16]

      Y. Li, Z. Liu, W. Qi, H. Shi, K. Wang, X. Wang, P. Wang, F. Chen, H. Yu, Appl. Surf. Sci. 656 (2024) 159664, https://doi.org/10.1016/j.apsusc.2024.159664. doi: 10.1016/j.apsusc.2024.159664

    17. [17]

      Y. Xia, K. Zhang, H. Yang, L. Shi, Q. Yi, Acta Phys. Chim. Sin. 40 (2024) 2407012, https://doi.org/10.3866/PKU.WHXB202407012. doi: 10.3866/PKU.WHXB202407012

    18. [18]

      H. Shi, Y. Li, K. Wang, S. Li, X. Wang, P. Wang, F. Chen, H. Yu, Chem. Eng. J. 443 (2022) 136429, https://doi.org/10.1016/j.cej.2022.136429. doi: 10.1016/j.cej.2022.136429

    19. [19]

      Y. Zhang, J. Qiu, B. Zhu, G. Sun, B. Cheng, L. Wang, Chin. J. Catal. 57 (2024) 143, https://doi.org/10.1016/S1872-2067(23)64580-2. doi: 10.1016/S1872-2067(23)64580-2

    20. [20]

      H. Chen, L. Nie, K. Xu, Y. Yang, C. Fang, Acta Phys. Chim. Sin. 40 (2024) 2406019, https://doi.org/10.3866/PKU.WHXB202406019. doi: 10.3866/PKU.WHXB202406019

    21. [21]

      H. Lee, H. Nam, G. Han, Y. Cho, B. Yeo, M. Kim, D. Kim, K. Lee, S. Lee, S Han, Acta Mater. 205 (2021) 116563, https://doi.org/10.1016/j.actamat.2020.116563. doi: 10.1016/j.actamat.2020.116563

    22. [22]

      B. Park, W. Park, J. Choi, W. Choi, Y. Sung, S. Sul, O. Kwon, H. Song, Chem. Sci. 14 (2023) 7553, https://doi.org/10.1039/D3SC01429K. doi: 10.1039/D3SC01429K

    23. [23]

      S. He, D. Chu, Z. Pang, Y. Du, J. Wang, Y. Chen, Y. Su, J. Qin, X. Pan, Z. Zhou, et al., Acta Phys. Chim. Sin. 41 (2025) 2408006, https://doi.org/10.3866/PKU.WHXB202408006. doi: 10.3866/PKU.WHXB202408006

    24. [24]

      Y. Xia, B. Zhu, X. Qin, W. Ho, J. Yu, Chem. Eng. J. 467 (2023) 143528, https://doi.org/10.1016/j.cej.2023.143528. doi: 10.1016/j.cej.2023.143528

    25. [25]

      B. He, C. Luo, Z. Wang, L. Zhang, J. Yu, Appl. Catal., B. 323 (2022) 1222000, https://doi.org/10.1016/j.apcatb.2022.122200. doi: 10.1016/j.apcatb.2022.122200

    26. [26]

      B. Zi, H. Zheng, T. Zhou, Y. Zhang, Q. Lu, M. Chen, H. Sun, B. Xiao, Z. Qiu, J. Zhao, et al. , J. Colloid Interface Sci. 680 (2024) 298, https://doi.org/10.1016/j.jcis.2024.11.018. doi: 10.1016/j.jcis.2024.11.018

    27. [27]

      F. Shao, X. Zhu, A. Wang, K. Fang, J. Yuan, J. Feng, J. Colloid Interface Sci. 505 (2017) 307, https://doi.org/10.1016/j.jcis.2017.05.088. doi: 10.1016/j.jcis.2017.05.088

    28. [28]

      G. Wu, W. Xu, H. Zuo, X. Wei, J. Cao, Comput. Mater. Sci. 228 (2023) 112328, https://doi.org/10.1016/j.commatsci.2023.112328 doi: 10.1016/j.commatsci.2023.112328

    29. [29]

      K. Wang, M. Wang, J. Yu, D. Liao, H. Shi, X. Wang, H. Yu, ACS Appl. Nano Mater. 4 (2021) 13158, https://doi.org/10.1021/acsanm.1c02688. doi: 10.1021/acsanm.1c02688

    30. [30]

      Y. Lin, C. Lu, C. Wei, J. Alloys Compd. 781 (2019) 56, https://doi.org/10.1016/j.jallcom.2018.12.071. doi: 10.1016/j.jallcom.2018.12.071

    31. [31]

      Y. Zhang, H. Gong, Y. Zhang, K. Liu, H. Cao, H. Yan, J. Zhu, Eur. J. Inorg. Chem. 2017 (2017) 2990, https://doi.org/10.1002/ejic.201700165. doi: 10.1002/ejic.201700165

    32. [32]

      G. Che, D. Wang, C. Wang, F. Yu, D. Li, N. Suzuki, C. Terashima, A. Fujishima, Y. Liu, X. Zhang, Chem. Eng. J. 397 (2020) 125381, https://doi.org/10.1016/j.cej.2020.125381. doi: 10.1016/j.cej.2020.125381

    33. [33]

      S. Heckel, M. Wittmann, M. Reid, K. Villa, J. Simmchen, Acc. Mater. Res. 5 (2024) 400, https://doi.org/10.1021/accountsmr.3c00021. doi: 10.1021/accountsmr.3c00021

    34. [34]

      H. Lv, Y. Liu, J. Zhou, Y. Bai, H. Shi, B. Yue, S. Shen, D. Yu, Chem. Eng. J. 484 (2024) 149514, https://doi.org/10.1016/j.cej.2024.149514. doi: 10.1016/j.cej.2024.149514

    35. [35]

      G. Yentür, M. Dükkancı, Appl. Surf. Sci. 531 (2020) 147322, https://doi.org/10.1016/j.apsusc.2020.147322. doi: 10.1016/j.apsusc.2020.147322

    36. [36]

      Y. Yang, J. Liu, M. Gu, B. Cheng, L. Wang, J. Yu, Appl. Catal., B. 333 (2023) 122780, https://doi.org/10.1016/j.apcatb.2023.122780. doi: 10.1016/j.apcatb.2023.122780

    37. [37]

      L. Wang, J. Sun, B. Cheng, R. He, J. Yu, J. Phys. Chem. Lett. 14 (2023) 4803, https://doi.org/10.1021/acs.jpclett.3c00811. doi: 10.1021/acs.jpclett.3c00811

    38. [38]

      K. Niu, J. Park, H. Zheng, A. Alivisatos, Nano Lett. 13 (2013) 5715, https://doi.org/10.1021/nl4035362. doi: 10.1021/nl4035362

    39. [39]

      He, W.; Wu, X.; Liu, J.; Hu, X.; Zhang, K.; Hou, S.; Zhou, W.; Xie, S. Chem. Mater. 22 (2010) 2988, https://doi.org/10.1021/cm100393v. doi: 10.1021/cm100393v

    40. [40]

      S. Lin, M. Habib, S. Burse, R. Mandavkar, M. Joni, S. Kunwar, J. Lee, J. Alloys Compd. 952 (2023) 169952, https://doi.org/10.1016/j.jallcom.2023.169952. doi: 10.1016/j.jallcom.2023.169952

    41. [41]

      Y. Wu, Y. Yang, M. Gu, C. Bie, H. Tan, B. Cheng, J. Xu, Chin. J. Catal. 53 (2023) 123, https://doi.org/10.1016/S1872-2067(23)64514-0. doi: 10.1016/S1872-2067(23)64514-0

    42. [42]

      R. He, D. Xu, X. Li, J. Mater. Sci. Technol. 138 (2023) 256, https://doi.org/10.1016/j.jmst.2022.09.002. doi: 10.1016/j.jmst.2022.09.002

    43. [43]

      H. Zhang, J. Liu, Y. Zhang, B. Cheng, B. Zhu, L. Wang, J. Mater. Sci. Technol. 166 (2023) 241.https://doi.org/10.1016/j.jmst.2023.05.030.

    44. [44]

      D. Gao, W. Zhong, X. Zhang, P. Wang, H. Yu, Small 20 (2023) 2309123, https://doi.org/10.1002/smll.202309123. doi: 10.1002/smll.202309123

    45. [45]

      B. Zhu, J. Liu, J. Sun, F. Xie, H. Tan, B. Cheng, J. Zhang, J. Mater. Sci. Technol. 162 (2023) 90, https://doi.org/10.1016/j.jmst.2023.03.054. doi: 10.1016/j.jmst.2023.03.054

    46. [46]

      Z. Jiang, Q. Long, B. Cheng, R. He, L. Wang, J. Mater. Sci. Technol. 162 (2023) 1, https://doi.org/10.1016/j.jmst.2023.03.045. doi: 10.1016/j.jmst.2023.03.045

    47. [47]

      B. He, Z. Wang, P. Xiao, T. Chen, J. Yu, L. Zhang, Adv. Mater. 34 (2022) 2203225, https://doi.org/10.1002/adma.202203225. doi: 10.1002/adma.202203225

    48. [48]

      Z. Jiang, Y. Zhang, L. Zhang, B. Cheng, L. Wang, Chin. J. Catal. 43 (2022) 226, https://doi.org/10.1016/S1872-2067(21)63832-9. doi: 10.1016/S1872-2067(21)63832-9

    49. [49]

      G. Han, F. Xu, B. Cheng, Y. Li, J. Yu, L. Zhang, Acta Phys. Chim. Sin. 38 (2022) 2112037, https://doi.org/10.3866/PKU.WHXB202112037. doi: 10.3866/PKU.WHXB202112037

    50. [50]

      Z. Jiang, B. Cheng, Y. Zhang, S. Wageh, Ahmed A. Al‐Ghamdi, J. Yu, L. Wang, J. Mater. Sci. Technol. 124 (2022) 193, https://doi.org/10.1016/j.jmst.2022.01.029. doi: 10.1016/j.jmst.2022.01.029

    51. [51]

      Y. Zhang, Y. Wang, Y. Liu, S. Zhang, Y. Zhao, J. Zhang, J. Materiomics 11 (2025) 100985, https://doi.org/10.1016/j.jmat.2024.100985. doi: 10.1016/j.jmat.2024.100985

    52. [52]

      K. Li, J. Mei, J. Li, Y. Liu, G. Wang, D. Hu, S. Yan, K Wang, Sci. China Mater. 67 (2024) 484, https://doi.org/10.1007/s40843-023-2717-0. doi: 10.1007/s40843-023-2717-0

    53. [53]

      X. Yin, D. Gao, J. Xu, B. Zhao, X. Wang, J. Yu, H. Yu, J. Colloid Interface Sci. 678 (2025) 1249, https://doi.org/10.1016/j.jcis.2024.09.195. doi: 10.1016/j.jcis.2024.09.195

    54. [54]

      S. Wu, X. Wang, H. Yu, Chin. J. Struct. Chem. 43 (2024) 100457, https://doi.org/10.1016/j.cjsc.2024.100457. doi: 10.1016/j.cjsc.2024.100457

    55. [55]

      G. Liu, R. Chen, B. Xia, Z. Wu, S. Liu, A. Talebian-Kiakalaieh, J. Ran, Chin. J. Catal. 61 (2024) 97, https://doi.org/10.1016/S1872-2067(24)60014-8. doi: 10.1016/S1872-2067(24)60014-8

    56. [56]

      X. Cao, Y. Han, C. Gao, X. Huang, Y. Xu, N. Wang, J. Mater. Chem. A, 1 (2013) 14904, https://doi.org/10.1039/C3TA13071A. doi: 10.1039/C3TA13071A

    57. [57]

      Y. Zhao, S. Zhang, Z. Wu, B Zhu, G. Sun, J. Zhang, Chin. J. Catal. 60 (2024) 219, https://doi.org/10.1016/S1872-2067(23)64645-5. doi: 10.1016/S1872-2067(23)64645-5

    58. [58]

      M. Sayed, F. Xu, P. Kuang, J. Low, S. Wang, L. Zhang, J. Yu, Nat. Commun. 12 (2021) 4936, https://doi.org/10.1038/s41467-021-25007-6. doi: 10.1038/s41467-021-25007-6

    59. [59]

      H. Phuoc Toan, D. Nguyen, P. Minh Phan, N. Anh, P. Phuong Ly, M. Pham, S. Hyun Hur, T. Thi Ung, D. Danh Bich, M. Chien Nguyen, et al. , ACS Appl. Mater. Interfaces 16 (2024) 29421, https://doi.org/10.1021/acsami.4c04387. doi: 10.1021/acsami.4c04387

    60. [60]

      H. Sun, D. Li, Y. Min, Y. Wang, Y. Ma, Y. Zheng, H. Huang, Acta Phys. Chim. Sin. 40 (2024) 2307007, https://doi.org/10.3866/PKU.WHXB202307007. doi: 10.3866/PKU.WHXB202307007

    61. [61]

      J. Yang, T. Shao, C. Luo, J. Li, S. He, B. Meng, Q. Zhang, D. Zhang, Z. Xue, X. Zhou, J. Alloys Compd. 834 (2020) 155056, https://doi.org/10.1016/j.jallcom.2020.155056. doi: 10.1016/j.jallcom.2020.155056

    62. [62]

      R. Bariki, S. Pradhan, S. Panda, S. Nayak, A. Pati, B. Mishra, Langmuir 39 (2023) 7707, https://doi.org/10.1021/acs.langmuir.3c00519. doi: 10.1021/acs.langmuir.3c00519

    63. [63]

      M. Song, M. Chen, C. Zhang, J. Zhang, W. Liu, X. Huang, J. Li, G. Feng, D. Wang, ACS Appl. Mater. Interfaces 15 (2023) 31375, https://doi.org/10.1021/acsami.3c02793. doi: 10.1021/acsami.3c02793

    64. [64]

      B. Zhao, W. Zhong, F. Chen, P. Wang, C. Bie, H. Yu, Chin. J. Catal. 52 (2023) 127, https://doi.org/10.1016/S1872-2067(23)64491-2. doi: 10.1016/S1872-2067(23)64491-2

    65. [65]

      Y. Ko, K. Choi, B. Yang, W. Lee, J. Kim, J. Choi, K. Chae, J. Lee, Y. Hwang, B. Min, et al. , J. Mater. Chem. A 8 (2020) 9859, https://doi.org/10.1039/D0TA01869D. doi: 10.1039/D0TA01869D

    66. [66]

      N. Wilson, Y. Pan, Y. Shao, J. Zuo, H. Yang, D. Flaherty, ACS Catal. 8 (2018) 2880, https://doi.org/10.1021/acscatal.7b04186. doi: 10.1021/acscatal.7b04186

    67. [67]

      X. Yin, H. Shi, Y. Wang, X. Wang, P. Wang, H. Yu, Acta Phys. Chim. Sin. 40 (2024) 2312007, https://doi.org/10.3866/PKU.WHXB202312007. doi: 10.3866/PKU.WHXB202312007

    68. [68]

      J. Xu, W. Zhong, D. Gao, X. Wang, P. Wang, H. Yu, Chem. Eng. J. 439 (2022) 135758, https://doi.org/10.1016/j.cej.2022.135758. doi: 10.1016/j.cej.2022.135758

    69. [69]

      K. Huang, D. Chen, X. Zhang, R. Shen, P. Zhang, D. Xu, X. Li, Acta Phys. Chim. Sin. 40 (2024) 2407020, https://doi.org/10.3866/PKU.WHXB202407020. doi: 10.3866/PKU.WHXB202407020

  • 加载中
计量
  • PDF下载量:  5
  • 文章访问数:  123
  • HTML全文浏览量:  18
文章相关
  • 发布日期:  2025-07-15
  • 收稿日期:  2025-02-12
  • 接受日期:  2025-03-17
  • 修回日期:  2025-03-08
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章