Exploring Zn doped NiBP microspheres as efficient and stable electrocatalyst for industrial-scale water splitting

Sumiya Akter Dristy Md Ahasan Habib Shusen Lin Mehedi Hasan Joni Rutuja Mandavkar Young-Uk Chung Md Najibullah Jihoon Lee

Citation:  Sumiya Akter Dristy, Md Ahasan Habib, Shusen Lin, Mehedi Hasan Joni, Rutuja Mandavkar, Young-Uk Chung, Md Najibullah, Jihoon Lee. Exploring Zn doped NiBP microspheres as efficient and stable electrocatalyst for industrial-scale water splitting[J]. Acta Physico-Chimica Sinica, 2025, 41(7): 100079. doi: 10.1016/j.actphy.2025.100079 shu

Exploring Zn doped NiBP microspheres as efficient and stable electrocatalyst for industrial-scale water splitting

English

    1. [1]

      A. Z. Arsad, M. A. Hannan, A. Q. Al-Shetwi, R. A. Begum, M. J. Hossain, P. J. Ker, T. M. I. Mahlia, Int. J. Hydrogen Energy 48 (2023) 27841, https://doi.org/10.1016/j.ijhydene.2023.04.014. doi: 10.1016/j.ijhydene.2023.04.014

    2. [2]

      A. E. Yüzbaşıoğlu, C. Avşar, A. O. Gezerman, Curr. Res. Green Sustain. Chem. 5 (2022) 100307, https://doi.org/10.1016/j.crgsc.2022.100307. doi: 10.1016/j.crgsc.2022.100307

    3. [3]

      M. Amin, H. H. Shah, A. G. Fareed, W. U. Khan, E. Chung, A. Zia, Z. U. R. Farooqi, C. Lee, Int. J. Hydrogen Energy 47 (2022) 33112, https://doi.org/10.1016/j.ijhydene.2022.07.172. doi: 10.1016/j.ijhydene.2022.07.172

    4. [4]

      U. Y. Qazi, Energies 15 (2022) 4741, https://doi.org/10.3390/en15134741. doi: 10.3390/en15134741

    5. [5]

      W. -J. Jiang, T. Tang, Y. Zhang, J. -S. Hu, Acc. Chem. Res. 53 (2020) 1111, https://doi.org/10.1021/acs.accounts.0c00127. doi: 10.1021/acs.accounts.0c00127

    6. [6]

      R. Santhosh Kumar, S. C. Karthikeyan, S. Ramakrishnan, S. Vijayapradeep, A. Rhan Kim, J. -S. Kim, D. Jin Yoo, Chem. Eng. J. 451 (2023) 138471, https://doi.org/10.1016/j.cej.2022.138471. doi: 10.1016/j.cej.2022.138471

    7. [7]

      S. D. Bhoyate, J. Kim, F. M. de Souza, J. Lin, E. Lee, A. Kumar, R. K. Gupta, Coord. Chem. Rev. 474 (2023) 214854, https://doi.org/10.1016/j.ccr.2022.214854. doi: 10.1016/j.ccr.2022.214854

    8. [8]

      R. Zheng, C. Zhao, J. Xiong, X. Teng, W. Chen, Z. Hu, Z. Chen, Sustain. Energy Fuels 5 (2021) 4023, https://doi.org/10.1039/D1SE00697E. doi: 10.1039/D1SE00697E

    9. [9]

      P. J. Chirik, K. M. Engle, E. M. Simmons, S. R. Wisniewski, Org. Process Res. Dev. 27 (2023) 1160, https://doi.org/10.1021/acs.oprd.3c00025. doi: 10.1021/acs.oprd.3c00025

    10. [10]

      S. Bulakhe, N. Shinde, J. S. Kim, R. S. Mane, R. Deokate, Int. J. Energy Res. 46 (2022) 17829, https://doi.org/10.1002/er.8458. doi: 10.1002/er.8458

    11. [11]

      M. N. Lakhan, A. Hanan, A. Hussain, I. Ali Soomro, Y. Wang, M. Ahmed, U. Aftab, H. Sun, H. Arandiyan, Chem. Commun. 60 (2024) 5104, https://doi.org/10.1039/D3CC06015B. doi: 10.1039/D3CC06015B

    12. [12]

      H. Su, J. Jiang, S. Song, B. An, N. Li, Y. Gao, L. Ge, Chinese J. Catal. 44 (2023) 7–49, https://doi.org/10.1016/S1872-2067(22)64149-4. doi: 10.1016/S1872-2067(22)64149-4

    13. [13]

      Y. Xin, Q. Hua, C. Li, H. Zhu, L. Gao, X. Ren, P. Yang, A. Liu, J. Mater. Chem. A 12 (2024) 23147, https://doi.org/10.1039/D4TA03393K. doi: 10.1039/D4TA03393K

    14. [14]

      L. Huo, C. Jin, K. Jiang, Q. Bao, Z. Hu, J. Chu, Adv. Energy Sustain. Res. 3 (2022) 2100189, https://doi.org/10.1002/aesr.202100189. doi: 10.1002/aesr.202100189

    15. [15]

      X. Deng, R. Zhang, Q. Li, W. Gu, L. Hao, ChemistrySelect 7 (2022) e202200091, https://doi.org/10.1002/slct.202200091. doi: 10.1002/slct.202200091

    16. [16]

      G. Anandha babu, S. Perumal, M. K. A. Mohammed, M. Govindasamy, A. A. Alothman, M. Ouladsmane, R. Ganesan, Int. J. Hydrogen Energy 54 (2024) 652, https://doi.org/10.1016/j.ijhydene.2023.06.063. doi: 10.1016/j.ijhydene.2023.06.063

    17. [17]

      S. Lin, R. Mandavkar, M. A. Habib, S. A. Dristy, M. H. Joni, J. -H. Jeong, J. Lee, J. Colloid Interface Sci. 677 (2024) 587, https://doi.org/10.1016/j.jcis.2024.08.009. doi: 10.1016/j.jcis.2024.08.009

    18. [18]

      W. Li, Y. Deng, L. Luo, Y. Du, X. Cheng, Q. Wu, J. Colloid Interface Sci. 639 (2023) 416, https://doi.org/10.1016/j.jcis.2023.02.071. doi: 10.1016/j.jcis.2023.02.071

    19. [19]

      P. Ye, K. Fang, H. Wang, Y. Wang, H. Huang, C. Mo, J. Ning, Y. Hu, Nat. Commun. 15 (2024) 1012, https://doi.org/10.1038/s41467-024-45320-0. doi: 10.1038/s41467-024-45320-0

    20. [20]

      L. Huang, R. Yao, X. Wang, S. Sun, X. Zhu, X. Liu, M. G. Kim, J. Lian, F. Liu, Y. Li, H. Zong, S. Han, X. Ding, Energy Environ. Sci. 15 (2022) 2425, https://doi.org/10.1039/D1EE02764F. doi: 10.1039/D1EE02764F

    21. [21]

      J. Du, Z. Zou, C. Xu, Electrochem. Sci. Adv. 1 (2021) e2000038, https://doi.org/10.1002/elsa.202000038. doi: 10.1002/elsa.202000038

    22. [22]

      M. Ahasan Habib, R. Mandavkar, S. Lin, S. Burse, T. Khalid, M. Hasan Joni, J. H. Jeong, J. Lee, Chem. Eng. J. 462 (2023) 142177, https://doi.org/10.1016/j.cej.2023.142177. doi: 10.1016/j.cej.2023.142177

    23. [23]

      S. Anantharaj, S. R. Ede, K. Sakthikumar, K. Karthick, S. Mishra, S. Kundu, ACS Catal. 6 (2016) 8069, https://doi.org/10.1021/acscatal.6b02479. doi: 10.1021/acscatal.6b02479

    24. [24]

      M. K. Sikdar, A. Singh, S. Bhakta, M. Sahoo, S. N. Jha, D. K. Shukla, D. Kanjilal, P. K. Sahoo, Phys. Chem. Chem. Phys. 24 (2022) 18255, https://doi.org/10.1039/D2CP02514K. doi: 10.1039/D2CP02514K

    25. [25]

      X. Zhao, Z. Li, S. Wu, M. Lu, X. Xie, D. Zhan, J. Yan, Adv. Electron. Mater. 10 (2024) 2300610, https://doi.org/10.1002/aelm.202300610. doi: 10.1002/aelm.202300610

    26. [26]

      S. Guo, Z. Du, S. Dai, Phys. Status Solidi 246 (2009) 2329, https://doi.org/10.1002/pssb.200945192. doi: 10.1002/pssb.200945192

    27. [27]

      C. Huang, B. Zhang, Y. Wu, Q. Ruan, L. Liu, J. Su, Y. Tang, R. Liu, P. K. Chu, Appl. Catal. B-Environ. 297 (2021) 120461, https://doi.org/10.1016/j.apcatb.2021.120461. doi: 10.1016/j.apcatb.2021.120461

    28. [28]

      A. Mitra, M. Mallik, S. Sengupta, S. Banthia, K. Das, S. Das, Cryst. Growth Des. 17 (2017) 1539, https://doi.org/10.1021/acs.cgd.6b01420. doi: 10.1021/acs.cgd.6b01420

    29. [29]

      M. A. Habib, S. Lin, M. H. Joni, S. A. Dristy, R. Mandavkar, J. -H. Jeong, J. Lee, J. Energy Chem. 100 (2025) 397, https://doi.org/10.1016/j.jechem.2024.08.060. doi: 10.1016/j.jechem.2024.08.060

    30. [30]

      M. Batool, A. Hameed, M. A. Nadeem, Coord. Chem. Rev. 480 (2023) 215029, https://doi.org/10.1016/j.ccr.2023.215029. doi: 10.1016/j.ccr.2023.215029

    31. [31]

      Y. Hong, J. Choi, E. Lee, Y. J. Hwang, Nanoscale 16 (2024) 11564, https://doi.org/10.1039/D4NR01186D. doi: 10.1039/D4NR01186D

    32. [32]

      H. Pan, R. Hao, L. Wang, Y. Yu, N. Yang, ChemSusChem 18 (2024) e202400900, https://doi.org/10.1002/cssc.202400900. doi: 10.1002/cssc.202400900

    33. [33]

      Y. Wei, X. Wang, M. Sun, M. Ma, J. Tian, M. Shao, ENERGY Environ. Mater. 7 (2024) e12630, https://doi.org/10.1002/eem2.12630. doi: 10.1002/eem2.12630

    34. [34]

      J. Cao, Z. Jiao, R. Zhu, H. Long, Y. Zheng, J. Pan, J. Wang, F. Luo, C. Li, Q. Wei, J. Alloys Compd. 914 (2022) 165362, https://doi.org/10.1016/j.jallcom.2022.165362. doi: 10.1016/j.jallcom.2022.165362

    35. [35]

      S. -Y. Lu, L. Wang, C. Wu, J. Zhang, W. Dou, T. Hu, R. Wang, Y. Liu, Q. Yang, H. Yi, ACS Sustain. Chem. Eng. 12 (2024) 6376, https://doi.org/10.1021/acssuschemeng.4c00479. doi: 10.1021/acssuschemeng.4c00479

    36. [36]

      R. Mandavkar, M. A. Habib, S. Lin, R. Kulkarni, S. Burse, J. -H. Jeong, J. Lee, Appl. Mater. Today 29 (2022) 101579, https://doi.org/10.1016/j.apmt.2022.101579. doi: 10.1016/j.apmt.2022.101579

    37. [37]

      D. Briggs, Handb. Adhes, second ed., 2005, p. 621, https://doi.org/10.1002/0470014229.ch22.

    38. [38]

      D. Rathore, A. Banerjee, S. Pande, ACS Appl. Nano Mater. 5 (2022) 2664, https://doi.org/10.1021/acsanm.1c04359. doi: 10.1021/acsanm.1c04359

    39. [39]

      G. Fu, X. Kang, Y. Zhang, X. Yang, L. Wang, X. -Z. Fu, J. Zhang, J. -L. Luo, J. Liu, Nano-Micro Lett. 14 (2022) 200, https://doi.org/10.1007/s40820-022-00940-3. doi: 10.1007/s40820-022-00940-3

    40. [40]

      P. Krishnamurthy, T. Maiyalagan, G. Panomsuwan, Z. Jiang, M. Rahaman, Catalysts 13 (2023) 1095, https://doi.org/10.3390/catal13071095. doi: 10.3390/catal13071095

    41. [41]

      H. Li, Y. Wang, C. Liu, S. Zhang, H. Zhang, Z. Zhu, Int. J. Hydrogen Energy 47 (2022) 20718, https://doi.org/10.1016/j.ijhydene.2022.04.200. doi: 10.1016/j.ijhydene.2022.04.200

    42. [42]

      M. A. Ashraf, Y. Yang, D. Zhang, B. T. Pham, J. Colloid Interface Sci. 577 (2020) 265, https://doi.org/10.1016/j.jcis.2020.05.060. doi: 10.1016/j.jcis.2020.05.060

    43. [43]

      C. M. Coaty, A. A. Corrao, V. Petrova, P. G. Khalifah, P. Liu, J. Phys. Chem. C 123 (2019) 17873, https://doi.org/10.1021/acs.jpcc.9b04172. doi: 10.1021/acs.jpcc.9b04172

    44. [44]

      [M. A. Habib, S. Burse, S. Lin, R. Mandavkar, M. H. Joni, J. Jeong, S. Lee, J. Lee, Small (2023) 2307533, https://doi.org/10.1002/smll.202307533.

    45. [45]

      C. Prakash, P. Sahoo, R. Yadav, A. Pandey, V. K. Singh, A. Dixit, Int. J. Hydrogen Energy 48 (2023) 21969, https://doi.org/10.1016/j.ijhydene.2023.03.093. doi: 10.1016/j.ijhydene.2023.03.093

    46. [46]

      L. Jiang, R. Wang, Z. Xiang, X. Wang, Int. J. Hydrogen Energy 51 (2024) 898, https://doi.org/10.1016/j.ijhydene.2023.10.238. doi: 10.1016/j.ijhydene.2023.10.238

    47. [47]

      S. Burse, R. Kulkarni, R. Mandavkar, M. A. Habib, S. Lin, Y. -U. Chung, J. -H. Jeong, J. Lee, Nanomaterials 12 (2022) 3283, https://doi.org/10.3390/nano12193283. doi: 10.3390/nano12193283

    48. [48]

      L. Quan, H. Jiang, G. Mei, Y. Sun, B. You, Chem. Rev. 124 (2024) 3694, https://doi.org/10.1021/acs.chemrev.3c00332. doi: 10.1021/acs.chemrev.3c00332

    49. [49]

      J. Jayabharathi, B. Karthikeyan, B. Vishnu, S. Sriram, Phys. Chem. Chem. Phys. 25 (2023) 8992, https://doi.org/10.1039/D2CP05522H. doi: 10.1039/D2CP05522H

    50. [50]

      S. Y. Lim, S. Park, S. W. Im, H. Ha, H. Seo, K. T. Nam, ACS Catal. 10 (2020) 235, https://doi.org/10.1021/acscatal.9b03544. doi: 10.1021/acscatal.9b03544

    51. [51]

      M. A. Habib, R. Mandavkar, S. Burse, S. Lin, R. Kulkarni, C. S. Patil, J. H. Jeong, J. Lee, Mater. Today Energy 26 (2022) 101021, https://doi.org/10.1016/j.mtener.2022.101021. doi: 10.1016/j.mtener.2022.101021

    52. [52]

      T. Zhao, B. Gong, G. Xu, J. Jiang, L. Zhang, Chinese J. Catal. 61 (2024) 269, https://doi.org/10.1016/S1872-2067(24)60037-9. doi: 10.1016/S1872-2067(24)60037-9

    53. [53]

      R. Srivastava, H. Chaudhary, A. Kumar, F. M. de Souza, S. R. Mishra, F. Perez, R. K. Gupta, Discov. Nano 18 (2023) 148, https://doi.org/10.1186/s11671-023-03937-y. doi: 10.1186/s11671-023-03937-y

    54. [54]

      H. Liu, X. Li, L. Chen, X. Zhu, P. Dong, M. O. L. Chee, M. Ye, Y. Guo, J. Shen, Adv. Funct. Mater. 32 (2022) 1, https://doi.org/10.1002/adfm.202107308. doi: 10.1002/adfm.202107308

    55. [55]

      B. Han, X. Du, J. Li, H. Wang, G. Liu, J. Li, Appl. Surf. Sci. 604 (2022), https://doi.org/10.1016/j.apsusc.2022.154617. doi: 10.1016/j.apsusc.2022.154617

    56. [56]

      S. Lin, M. A. Habib, R. Mandavkar, R. Kulkarni, S. Burse, Y. -U. Chung, C. Liu, Z. Wang, S. Lin, J. -H. Jeong, J. Lee, Adv. Sustain. Syst. 6 (2022) 2200213, https://doi.org/10.1002/adsu.202200213. doi: 10.1002/adsu.202200213

    57. [57]

      E. Hu, Y. Feng, J. Nai, D. Zhao, Y. Hu, X. W. D. Lou, Sci. 11 (2018) 872, https://doi.org/10.1039/C8EE00076J. doi: 10.1039/C8EE00076J

    58. [58]

      Y. Qi, Q. Zhang, S. Meng, D. Li, W. Wei, D. Jiang, M. Chen, Electrochim. Acta 334 (2020), https://doi.org/10.1016/j.electacta.2020.135633. doi: 10.1016/j.electacta.2020.135633

    59. [59]

      P. Zhou, X. Lv, D. Xing, F. Ma, Y. Liu, Z. Wang, P. Wang, Z. Zheng, Y. Dai, B. Huang, Appl. Catal. B-Environ. 263 (2020) 118330, https://doi.org/10.1016/j.apcatb.2019.118330. doi: 10.1016/j.apcatb.2019.118330

    60. [60]

      E. Hatami, A. Toghraei, G. Barati Darband, Int. J. Hydrogen Energy 46 (2021) 9394, https://doi.org/10.1016/j.ijhydene.2020.12.110. doi: 10.1016/j.ijhydene.2020.12.110

    61. [61]

      Y. Liu, J. Cao, Y. Chen, M. Wei, X. Liu, X. Li, Q. Wu, B. Feng, Y. Zhang, L. Yang, CrystEngComm 24 (2022) 1704, https://doi.org/10.1039/d1ce01555a. doi: 10.1039/d1ce01555a

    62. [62]

      S. Chen, H. Huang, P. Jiang, K. Yang, J. Diao, S. Gong, S. Liu, M. Huang, H. Wang, Q. Chen, ACS Catal. 10 (2020) 1152, https://doi.org/10.1021/acscatal.9b04922. doi: 10.1021/acscatal.9b04922

    63. [63]

      Q. Ma, R. Dong, H. Liu, A. Zhu, L. Qiao, Y. Ma, J. Wang, J. Xie, J. Pan, J. Alloys Compd. 820 (2020) 153438, https://doi.org/10.1016/j.jallcom.2019.153438. doi: 10.1016/j.jallcom.2019.153438

    64. [64]

      Y. Teng, X. D. Wang, J. F. Liao, W. G. Li, H. Y. Chen, Y. J. Dong, D. Bin Kuang, Adv. Funct. Mater. 28 (2018), https://doi.org/10.1002/adfm.201802463. doi: 10.1002/adfm.201802463

    65. [65]

      D. Wang, L. Gu, X. Luo, R. Su, Y. Shang, Y. Wang, S. Hao, Y. Yang, J. Electroanal. Chem. 924 (2022) 116875, https://doi.org/10.1016/j.jelechem.2022.116875. doi: 10.1016/j.jelechem.2022.116875

    66. [66]

      X. Lin, J. Xu, Z. Peng, Sustain. Times 3 (2024) 100023, https://doi.org/10.1016/j.nxsust.2023.100023. doi: 10.1016/j.nxsust.2023.100023

    67. [67]

      Y. Hao, X. Cao, C. Lei, Z. Chen, X. Yang, M. Gong, Mater. Today Catal 2 (2023) 100012, https://doi.org/10.1016/j.mtcata.2023.100012. doi: 10.1016/j.mtcata.2023.100012

    68. [68]

      C. Linder, S. G. Rao, R. D. Boyd, A. le Febvrier, P. Eklund, S. Munktell, E. M. Björk, ACS Appl. Energy Mater. 5 (2022) 10838, https://doi.org/10.1021/acsaem.2c01499. doi: 10.1021/acsaem.2c01499

    69. [69]

      W. Zhang, M. Liu, X. Gu, Y. Shi, Z. Deng, N. Cai, Chem. Rev. 123 (2023) 7119, https://doi.org/10.1021/acs.chemrev.2c00573. doi: 10.1021/acs.chemrev.2c00573

    70. [70]

      P. Zhai, M. Xia, Y. Wu, G. Zhang, J. Gao, B. Zhang, S. Cao, Y. Zhang, Z. Li, Z. Fan, C. Wang, X. Zhang, J. T. Miller, L. Sun, J. Hou, Nat. Commun. 12 (2021) 1, https://doi.org/10.1038/s41467-021-24828-9. doi: 10.1038/s41467-021-24828-9

    71. [71]

      L. Ye, Y. Zhang, B. Guo, D. Cao, Y. Gong, Dalt. Trans. 50 (2021) 13951, https://doi.org/10.1039/d1dt02341a. doi: 10.1039/d1dt02341a

    72. [72]

      Q. -N. Ha, N. Susanto Gultom, C. -H. Yeh, D. -H. Kuo, Chem. Eng. J. 472 (2023) 144931, https://doi.org/10.1016/j.cej.2023.144931. doi: 10.1016/j.cej.2023.144931

    73. [73]

      C. Guan, W. Xiao, H. Wu, X. Liu, W. Zang, H. Zhang, J. Ding, Y. P. Feng, S. J. Pennycook, J. Wang, Nano Energy 48 (2018) 73, https://doi.org/10.1016/j.nanoen.2018.03.034. doi: 10.1016/j.nanoen.2018.03.034

    74. [74]

      Q. Che, N. Bai, Q. Li, X. Chen, Y. Tan, X. Xu, Nanoscale 10 (2018) 15238, https://doi.org/10.1039/c8nr03944e. doi: 10.1039/c8nr03944e

    75. [75]

      G. Ren, Q. Hao, J. Mao, L. Liang, H. Liu, C. Liu, J. Zhang, Nanoscale 10 (2018) 17347, https://doi.org/10.1039/C8NR05494K. doi: 10.1039/C8NR05494K

    76. [76]

      X. Cheng, Z. Pan, C. Lei, Y. Jin, B. Yang, Z. Li, X. Zhang, L. Lei, C. Yuan, Y. Hou, J. Mater. Chem. A 7 (2019) 965, https://doi.org/10.1039/c8ta11223a. doi: 10.1039/c8ta11223a

    77. [77]

      Y. Dong, Z. Deng, H. Zhang, G. Liu, X. Wang, Nano Lett. 23 (2023) 9087, https://doi.org/10.1021/acs.nanolett.3c02940. doi: 10.1021/acs.nanolett.3c02940

    78. [78]

      X. Li, T. Wu, N. Li, S. Zhang, W. Chang, J. Chi, X. Liu, L. Wang, Adv. Funct. Mater. 34 (2024) 2400734, https://doi.org/10.1002/adfm.202400734. doi: 10.1002/adfm.202400734

    79. [79]

      J. Chen, L. Zhang, J. Li, X. He, Y. Zheng, S. Sun, X. Fang, D. Zheng, Y. Luo, Y. Wang, J. Zhang, L. Xie, Z. Cai, Y. Sun, A. A. Alshehri, Q. Kong, C. Tang, X. Sun, J. Mater. Chem. A 11 (2023) 1116, https://doi.org/10.1039/D2TA08568B. doi: 10.1039/D2TA08568B

    80. [80]

      Y. Hu, H. Yu, L. Qi, J. Dong, P. Yan, T. T. Isimjan, X. Yang, ChemSusChem 14 (2021) 1565, https://doi.org/10.1002/cssc.202002873. doi: 10.1002/cssc.202002873

    81. [81]

      H. Sun, C. Tian, G. Fan, J. Qi, Z. Liu, Z. Yan, F. Cheng, J. Chen, C. -P. Li, M. Du, Adv. Funct. Mater. 30 (2020) 1910596, https://doi.org/10.1002/adfm.201910596. doi: 10.1002/adfm.201910596

    82. [82]

      Y. Liu, X. Gu, W. Jiang, H. Li, Y. Ma, C. Liu, Y. Wu, G. Che, Dalt. Trans. 51 (2022) 9486, https://doi.org/10.1039/D2DT01098D. doi: 10.1039/D2DT01098D

    83. [83]

      H. Mao, X. Liu, S. Wu, G. Sun, G. Zhou, J. Chi, L. Wang, Adv. Energy Mater. 13 (2023) 2302251, https://doi.org/10.1002/aenm.202302251. doi: 10.1002/aenm.202302251

    84. [84]

      M. Ning, F. Zhang, L. Wu, X. Xing, D. Wang, S. Song, Q. Zhou, L. Yu, J. Bao, S. Chen, Energy Environ. Sci. 15 (2022) 3945, https://doi.org/10.1039/D2EE01094A. doi: 10.1039/D2EE01094A

    85. [85]

      X. Hou, C. Yu, T. Ni, S. Zhang, J. Zhou, S. Dai, L. Chu, M. Huang, Chinese J. Catal. 61 (2024) 192, https://doi.org/10.1016/S1872-2067(24)60030-6. doi: 10.1016/S1872-2067(24)60030-6

    86. [86]

      Q. Lv, J. Han, X. Tan, W. Wang, L. Cao, B. Dong, ACS Appl. Energy Mater. 2 (2019) 3910, https://doi.org/10.1021/acsaem.9b00599. doi: 10.1021/acsaem.9b00599

    87. [87]

      X. Luo, X. Tan, P. Ji, L. Chen, J. Yu, S. Mu, EnergyChem 5 (2023) 100091, https://doi.org/10.1016/j.enchem.2022.100091 doi: 10.1016/j.enchem.2022.100091

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  44
  • HTML全文浏览量:  10
文章相关
  • 发布日期:  2025-07-15
  • 收稿日期:  2024-12-19
  • 接受日期:  2025-03-07
  • 修回日期:  2025-03-07
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章