Citation:
Honghong Zhang, Zhen Wei, Derek Hao, Lin Jing, Yuxi Liu, Hongxing Dai, Weiqin Wei, Jiguang Deng. Recent advances in synergistic catalytic valorization of CO2 and hydrocarbons by heterogeneous catalysis[J]. Acta Physico-Chimica Sinica,
;2025, 41(7): 100073.
doi:
10.1016/j.actphy.2025.100073
-
The escalating frequency of extreme weather events globally has necessitated immediate action to mitigate the impacts and threats posed by excessive greenhouse gas emissions, particularly carbon dioxide (CO2). Consequently, reducing CO2 emissions has become imperative, with decarbonization techniques being extensively investigated worldwide to achieve net-zero emissions. From an energy perspective, CO2 represents an abundant and low-cost carbon resource that can be converted into high-value chemical products through reactions with hydrocarbons, including alkanes, alkenes, aromatic hydrocarbons, and polyolefins. Through hydrogen transfer, CO2 can be reduced to CO, accompanied by the formation of H2O. CO2 and hydrocarbons can also be transformed into syngas (CO and H2) via dry reforming. Furthermore, CO2 can be incorporated into hydrocarbon molecules, resulting in carbon chain growth, such as the production of alcohols, carboxylic acids, and aromatics. However, due to the thermodynamic stability and kinetic inertness of CO2, as well as the high bond energy and low polarity of hydrocarbon C―H bonds, the conversion of CO2 and hydrocarbons remains a highly challenging and demanding strategic objective. This review focuses on the synergistic catalytic valorization of CO2 and hydrocarbons using heterogeneous catalysts, summarizing recent advancements in coupling CO2 with various hydrocarbons. It also examines relevant kinetic models, including Langmuir-Hinshelwood and Eley-Rideal mechanisms. For catalyst design, bifunctional catalysts with distinct active sites can independently activate these two reactive molecules, and the modulation of acid-base properties, oxygen vacancies, and interfacial interactions represents an effective strategy to optimize catalytic performance. Finally, future directions for advancing CO2-hydrocarbon co-utilization technologies are proposed, along with recommendations for low-carbon development strategies.
-
-
-
[1]
Figueres, C.; Le Quéré, C.; Mahindra, A.; Bäte, O.; Whiteman, G.; Peters, G.; Guan, D. Nature 2018, 564, 27. doi: 10.1038/d41586-018-07585-6
-
[2]
Jiang, M.; Cao, Y. H.; Liu, C. G.; Chen, D. J.; Zhou, W. J.; Wen, Q.; Yu, H. J.; Jiang, J.; Ren, Y. C.; Hu, S. Y.; Hertwich, E.; Zhu, B. Nat. Commun. 2024, 15, 3854. doi: 10.1038/s41467-024-47930-0
-
[3]
Stegmann, P.; Daioglou, V.; Londo, M.; Van Vuuren, D. P.; Junginger, M. Nature 2022, 612, 272. doi: 10.1038/s41586-022-05422-5
-
[4]
Cabernard, L.; Pfister, S.; Oberschelp, C.; Hellweg, S. Nat. Sustain. 2021, 5, 139. doi: 10.1038/s41893-021-00807-2
-
[5]
Chen, Y. X.; Wang, L. J.; Yao, Z. B.; Hao, L. D.; Tan, X. Y.; Masa, J.; W. Robertson, A.; Sun, Z. Acta Phys. -Chim. Sin. 2022, 38, 2207024. doi: 10.3866/PKU.WHXB202207024
-
[6]
Hanifa, M.; Agarwal, R.; Sharma, U.; Thapliyal, P. C.; Singh, L. P. J. CO2 Util. 2023, 67, 102292. doi: 10.1016/j.jcou.2022.102292
-
[7]
Yang, X.; Nielsen, C. P.; Song, S.; McElroy, M. B. Nat. Energy 2022, 7, 955. doi: 10.1038/s41560-022-01114-6
-
[8]
Meng, F.; Wagner, A.; Kremer, A. B.; Kanazawa, D.; Leung, J. J.; Goult, P.; Guan, M.; Herrmann, S.; Speelman, E.; Sauter, P.; et al. Proc. Natl. Acad. Sci. U.S.A. 2023, 120, e2218294120. doi: 10.1073/pnas.2218294120
-
[9]
Woodall, C. M.; Fan, Z. Y.; Lou, Y. S.; Bhardwaj, A.; Khatri, A.; Agrawal, M.; McCormick, C. F.; Friedmann, S. J. Joule 2022, 6, 2474. doi: 10.1016/j.joule.2022.10.006
-
[10]
Belsa, B.; Xia, L.; Golovanova, V.; Polesso, B.; Pinilla-Sánchez, A.; San Martín, L.; Ye, J.; Dinh, C.-T.; García De Arquer, F. P. Nat. Rev. Mater. 2024, 9, 535. doi: 10.1038/s41578-024-00696-9
-
[11]
Liang, F.; Wei, S.; Xue, L.; Yan, S. Green Carbon 2024, 2, 252. doi: 10.1016/j.greenca.2024.03.001
-
[12]
Ling, L. L.; Yang, W. J.; Yan, P.; Wang, M.; Jiang, H. L. Angew. Chem. Int. Ed. 2022, 61, e202116396. doi: 10.1002/anie.202116396
-
[13]
Li, X. D.; Sun, Y. F.; Xu, J. Q.; Shao, Y. J.; Wu, J.; Xu, X. L.; Pan, Y.; Ju, H. X.; Zhu, J. F.; Xie, Y. Nat. Energy 2019, 4, 690. doi: 10.1038/s41560-019-0431-1
-
[14]
Wang, S. W.; Wang, J. S.; Wang, Y.; Sui, X. Y.; Wu, S. H.; Dai, W. X.; Zhang, Z. Z.; Ding, Z. X.; Long, J. L. ACS Catal. 2024, 14, 10760. doi: 10.1021/acscatal.4c01712
-
[15]
Li, X. D.; Wang, S. M.; Li, L.; Zu, X. L.; Sun, Y. F.; Xie, Y. Acc. Chem. Res. 2020, 53, 2964. doi: 10.1021/acs.accounts.0c00626
-
[16]
Yu, F. Y.; Jing, X.; Wang, Y.; Sun, M. Y.; Duan, C. Y. Angew. Chem. Int. Ed. 2021, 60, 24849. doi: 10.1002/anie.202108892
-
[17]
Li, H. Z.; Qiu, C. L.; Ren, S. J.; Dong, Q. B.; Zhang, S. X.; Zhou, F. L.; Liang, X. H.; Wang, J. G.; Li, S. G.; Yu, M. Science 2020, 367, 667. doi: 10.1126/science.aaz6053
-
[18]
García De Arquer, F. P.; Dinh, C.-T.; Ozden, A.; Wicks, J.; McCallum, C.; Kirmani, A. R.; Nam, D.-H.; Gabardo, C.; Seifitokaldani, A.; Wang, X.; et al. Science 2020, 367, 661. doi: 10.1126/science.aay4217
-
[19]
Lu, C. H.; Li, X. R.; Wu, Q.; Li, J.; Wen, L.; Dai, Y.; Huang, B. B.; Li, B. J.; Lou, Z. Z. ACS Nano 2021, 15, 3529. doi: 10.1021/acsnano.1c00452
-
[20]
Cui, X. F.; Wang, J.; Liu, B.; Ling, S.; Long, R.; Xiong, Y. J. J. Am. Chem. Soc. 2018, 140, 16514. doi: 10.1021/jacs.8b06723
-
[21]
Wang, C. H.; Yang, W.-C. D.; Raciti, D.; Bruma, A.; Marx, R.; Agrawal, A.; Sharma, R. Nat. Mater. 2021, 20, 346. doi: 10.1038/s41563-020-00851-x
-
[22]
Kätelhön, A.; Meys, R.; Deutz, S.; Suh, S.; Bardow, A. Proc. Natl. Acad. Sci. U.S.A. 2019, 116, 11187. doi: 10.1073/pnas.1821029116
-
[23]
Deng, C. J.; Qi, C. F.; Wu, X. M.; Jing, G. H.; Zhao, H. W. Green Carbon 2024, 2, 124. doi: 10.1016/j.greenca.2024.02.003
-
[24]
Tu, X. Y.; Liu, X. J.; Zhang, Y.; Zhu, J.; Jiang, H. Q. Green Carbon 2024, 2, 131. doi: 10.1016/j.greenca.2024.03.006
-
[25]
Dong, Y.; Zhang, W.; Hu, Z. F.; Ng, Y. H.; Wei, Z.; Liu, Y. X.; Deng, J. G.; Dai, H. X.; Jing, L. Appl. Catal. B 2024, 357, 124347. doi: 10.1016/j.apcatb.2024.124347
-
[26]
Liu, X.; Liu, T.; Ouyang, T.; Deng, J. G.; Liu, Z. Q. Angew. Chem. Int. Ed. 2025, 64, e202419796. doi: 10.1002/anie.202419796
-
[27]
Gomes, R. J.; Kumar, R.; Fejzić, H.; Sarkar, B.; Roy, I.; Amanchukwu, C. V. Nat. Catal. 2024, 7, 689. doi: 10.1038/s41929-024-01162-z
-
[28]
Xu, X.; Shao, C.; Zhang, J.; Wang, Z.; Dai, K. Acta Phys. -Chim. Sin. 2024, 40, 2309031. doi: 10.3866/PKU.WHXB202309031
-
[29]
Zhang, Y.; Jang, H.; Ge, X.; Zhang, W.; Li, Z.; Hou, L.; Zhai, L.; Wei, X.; Wang, Z.; Kim, M. G.; et al. Adv. Energy Mater. 2022, 12, 2202695. doi: 10.1002/aenm.202202695
-
[30]
Gu, X. J.; Lou, X. W. Adv. Mater. 2022, 34, 2204865. doi: 10.1002/adma.202204865
-
[31]
Zheng, K.; Li, Y.; Liu, B.; Jiang, F.; Xu, Y.; Liu, X. Angew. Chem. Int. Ed. 2022, 61, e202210991. doi: 10.1002/anie.202210991
-
[32]
Zhu, Y.; Sun, X.; Zhang, R.; Feng, X.; Zhu, Y. Small 2024, 20, 2400191. doi: 10.1002/smll.202400191
-
[33]
Peng, R.; Ren, Y.; Si, Y.; Huang, K.; Zhou, J.; Duan, L.; Li, N. ACS Catal. 2025, 15, 1. doi: 10.1021/acscatal.4c06218
-
[34]
Li, S.; Xu, Y. X.; Wang, H. W.; Teng, B. T.; Liu, Q.; Li, Q. H.; Xu, L. L.; Liu, X. Y.; Lu, J. Angew. Chem. Int. Ed. 2023, 62, e202218167. doi: 10.1002/anie.202218167
-
[35]
Jia, G.; Sun, M.; Wang, Y.; Shi, Y.; Zhang, L.; Cui, X.; Huang, B.; Yu, J. C. Adv. Funct. Mater. 2022, 32, 2206817. doi: 10.1002/adfm.202206817
-
[36]
Sun, K.; Shen, C.; Zou, R.; Liu, C. Appl. Catal. B 2023, 320, 122018. doi: 10.1016/j.apcatb.2022.122018
-
[37]
Wei, W. Q.; Wei, Z.; Li, R. Z.; Li, Z. H.; Shi, R.; Ouyang, S. X.; Qi, Y. H.; Philips, D. L.; Yuan, H. Nat. Commun. 2022, 13, 3199. doi: 10.1038/s41467-022-30958-5
-
[38]
Abdelgaid, M.; Mpourmpakis, G. ACS Catal. 2022, 12, 4268. doi: 10.1021/acscatal.2c00229
-
[39]
Han, Y.; An, S.; Zhan, X.; Hao, L.; Xu, L.; Hong, S.; Park, D.; Chen, Y.; Xu, Y.; Zhao, J.; et al. CCS Chem. 2024, 6, 1477. doi: 10.31635/ccschem.023.202303128
-
[40]
Zhang, Z.; Li, H.; Shao, Y.; Gan, L.; Kang, F.; Duan, W.; Hansen, H. A.; Li, J. Nat. Commun. 2024, 15, 612. doi: 10.1038/s41467-024-44896-x
-
[41]
Zhang, A.; Liang, Y.; Li, H.; Zhao, X.; Chen, Y.; Zhang, B.; Zhu, W.; Zeng, J. Nano Lett. 2019, 19, 6547. doi: 10.1021/acs.nanolett.9b02782
-
[42]
Wang, W.; Gan, L.; Lemmon, J. P.; Chen, F.; Irvine, J. T. S.; Xie, K. Nat. Commun. 2019, 10, 1550. doi: 10.1038/s41467-019-09568-1
-
[43]
Zuo, L.; Deng, Y.; Chen, L.; He, T.; Yang, J.; Zhang, J. ACS Catal. 2024, 14, 16795. doi: 10.1021/acscatal.4c04795
-
[44]
Liu, B.; Li, C.; Zhang, G.; Yao, X.; Chuang, S. S. C.; Li, Z. ACS Catal. 2018, 8, 10446. doi: 10.1021/acscatal.8b00415
-
[45]
Das, S.; Pérez-Ramírez, J.; Gong, J.; Dewangan, N.; Hidajat, K.; Gates, B. C.; Kawi, S. Chem. Soc. Rev. 2020, 49, 2937. doi: 10.1039/c9cs00713j
-
[46]
Yang, Q. H.; Liu, H.; Lin, Y. C.; Su, D. S.; Tang, Y. L.; Chen, L. Adv. Mater. 2024, 36, 2310912. doi: 10.1002/adma.202310912
-
[47]
Cao, Y.; Guo, R.; Ma, M.; Huang, Z.; Zhou, Y. Acta Phys. -Chim. Sin. 2024, 40, 2303029. doi: 10.3866/PKU.WHXB202303029
-
[48]
Theofanidis, S. A.; Kasun Kalhara Gunasooriya, G. T.; Itskou, I.; Tasioula, M.; Lemonidou, A. A. ChemCatChem 2022, 14, e202200032. doi: 10.1002/cctc.202200032
-
[49]
Zhu, Z. J.; He, Z. H.; Tian, Y.; Wang, S. W.; Sun, Y. C.; Wang, K.; Wang, W. T.; Zhang, Z. F.; Liu, J. J.; Liu, Z. T. ACS Catal. 2024, 14, 10376. doi: 10.1021/acscatal.4c02599
-
[50]
Zhang, X. B.; Li, J. J.; Liu, W.; Zheng, Y. B.; An, J.; Xin, W. J.; Liu, Z. N.; Xu, L. Y.; Li, X. J.; Zhu, X. X. ACS Catal. 2023, 13, 14864. doi: 10.1021/acscatal.3c04371
-
[51]
Otroshchenko, T.; Jiang, G.; Kondratenko, V. A.; Rodemerck, U.; Kondratenko, E. V. Chem. Soc. Rev. 2021, 50, 473. doi: 10.1039/d0cs01140a
-
[52]
Chu, C. Q.; Chen, B. Y.; He, Y.; Jiang, G. Y.; Lan, X. Y.; Li, S. G.; Wu, C. N.; Cao, D. F. ACS Catal. 2024, 14, 9662. doi: 10.1021/acscatal.4c01473
-
[53]
Hao, S. Y.; Chen, Y. S.; Peng, C.; Wang, H. N.; Wen, Q. Y.; Hu, C. J.; Zhang, L. J.; Han, Q.; Zheng, G. F. Adv. Funct. Mater. 2024, 34, 2314118. doi: 10.1002/adfm.202314118
-
[54]
Su, H.; Han, J. T.; Miao, B. T.; Salehi, M.; Li, C. J. Nat. Commun. 2024, 15, 6435. doi: 10.1038/s41467-024-50801-3
-
[55]
Liu, Y. J.; Zhang, C. Y.; Wang, R. J.; Wu, Y. X.; Zan, X. Y.; Tao, S. Q.; Huang, W. ACS Catal. 2024, 14, 8823. doi: 10.1021/acscatal.4c00863
-
[56]
Ding, Y.; Zhang, S. C.; Liu, C.; Shao, Y.; Pan, X. L.; Bao, X. H. Natl. Sci. Rev. 2024, 11, nwae097. doi: 10.1093/nsr/nwae097
-
[57]
Xie, Z. H.; Wang, X. L.; Chen, X. B.; Liu, P.; Chen, J. G. J. Am. Chem. Soc. 2022, 144, 4186. doi: 10.1021/jacs.1c13415
-
[58]
Chen, W. J.; Jiao, Y. C.; Liu, Y.; Wang, M.; Zhang, F.; Ma, D. CCS Chem. 2024, 6, 1422. doi: 10.31635/ccschem.023.202303518
-
[59]
Liu, Y. Y.; Ma, B.; Tian, J. Q.; Zhao, C. Sci. Adv. 2024, 10, eadn0252. doi: 10.1126/sciadv.adn0252
-
[60]
Xie, Z. H.; Tian, D.; Xie, M.; Yang, S. Z.; Xu, Y. G.; Rui, N.; Lee, J. H.; Senanayake, S. D.; Li, K. Z.; Wang, H.; et al. Chem 2020, 6, 2703. doi: 10.1016/j.chempr.2020.07.011
-
[61]
Xie, Z. H.; Winter, L. R.; Chen, J. G. Matter 2021, 4, 408. doi: 10.1016/j.matt.2020.11.013
-
[62]
Xie, Z. H.; Chen, J. G. Acc. Chem. Res. 2023, 56, 2447. doi: 10.1021/acs.accounts.3c00348
-
[63]
Guo, H. Y.; Xie, Z. H.; Wang, X. L.; Chen, J. G.; Liu, P. EES. Catal. 2023, 1, 17. doi: 10.1039/d2ey00051b
-
[64]
Wang, L.; Wang, Y. Z.; Fan, L. H.; Xu, H. L.; Liu, B. W.; Zhang, J. R.; Zhu, Y. M.; Tu, X. Chem. Eng. J. 2023, 466, 143347. doi: 10.1016/j.cej.2023.143347
-
[65]
Yuan, T.; Wu, Z. W.; Zhai, S. M.; Wang, R.; Wu, S. W.; Cheng, J. J.; Zheng, M. F.; Wang, X. C. Angew. Chem. Int. Ed. 2023, 62, e202304861. doi: 10.1002/anie.202304861
-
[66]
Yang, G. Q.; Niu, Y. M.; Kondratenko, V. A.; Yi, X. F.; Liu, C.; Zhang, B. S.; Kondratenko, E. V.; Liu, Z. W. Angew. Chem. Int. Ed. 2023, 62, e202310062. doi: 10.1002/anie.202310062
-
[67]
Wu, J.; Gao, J.; Lian, S.; Li, J.; Sun, K.; Zhao, S.; Kim, Y. D.; Ren, Y.; Zhang, M.; Liu, Q.; Liu, Z.; Peng, Z. Appl. Catal. B 2022, 314, 121516. doi: 10.1016/j.apcatb.2022.121516
-
[68]
Tan, R.; Wang, X.; Kong, Y.; Ji, Q.; Zhan, Q.; Xiong, Q.; Mu, X.; Li, L. J. Am. Chem. Soc. 2024, 146, 14149. doi: 10.1021/jacs.4c02792
-
[69]
Yang, J.; Wang, L.; Wan, J.; El Gabaly, F.; Fernandes Cauduro, A. L.; Mills, B. E.; Chen, J.-L.; Hsu, L.-C.; Lee, D.; Zhao, X.; et al. Nat. Commun. 2024, 15, 911. doi: 10.1038/s41467-024-44918-8
-
[70]
Niu, F.; Tu, W. G.; Zhou, Y.; Xu, R.; Zou, Z. G. EnergyChem 2023, 5, 100112. doi: 10.1016/j.enchem.2023.100112
-
[71]
Yuan, L.; Qi, M. Y.; Tang, Z. R.; Xu, Y. J. Angew. Chem. Int. Ed. 2021, 60, 21150. doi: 10.1002/anie.202101667
-
[72]
Song, Q.-W.; Ma, R.; Liu, P.; Zhang, K.; He, L.-N. Green Chem. 2023, 25, 6538. doi: 10.1039/d3gc01892j
-
[73]
Qiu, L.-Q.; Li, H.-R.; He, L.-N. Acc. Chem. Res. 2023, 56, 2225. doi: 10.1021/acs.accounts.3c00316
-
[74]
Wang, L.; Fan, L. H.; Wang, Y. Z.; Chen, Q.; Zhu, Y. M.; Yi, Y. H. Appl. Catal. B 2024, 350, 123938. doi: 10.1016/j.apcatb.2024.123938
-
[75]
Alsaffar, M. A.; Ayodele, B. V.; Ali, J. M.; Abdel Ghany, M. A.; Mustapa, S. I.; Cheng, C. K. Int. J. Hydrog. Energy 2021, 46, 30871. doi: 10.1016/j.ijhydene.2021.04.158
-
[76]
Kiani, D.; Wachs, I. E. ACS Catal. 2024, 14, 16770. doi: 10.1021/acscatal.4c05188
-
[77]
Al-Shafei, E. N.; Robert Brown, D.; Katikaneni, S. P.; Aljama, H.; H. Al-Badairy, H. Chem. Eng. J. 2021, 419, 129416. doi: 10.1016/j.cej.2021.129416
-
[78]
Dou, L. G.; Liu, Y. D.; Gao, Y.; Li, J. W.; Hu, X. C.; Zhang, S.; Ostrikov, K. (Ken); Shao, T. Appl. Catal. B 2022, 318, 121830. doi: 10.1016/j.apcatb.2022.121830
-
[79]
Schwach, P.; Pan, X. L.; Bao, X. H. Chem. Rev. 2017, 117, 8497. doi: 10.1021/acs.chemrev.6b00715
-
[80]
He, C. X.; Gong, Y. L.; Li, S. T.; Wu, J. X.; Lu, Z. J.; Li, Q. X.; Wang, L. Z.; Wu, S. Q.; Zhang, J. L. Adv. Mater. 2024, 36, 2311628. doi: 10.1002/adma.202311628
-
[81]
Wu, S. Y.; Wu, S. Y.; Sun, Y. G. Solar RRL 2021, 5, 2000507. doi: 10.1002/solr.202000507
-
[82]
Sun, J.; Lian, G.; Chen, Z.; Zou, Z.; Wang, L. ACS Nano 2024, 18, 34572. doi: 10.1021/acsnano.4c13030
-
[83]
Cheng, Q. P.; Yao, X. L.; Ou, L. F.; Hu, Z. P.; Zheng, L. R.; Li, G. X.; Morlanes, N.; Cerrillo, J. L.; Castaño, P.; Li, X. G.; et al. J. Am. Chem. Soc. 2023, 145, 25109. doi: 10.1021/jacs.3c04581
-
[84]
Wang, J. Y.; Fu, Y.; Kong, W. B.; Li, S. Q.; Yuan, C. K.; Bai, J. R.; Chen, X.; Zhang, J.; Sun, Y. H. ACS Catal. 2022, 12, 4382. doi: 10.1021/acscatal.2c00027
-
[85]
Niu, J. T.; Wang, Y. L.; E. Liland, S.; K. Regli, S.; Yang, J.; Rout, K. R.; Luo, J.; Rønning, M.; Ran, J. Y.; Chen, D. ACS Catal. 2021, 11, 2398. doi: 10.1021/acscatal.0c04429
-
[86]
Wang, H.; Hu, Y. S.; Shen, Y. L.; Chukwu, E.; Xi, W.; Shen, G. R.; Wang, J.; Shen, M. Q.; Yang, M.; Lu, T. B. ACS Catal. 2024, 14, 10712. doi: 10.1021/acscatal.4c02608
-
[87]
Shen, D. Y.; Li, Z.; Shan, J.; Yu, G. W.; Wang, X. Y.; Zhang, Y. H.; Liu, C. C.; Lyu, S.; Li, J. L.; Li, L. Appl. Catal. B 2022, 318, 121809. doi: 10.1016/j.apcatb.2022.121809
-
[88]
Gangarajula, Y.; Hong, F.; Li, Q. H.; Jiang, X. Z.; Liu, W.; Akri, M.; Su, Y.; Zhang, Y. J.; Li, L.; Qiao, B. T. Appl. Catal. B 2024, 343, 123503. doi: 10.1016/j.apcatb.2023.123503
-
[89]
Androulakis, A.; Yentekakis, I. V.; Panagiotopoulou, P. Int. J. Hydrog. Energy 2023, 48, 33886. doi: 10.1016/j.ijhydene.2023.03.114
-
[90]
Yentekakis, I. V.; Goula, G.; Hatzisymeon, M.; Betsi-Argyropoulou, I.; Botzolaki, G.; Kousi, K.; Kondarides, D. I.; Taylor, M. J.; Parlett, C. M. A.; Osatiashtiani, A.; et al. Appl. Catal. B 2019, 243, 490. doi: 10.1016/j.apcatb.2018.10.048
-
[91]
Li, Q.; Wang, H. L.; Zhang, M.; Li, G. H.; Chen, J.; Jia, H. P. Angew. Chem. Int. Ed. 2023, 62, e202300129. doi: 10.1002/anie.202300129
-
[92]
Liu, Z. Y.; Zhang, F.; Rui, N.; Li, X.; Lin, L. L.; Betancourt, L. E.; Su, D.; Xu, W. Q.; Cen, J. J.; Attenkofer, K.; et al. ACS Catal. 2019, 9, 3349. doi: 10.1021/acscatal.8b05162
-
[93]
Sun, J.; Yamaguchi, D.; Tang, L.; D’Angelo, A. M.; Chiang, K. Int. J. Hydrog. Energy 2024, 51, 822. doi: 10.1016/j.ijhydene.2023.07.079
-
[94]
Chang, K.; Zhang, H. C.; Cheng, M.; Lu, Q. ACS Catal. 2020, 10, 613. doi: 10.1021/acscatal.9b03935
-
[95]
Xiao, Y. C.; Xie, K. Angew. Chem. Int. Ed. 2022, 61, e202113079. doi: 10.1002/anie.202113079
-
[96]
Wang, H.; Cui, G. Q.; Lu, H.; Li, Z. Y.; Wang, L.; Meng, H.; Li, J.; Yan, H.; Yang, Y. S.; Wei, M. Nat. Commun. 2024, 15, 3765. doi: 10.1038/s41467-024-48122-6
-
[97]
Bai, X. Q.; Yao, X. L.; Cheng, Q. P.; Mohamed, H. O.; Telalovic, S.; Melinte, G. A.; Emwas, A.-H.; Gascon, J.; Castaño, P. ACS Sustain. Chem. Eng. 2024, 12, 633. doi: 10.1021/acssuschemeng.3c07051
-
[98]
Rao, Z. Q.; Wang, K. W.; Cao, Y. H.; Feng, Y. B.; Huang, Z. A.; Chen, Y. L.; Wei, S. Q.; Liu, L. Y.; Gong, Z. M.; Cui, Y.; et al. J. Am. Chem. Soc. 2023, 145, 24625. doi: 10.1021/jacs.3c07077
-
[99]
Cai, Y. J.; Zhang, G. J.; Liu, J.; Zhang, Y. F.; Li, T. S.; Zhang, X. D.; Wang, Y.; Zhao, Y. Q.; Li, G. Q. Int. J. Hydrog. Energy 2023, 48, 38251. doi: 10.1016/j.ijhydene.2023.06.152
-
[100]
Sun, Y. H.; Zhang, Y. B.; Yin, X. F.; Zhang, C. H.; Li, Y.; Bai, J. Green Chem. 2024, 26, 5103. doi: 10.1039/d3gc05136f
-
[101]
Yang, E.; Nam, E.; Jo, Y.; An, K. Appl. Catal. B 2023, 339, 123152. doi: 10.1016/j.apcatb.2023.123152
-
[102]
Beheshti Askari, A.; Al Samarai, M.; Morana, B.; Tillmann, L.; Pfänder, N.; Wandzilak, A.; Watts, B.; Belkhou, R.; Muhler, M.; DeBeer, S. ACS Catal. 2020, 10, 6223. doi: 10.1021/acscatal.9b05517
-
[103]
Li, Y. X.; Li, J. L.; Yu, T. Q.; Qiu, L.; Hasan, S. M. N.; Yao, L.; Pan, H.; Arafin, S.; Sadaf, S. Md.; Zhu, L.; Zhou, B. W. Sci. Bull. 2024, 69, 1400. doi: 10.1016/j.scib.2024.02.020
-
[104]
Tu, C.; Nie, X.; Chen, J. G. ACS Catal. 2021, 11, 3384. doi: 10.1021/acscatal.0c05492
-
[105]
Zhao, Y. T.; Cui, C. N.; Han, J. Y.; Wang, H.; Zhu, X. L.; Ge, Q. F. J. Am. Chem. Soc. 2016, 138, 10191. doi: 10.1021/jacs.6b04446
-
[106]
Wang, Y.; Fan, L.; Xu, H.; Du, X.; Xiao, H.; Qian, J.; Zhu, Y.; Tu, X.; Wang, L. Appl. Catal. B 2022, 315, 121583. doi: 10.1016/j.apcatb.2022.121583
-
[107]
Yan, B. H.; Yao, S. Y.; Kattel, S.; Wu, Q. Y.; Xie, Z. H.; Gomez, E.; Liu, P.; Su, D.; Chen, J. G. Proc. Natl. Acad. Sci. U.S.A. 2018, 115, 8278. doi: 10.1073/pnas.1806950115
-
[108]
Theofanidis, S. A.; Loizidis, C.; Heracleous, E.; Lemonidou, A. A. J. Catal. 2020, 388, 52. doi: 10.1016/j.jcat.2020.05.004
-
[109]
Zhou, W. Q.; Felvey, N.; Guo, J. W.; Hoffman, A. S.; Bare, S. R.; Kulkarni, A. R.; Runnebaum, R. C.; Kronawitter, C. X. J. Am. Chem. Soc. 2024, 146, 10060. doi: 10.1021/jacs.4c00995
-
[110]
Liu, J.; He, N.; Zhang, Z.; Yang, J.; Jiang, X.; Zhang, Z.; Su, J.; Shu, M.; Si, R.; Xiong, G.; Xie, H.; Vilé, G. ACS Catal. 2021, 11, 2819. doi: 10.1021/acscatal.1c00126
-
[111]
Zheng, Y. B.; Zhang, X. B.; Li, J. J.; An, J.; Zhu, X. X.; Li, X. J. J. Catal. 2023, 428, 115130. doi: 10.1016/j.jcat.2023.115130
-
[112]
Zheng, Y. B.; Li, J. J.; Zhang, X. B.; An, J.; Xin, W. J.; Zhu, X. X.; Li, X. J. ACS Catal. 2023, 13, 11153. doi: 10.1021/acscatal.3c02029
-
[113]
Zheng, Y. B.; Li, J. J.; Zhang, X. B.; Li, S. G.; An, J.; Chen, F. C.; Li, X. J.; Zhu, X. X. ACS Catal. 2024, 14, 4749. doi: 10.1021/acscatal.4c00324
-
[114]
Yuan, Y.; Huang, E.; Hwang, S.; Liu, P.; Chen, J. G. Angew. Chem. Int. Ed. 2024, 63, e202404047. doi: 10.1002/anie.202404047
-
[115]
Chen, S.; Chang, X.; Sun, G. D.; Zhang, T. T.; Xu, Y. Y.; Wang, Y.; Pei, C. L.; Gong, J. L. Chem. Soc. Rev. 2021, 50, 3315. doi: 10.1039/D0CS00814A
-
[116]
Gao, X. F.; Zhu, L.; Yang, F.; Zhang, L.; Xu, W. H.; Zhou, X.; Huang, Y. K.; Song, H. H.; Lin, L. L.; Wen, X. D.; et al. Nat. Commun. 2023, 14, 1478. doi: 10.1038/s41467-023-37261-x
-
[117]
Wang, G. M.; Chen, S. H.; Duan, Q. W.; Wei, F. F.; Lin, S.; Xie, Z. L. Angew. Chem. Int. Ed. 2023, 62, e202307470. doi: 10.1002/anie.202307470
-
[118]
Chen, S.; Luo, R.; Zhao, Z. J.; Pei, C. L.; Xu, Y. Y.; Lu, Z. P.; Zhao, C. J.; Song, H. B.; Gong, J. L. Nat. Commun. 2023, 14, 2620. doi: 10.1038/s41467-023-38284-0
-
[119]
Wang, Z. Y.; He, Z. H.; Li, L. Y.; Yang, S. Y.; He, M. X.; Sun, Y. C.; Wang, K.; Chen, J. G.; Liu, Z. T. Rare Met. 2022, 41, 2129. doi: 10.1007/s12598-021-01959-y
-
[120]
Jiang, X.; Sharma, L.; Fung, V.; Park, S. J.; Jones, C. W.; Sumpter, B. G.; Baltrusaitis, J.; Wu, Z. L. ACS Catal. 2021, 11, 2182. doi: 10.1021/acscatal.0c03999
-
[121]
Xing, F. L.; Nakaya, Y.; Yasumura, S.; Shimizu, K.; Furukawa, S. Nat. Catal. 2022, 5, 55. doi: 10.1038/s41929-021-00730-x
-
[122]
Xing, F. L.; Ma, J. M.; Shimizu, K.; Furukawa, S. Nat. Commun. 2022, 13, 5065. doi: 10.1038/s41467-022-32842-8
-
[123]
Wang, J.; Zhu, M. L.; Song, Y. H.; Liu, Z. T.; Wang, L.; Liu, Z. W. J. Catal. 2022, 409, 87. doi: 10.1016/j.jcat.2022.03.027
-
[124]
Wang, J.; Song, Y. H.; Liu, Z. T.; Liu, Z. W. Appl. Catal. B 2021, 297, 120400. doi: 10.1016/j.apcatb.2021.120400
-
[125]
Bu, K. K.; Kang, Y. K.; Li, Y. F.; Zhang, Y. H.; Tang, Y.; Huang, Z.; Shen, W.; Xu, H. L. Appl. Catal. B 2024, 343, 123528. doi: 10.1016/j.apcatb.2023.123528
-
[126]
Yang, K.; Li, J. Z.; Wei, C. C.; Zhao, Z. K.; Liu, Z. M. ACS Catal. 2023, 13, 10405. doi: 10.1021/acscatal.3c02158
-
[127]
Wei, C. C.; Zhang, W. N.; Yang, K.; Bai, X.; Xu, S. T.; Li, J. Z.; Liu, Z. M. Chin. J. Catal. 2023, 47, 138. doi: 10.1016/S1872‐2067(23)64416‐X
-
[128]
He, Z.-H.; Wu, B.-T.; Xia, Y.; Yang, S.-Y.; Wang, Z.-Y.; Wang, K.; Wang, W.; Yang, Y.; Liu, Z.-T. Mol. Catal. 2022, 524, 112262. doi: 10.1016/j.mcat.2022.112262
-
[129]
Zhang, X.; Li, J.; Zheng, Y.; Xin, W.; An, J.; Zhu, X.; Li, X. Chem. Eng. J. 2023, 473, 145370. doi: 10.1016/j.cej.2023.145370
-
[130]
Wang, J. P.; Liu, M.; Li, J. J.; Wang, C. F.; Zhang, X. B.; Zheng, Y. B.; Li, X. J.; Xu, L. Y.; Guo, X. W.; Song, C. S.; et al. ACS Catal. 2022, 12, 5930. doi: 10.1021/acscatal.1c05907
-
[131]
Zhou, L.; Li, L. P.; Zhang, S. D.; Kuang, X.-K.; Zhou, Y.-Y.; Tang, Y. J. Am. Chem. Soc. 2024, 146, 18823. doi: 10.1021/jacs.4c05217
-
[132]
Meng, Q.-Y.; Wang, S.; Huff, G. S.; König, B. J. Am. Chem. Soc. 2018, 140, 3198. doi: 10.1021/jacs.7b13448
-
[133]
Tortajada, A.; Juliá-Hernández, F.; Börjesson, M.; Moragas, T.; Martin, R. Angew. Chem. Int. Ed. 2018, 57, 15948. doi: 10.1002/anie.201803186
-
[134]
Liu, L. N.; Dai, J.; Das, S.; Wang, Y. L.; Yu, H.; Xi, S. B.; Zhang, Z. K.; Tu, X. JACS Au 2023, 3, 785. doi: 10.1021/jacsau.2c00603
-
[135]
Shang, X.; Zhuo, H.; Han, Q.; Yang, X.; Hou, G.; Liu, G.; Su, X.; Huang, Y.; Zhang, T. Angew. Chem. Int. Ed. 2023, 62, e202309377. doi: 10.1002/anie.202309377
-
[136]
Wang, L. C.; Wang, Y. Y.; Zhang, R.; Ding, R. M.; Chen, X. H.; Lv, B. L. ACS Catal. 2020, 10, 6697. doi: 10.1021/acscatal.0c00070
-
[137]
Yang, G. Q.; Wang, H.; Gong, T.; Song, Y. H.; Feng, H.; Ge, H. Q.; Ge, H. B.; Liu, Z. T.; Liu, Z. W. J. Catal. 2019, 380, 195. doi: 10.1016/j.jcat.2019.10.009
-
[138]
Vidal, F.; Van Der Marel, E. R.; Kerr, R. W. F.; McElroy, C.; Schroeder, N.; Mitchell, C.; Rosetto, G.; Chen, T. T. D.; Bailey, R. M.; Hepburn, C.; Redgwell, C.; et al. Nature 2024, 626, 45. doi: 10.1038/s41586-023-06939-z
-
[139]
Ma, D. Nat. Sustain. 2023, 6, 1142. doi: 10.1038/s41893-023-01224-3
-
[140]
Conk, R. J.; Hanna, S.; Shi, J. X.; Yang, J.; Ciccia, N. R.; Qi, L.; Bloomer, B. J.; Heuvel, S.; Wills, T.; Su, J.; et al. Science 2022, 377, 1561. doi: 10.1126/science.add1088
-
[141]
Sun, J. K.; Dong, J. H.; Gao, L. J.; Zhao, Y.-Q.; Moon, H.; Scott, S. L. Chem. Rev. 2024, 124, 9457. doi: 10.1021/acs.chemrev.3c00943
-
[142]
Hou, G. Q.; Wang, Q.; Xu, D.; Fan, H. F.; Liu, K. D.; Li, Y. Y.; Gu, X. K.; Ding, M. Y. Angew. Chem. Int. Ed. 2024, 63, e202402053. doi: 10.1002/anie.202402053
-
[143]
Xuan, K.; Chen, S. K.; Pu, Y. F.; Guo, Y. P.; Guo, Y. D.; Li, Y.; Pu, C. X.; Zhao, N.; Xiao, F. K. J. CO2 Util. 2022, 59, 101960. doi: 10.1016/j.jcou.2022.101960
-
[144]
Liu, Q.; Lin, J. J.; Cheng, H.; Wei, L. L.; Wang, F. X. Angew. Chem. Int. Ed. 2023, 62, e202218720. doi: 10.1002/anie.202218720
-
[145]
Behrendt, D.; Banerjee, S.; Clark, C.; Rappe, A. M. J. Am. Chem. Soc. 2023, 145, 4730. doi: 10.1021/jacs.2c13253
-
[146]
Li, H. B.; Li, X.; Wang, P. T.; Zhang, Z.; Davey, K.; Shi, J. Q.; Qiao, S. Z. J. Am. Chem. Soc. 2024, 146, 22850. doi: 10.1021/jacs.4c09079
-
[1]
-
-
-
[1]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[2]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[3]
Yueguang Chen , Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074
-
[4]
Yuchen Zhou , Huanmin Liu , Hongxing Li , Xinyu Song , Yonghua Tang , Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067
-
[5]
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
-
[6]
Wei HE , Jing XI , Tianpei HE , Na CHEN , Quan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364
-
[7]
Caixia Lin , Zhaojiang Shi , Yi Yu , Jianfeng Yan , Keyin Ye , Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005
-
[8]
Xin Han , Zhihao Cheng , Jinfeng Zhang , Jie Liu , Cheng Zhong , Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023
-
[9]
Hengwei Wei , Liqiu Zhao , Jiqiang Geng , Xuebo Xu , Yingpeng Ma , Yuhao Liu , Mingzhe Han , Huan Jiao , Lingling Wei . Research on Safety Management of Hazardous Chemicals and Talent Cultivation in Universities Driven by Production-Education Integration. University Chemistry, 2024, 39(10): 289-298. doi: 10.12461/PKU.DXHX202403022
-
[10]
Shihui Shi , Haoyu Li , Shaojie Han , Yifan Yao , Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002
-
[11]
Minna Ma , Yujin Ouyang , Yuan Wu , Mingwei Yuan , Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093
-
[12]
Xingyang LI , Tianju LIU , Yang GAO , Dandan ZHANG , Yong ZHOU , Meng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026
-
[13]
Zhengyu Zhou , Huiqin Yao , Youlin Wu , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010
-
[14]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[15]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
-
[16]
Hongling Yuan , Jialin Xie , Jiawei Wang , Jixiang Zhao , Jiayan Liu , Qing Feng , Wei Qi , Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041
-
[17]
Qianqian Liu , Xing Du , Wanfei Li , Wei-Lin Dai , Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016
-
[18]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[19]
Juntao Yan , Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024
-
[20]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(11)
- HTML views(2)