Citation: Honghong Zhang,  Zhen Wei,  Derek Hao,  Lin Jing,  Yuxi Liu,  Hongxing Dai,  Weiqin Wei,  Jiguang Deng. Recent advances in synergistic catalytic valorization of CO2 and hydrocarbons by heterogeneous catalysis[J]. Acta Physico-Chimica Sinica, ;2025, 41(7): 100073. doi: 10.1016/j.actphy.2025.100073 shu

Recent advances in synergistic catalytic valorization of CO2 and hydrocarbons by heterogeneous catalysis

  • Received Date: 8 January 2025
    Revised Date: 5 February 2025
    Accepted Date: 25 February 2025

    Fund Project: The project was supported by the National Natural Science Foundation of China (22406009, U23A20120), Natural Science Foundation of Hebei Province (B2021208033), and R&D Program of Beijing Municipal Education Commission (KZ202210005011).

  • The escalating frequency of extreme weather events globally has necessitated immediate action to mitigate the impacts and threats posed by excessive greenhouse gas emissions, particularly carbon dioxide (CO2). Consequently, reducing CO2 emissions has become imperative, with decarbonization techniques being extensively investigated worldwide to achieve net-zero emissions. From an energy perspective, CO2 represents an abundant and low-cost carbon resource that can be converted into high-value chemical products through reactions with hydrocarbons, including alkanes, alkenes, aromatic hydrocarbons, and polyolefins. Through hydrogen transfer, CO2 can be reduced to CO, accompanied by the formation of H2O. CO2 and hydrocarbons can also be transformed into syngas (CO and H2) via dry reforming. Furthermore, CO2 can be incorporated into hydrocarbon molecules, resulting in carbon chain growth, such as the production of alcohols, carboxylic acids, and aromatics. However, due to the thermodynamic stability and kinetic inertness of CO2, as well as the high bond energy and low polarity of hydrocarbon C―H bonds, the conversion of CO2 and hydrocarbons remains a highly challenging and demanding strategic objective. This review focuses on the synergistic catalytic valorization of CO2 and hydrocarbons using heterogeneous catalysts, summarizing recent advancements in coupling CO2 with various hydrocarbons. It also examines relevant kinetic models, including Langmuir-Hinshelwood and Eley-Rideal mechanisms. For catalyst design, bifunctional catalysts with distinct active sites can independently activate these two reactive molecules, and the modulation of acid-base properties, oxygen vacancies, and interfacial interactions represents an effective strategy to optimize catalytic performance. Finally, future directions for advancing CO2-hydrocarbon co-utilization technologies are proposed, along with recommendations for low-carbon development strategies.
  • 加载中
    1. [1]

      Figueres, C.; Le Quéré, C.; Mahindra, A.; Bäte, O.; Whiteman, G.; Peters, G.; Guan, D. Nature 2018, 564, 27. doi: 10.1038/d41586-018-07585-6

    2. [2]

      Jiang, M.; Cao, Y. H.; Liu, C. G.; Chen, D. J.; Zhou, W. J.; Wen, Q.; Yu, H. J.; Jiang, J.; Ren, Y. C.; Hu, S. Y.; Hertwich, E.; Zhu, B. Nat. Commun. 2024, 15, 3854. doi: 10.1038/s41467-024-47930-0

    3. [3]

      Stegmann, P.; Daioglou, V.; Londo, M.; Van Vuuren, D. P.; Junginger, M. Nature 2022, 612, 272. doi: 10.1038/s41586-022-05422-5

    4. [4]

      Cabernard, L.; Pfister, S.; Oberschelp, C.; Hellweg, S. Nat. Sustain. 2021, 5, 139. doi: 10.1038/s41893-021-00807-2

    5. [5]

      Chen, Y. X.; Wang, L. J.; Yao, Z. B.; Hao, L. D.; Tan, X. Y.; Masa, J.; W. Robertson, A.; Sun, Z. Acta Phys. -Chim. Sin. 2022, 38, 2207024. doi: 10.3866/PKU.WHXB202207024

    6. [6]

      Hanifa, M.; Agarwal, R.; Sharma, U.; Thapliyal, P. C.; Singh, L. P. J. CO2 Util. 2023, 67, 102292. doi: 10.1016/j.jcou.2022.102292

    7. [7]

      Yang, X.; Nielsen, C. P.; Song, S.; McElroy, M. B. Nat. Energy 2022, 7, 955. doi: 10.1038/s41560-022-01114-6

    8. [8]

      Meng, F.; Wagner, A.; Kremer, A. B.; Kanazawa, D.; Leung, J. J.; Goult, P.; Guan, M.; Herrmann, S.; Speelman, E.; Sauter, P.; et al. Proc. Natl. Acad. Sci. U.S.A. 2023, 120, e2218294120. doi: 10.1073/pnas.2218294120

    9. [9]

      Woodall, C. M.; Fan, Z. Y.; Lou, Y. S.; Bhardwaj, A.; Khatri, A.; Agrawal, M.; McCormick, C. F.; Friedmann, S. J. Joule 2022, 6, 2474. doi: 10.1016/j.joule.2022.10.006

    10. [10]

      Belsa, B.; Xia, L.; Golovanova, V.; Polesso, B.; Pinilla-Sánchez, A.; San Martín, L.; Ye, J.; Dinh, C.-T.; García De Arquer, F. P. Nat. Rev. Mater. 2024, 9, 535. doi: 10.1038/s41578-024-00696-9

    11. [11]

      Liang, F.; Wei, S.; Xue, L.; Yan, S. Green Carbon 2024, 2, 252. doi: 10.1016/j.greenca.2024.03.001

    12. [12]

      Ling, L. L.; Yang, W. J.; Yan, P.; Wang, M.; Jiang, H. L. Angew. Chem. Int. Ed. 2022, 61, e202116396. doi: 10.1002/anie.202116396

    13. [13]

      Li, X. D.; Sun, Y. F.; Xu, J. Q.; Shao, Y. J.; Wu, J.; Xu, X. L.; Pan, Y.; Ju, H. X.; Zhu, J. F.; Xie, Y. Nat. Energy 2019, 4, 690. doi: 10.1038/s41560-019-0431-1

    14. [14]

      Wang, S. W.; Wang, J. S.; Wang, Y.; Sui, X. Y.; Wu, S. H.; Dai, W. X.; Zhang, Z. Z.; Ding, Z. X.; Long, J. L. ACS Catal. 2024, 14, 10760. doi: 10.1021/acscatal.4c01712

    15. [15]

      Li, X. D.; Wang, S. M.; Li, L.; Zu, X. L.; Sun, Y. F.; Xie, Y. Acc. Chem. Res. 2020, 53, 2964. doi: 10.1021/acs.accounts.0c00626

    16. [16]

      Yu, F. Y.; Jing, X.; Wang, Y.; Sun, M. Y.; Duan, C. Y. Angew. Chem. Int. Ed. 2021, 60, 24849. doi: 10.1002/anie.202108892

    17. [17]

      Li, H. Z.; Qiu, C. L.; Ren, S. J.; Dong, Q. B.; Zhang, S. X.; Zhou, F. L.; Liang, X. H.; Wang, J. G.; Li, S. G.; Yu, M. Science 2020, 367, 667. doi: 10.1126/science.aaz6053

    18. [18]

      García De Arquer, F. P.; Dinh, C.-T.; Ozden, A.; Wicks, J.; McCallum, C.; Kirmani, A. R.; Nam, D.-H.; Gabardo, C.; Seifitokaldani, A.; Wang, X.; et al. Science 2020, 367, 661. doi: 10.1126/science.aay4217

    19. [19]

      Lu, C. H.; Li, X. R.; Wu, Q.; Li, J.; Wen, L.; Dai, Y.; Huang, B. B.; Li, B. J.; Lou, Z. Z. ACS Nano 2021, 15, 3529. doi: 10.1021/acsnano.1c00452

    20. [20]

      Cui, X. F.; Wang, J.; Liu, B.; Ling, S.; Long, R.; Xiong, Y. J. J. Am. Chem. Soc. 2018, 140, 16514. doi: 10.1021/jacs.8b06723

    21. [21]

      Wang, C. H.; Yang, W.-C. D.; Raciti, D.; Bruma, A.; Marx, R.; Agrawal, A.; Sharma, R. Nat. Mater. 2021, 20, 346. doi: 10.1038/s41563-020-00851-x

    22. [22]

      Kätelhön, A.; Meys, R.; Deutz, S.; Suh, S.; Bardow, A. Proc. Natl. Acad. Sci. U.S.A. 2019, 116, 11187. doi: 10.1073/pnas.1821029116

    23. [23]

      Deng, C. J.; Qi, C. F.; Wu, X. M.; Jing, G. H.; Zhao, H. W. Green Carbon 2024, 2, 124. doi: 10.1016/j.greenca.2024.02.003

    24. [24]

      Tu, X. Y.; Liu, X. J.; Zhang, Y.; Zhu, J.; Jiang, H. Q. Green Carbon 2024, 2, 131. doi: 10.1016/j.greenca.2024.03.006

    25. [25]

      Dong, Y.; Zhang, W.; Hu, Z. F.; Ng, Y. H.; Wei, Z.; Liu, Y. X.; Deng, J. G.; Dai, H. X.; Jing, L. Appl. Catal. B 2024, 357, 124347. doi: 10.1016/j.apcatb.2024.124347

    26. [26]

      Liu, X.; Liu, T.; Ouyang, T.; Deng, J. G.; Liu, Z. Q. Angew. Chem. Int. Ed. 2025, 64, e202419796. doi: 10.1002/anie.202419796

    27. [27]

      Gomes, R. J.; Kumar, R.; Fejzić, H.; Sarkar, B.; Roy, I.; Amanchukwu, C. V. Nat. Catal. 2024, 7, 689. doi: 10.1038/s41929-024-01162-z

    28. [28]

      Xu, X.; Shao, C.; Zhang, J.; Wang, Z.; Dai, K. Acta Phys. -Chim. Sin. 2024, 40, 2309031. doi: 10.3866/PKU.WHXB202309031

    29. [29]

      Zhang, Y.; Jang, H.; Ge, X.; Zhang, W.; Li, Z.; Hou, L.; Zhai, L.; Wei, X.; Wang, Z.; Kim, M. G.; et al. Adv. Energy Mater. 2022, 12, 2202695. doi: 10.1002/aenm.202202695

    30. [30]

      Gu, X. J.; Lou, X. W. Adv. Mater. 2022, 34, 2204865. doi: 10.1002/adma.202204865

    31. [31]

      Zheng, K.; Li, Y.; Liu, B.; Jiang, F.; Xu, Y.; Liu, X. Angew. Chem. Int. Ed. 2022, 61, e202210991. doi: 10.1002/anie.202210991

    32. [32]

      Zhu, Y.; Sun, X.; Zhang, R.; Feng, X.; Zhu, Y. Small 2024, 20, 2400191. doi: 10.1002/smll.202400191

    33. [33]

      Peng, R.; Ren, Y.; Si, Y.; Huang, K.; Zhou, J.; Duan, L.; Li, N. ACS Catal. 2025, 15, 1. doi: 10.1021/acscatal.4c06218

    34. [34]

      Li, S.; Xu, Y. X.; Wang, H. W.; Teng, B. T.; Liu, Q.; Li, Q. H.; Xu, L. L.; Liu, X. Y.; Lu, J. Angew. Chem. Int. Ed. 2023, 62, e202218167. doi: 10.1002/anie.202218167

    35. [35]

      Jia, G.; Sun, M.; Wang, Y.; Shi, Y.; Zhang, L.; Cui, X.; Huang, B.; Yu, J. C. Adv. Funct. Mater. 2022, 32, 2206817. doi: 10.1002/adfm.202206817

    36. [36]

      Sun, K.; Shen, C.; Zou, R.; Liu, C. Appl. Catal. B 2023, 320, 122018. doi: 10.1016/j.apcatb.2022.122018

    37. [37]

      Wei, W. Q.; Wei, Z.; Li, R. Z.; Li, Z. H.; Shi, R.; Ouyang, S. X.; Qi, Y. H.; Philips, D. L.; Yuan, H. Nat. Commun. 2022, 13, 3199. doi: 10.1038/s41467-022-30958-5

    38. [38]

      Abdelgaid, M.; Mpourmpakis, G. ACS Catal. 2022, 12, 4268. doi: 10.1021/acscatal.2c00229

    39. [39]

      Han, Y.; An, S.; Zhan, X.; Hao, L.; Xu, L.; Hong, S.; Park, D.; Chen, Y.; Xu, Y.; Zhao, J.; et al. CCS Chem. 2024, 6, 1477. doi: 10.31635/ccschem.023.202303128

    40. [40]

      Zhang, Z.; Li, H.; Shao, Y.; Gan, L.; Kang, F.; Duan, W.; Hansen, H. A.; Li, J. Nat. Commun. 2024, 15, 612. doi: 10.1038/s41467-024-44896-x

    41. [41]

      Zhang, A.; Liang, Y.; Li, H.; Zhao, X.; Chen, Y.; Zhang, B.; Zhu, W.; Zeng, J. Nano Lett. 2019, 19, 6547. doi: 10.1021/acs.nanolett.9b02782

    42. [42]

      Wang, W.; Gan, L.; Lemmon, J. P.; Chen, F.; Irvine, J. T. S.; Xie, K. Nat. Commun. 2019, 10, 1550. doi: 10.1038/s41467-019-09568-1

    43. [43]

      Zuo, L.; Deng, Y.; Chen, L.; He, T.; Yang, J.; Zhang, J. ACS Catal. 2024, 14, 16795. doi: 10.1021/acscatal.4c04795

    44. [44]

      Liu, B.; Li, C.; Zhang, G.; Yao, X.; Chuang, S. S. C.; Li, Z. ACS Catal. 2018, 8, 10446. doi: 10.1021/acscatal.8b00415

    45. [45]

      Das, S.; Pérez-Ramírez, J.; Gong, J.; Dewangan, N.; Hidajat, K.; Gates, B. C.; Kawi, S. Chem. Soc. Rev. 2020, 49, 2937. doi: 10.1039/c9cs00713j

    46. [46]

      Yang, Q. H.; Liu, H.; Lin, Y. C.; Su, D. S.; Tang, Y. L.; Chen, L. Adv. Mater. 2024, 36, 2310912. doi: 10.1002/adma.202310912

    47. [47]

      Cao, Y.; Guo, R.; Ma, M.; Huang, Z.; Zhou, Y. Acta Phys. -Chim. Sin. 2024, 40, 2303029. doi: 10.3866/PKU.WHXB202303029

    48. [48]

      Theofanidis, S. A.; Kasun Kalhara Gunasooriya, G. T.; Itskou, I.; Tasioula, M.; Lemonidou, A. A. ChemCatChem 2022, 14, e202200032. doi: 10.1002/cctc.202200032

    49. [49]

      Zhu, Z. J.; He, Z. H.; Tian, Y.; Wang, S. W.; Sun, Y. C.; Wang, K.; Wang, W. T.; Zhang, Z. F.; Liu, J. J.; Liu, Z. T. ACS Catal. 2024, 14, 10376. doi: 10.1021/acscatal.4c02599

    50. [50]

      Zhang, X. B.; Li, J. J.; Liu, W.; Zheng, Y. B.; An, J.; Xin, W. J.; Liu, Z. N.; Xu, L. Y.; Li, X. J.; Zhu, X. X. ACS Catal. 2023, 13, 14864. doi: 10.1021/acscatal.3c04371

    51. [51]

      Otroshchenko, T.; Jiang, G.; Kondratenko, V. A.; Rodemerck, U.; Kondratenko, E. V. Chem. Soc. Rev. 2021, 50, 473. doi: 10.1039/d0cs01140a

    52. [52]

      Chu, C. Q.; Chen, B. Y.; He, Y.; Jiang, G. Y.; Lan, X. Y.; Li, S. G.; Wu, C. N.; Cao, D. F. ACS Catal. 2024, 14, 9662. doi: 10.1021/acscatal.4c01473

    53. [53]

      Hao, S. Y.; Chen, Y. S.; Peng, C.; Wang, H. N.; Wen, Q. Y.; Hu, C. J.; Zhang, L. J.; Han, Q.; Zheng, G. F. Adv. Funct. Mater. 2024, 34, 2314118. doi: 10.1002/adfm.202314118

    54. [54]

      Su, H.; Han, J. T.; Miao, B. T.; Salehi, M.; Li, C. J. Nat. Commun. 2024, 15, 6435. doi: 10.1038/s41467-024-50801-3

    55. [55]

      Liu, Y. J.; Zhang, C. Y.; Wang, R. J.; Wu, Y. X.; Zan, X. Y.; Tao, S. Q.; Huang, W. ACS Catal. 2024, 14, 8823. doi: 10.1021/acscatal.4c00863

    56. [56]

      Ding, Y.; Zhang, S. C.; Liu, C.; Shao, Y.; Pan, X. L.; Bao, X. H. Natl. Sci. Rev. 2024, 11, nwae097. doi: 10.1093/nsr/nwae097

    57. [57]

      Xie, Z. H.; Wang, X. L.; Chen, X. B.; Liu, P.; Chen, J. G. J. Am. Chem. Soc. 2022, 144, 4186. doi: 10.1021/jacs.1c13415

    58. [58]

      Chen, W. J.; Jiao, Y. C.; Liu, Y.; Wang, M.; Zhang, F.; Ma, D. CCS Chem. 2024, 6, 1422. doi: 10.31635/ccschem.023.202303518

    59. [59]

      Liu, Y. Y.; Ma, B.; Tian, J. Q.; Zhao, C. Sci. Adv. 2024, 10, eadn0252. doi: 10.1126/sciadv.adn0252

    60. [60]

      Xie, Z. H.; Tian, D.; Xie, M.; Yang, S. Z.; Xu, Y. G.; Rui, N.; Lee, J. H.; Senanayake, S. D.; Li, K. Z.; Wang, H.; et al. Chem 2020, 6, 2703. doi: 10.1016/j.chempr.2020.07.011

    61. [61]

      Xie, Z. H.; Winter, L. R.; Chen, J. G. Matter 2021, 4, 408. doi: 10.1016/j.matt.2020.11.013

    62. [62]

      Xie, Z. H.; Chen, J. G. Acc. Chem. Res. 2023, 56, 2447. doi: 10.1021/acs.accounts.3c00348

    63. [63]

      Guo, H. Y.; Xie, Z. H.; Wang, X. L.; Chen, J. G.; Liu, P. EES. Catal. 2023, 1, 17. doi: 10.1039/d2ey00051b

    64. [64]

      Wang, L.; Wang, Y. Z.; Fan, L. H.; Xu, H. L.; Liu, B. W.; Zhang, J. R.; Zhu, Y. M.; Tu, X. Chem. Eng. J. 2023, 466, 143347. doi: 10.1016/j.cej.2023.143347

    65. [65]

      Yuan, T.; Wu, Z. W.; Zhai, S. M.; Wang, R.; Wu, S. W.; Cheng, J. J.; Zheng, M. F.; Wang, X. C. Angew. Chem. Int. Ed. 2023, 62, e202304861. doi: 10.1002/anie.202304861

    66. [66]

      Yang, G. Q.; Niu, Y. M.; Kondratenko, V. A.; Yi, X. F.; Liu, C.; Zhang, B. S.; Kondratenko, E. V.; Liu, Z. W. Angew. Chem. Int. Ed. 2023, 62, e202310062. doi: 10.1002/anie.202310062

    67. [67]

      Wu, J.; Gao, J.; Lian, S.; Li, J.; Sun, K.; Zhao, S.; Kim, Y. D.; Ren, Y.; Zhang, M.; Liu, Q.; Liu, Z.; Peng, Z. Appl. Catal. B 2022, 314, 121516. doi: 10.1016/j.apcatb.2022.121516

    68. [68]

      Tan, R.; Wang, X.; Kong, Y.; Ji, Q.; Zhan, Q.; Xiong, Q.; Mu, X.; Li, L. J. Am. Chem. Soc. 2024, 146, 14149. doi: 10.1021/jacs.4c02792

    69. [69]

      Yang, J.; Wang, L.; Wan, J.; El Gabaly, F.; Fernandes Cauduro, A. L.; Mills, B. E.; Chen, J.-L.; Hsu, L.-C.; Lee, D.; Zhao, X.; et al. Nat. Commun. 2024, 15, 911. doi: 10.1038/s41467-024-44918-8

    70. [70]

      Niu, F.; Tu, W. G.; Zhou, Y.; Xu, R.; Zou, Z. G. EnergyChem 2023, 5, 100112. doi: 10.1016/j.enchem.2023.100112

    71. [71]

      Yuan, L.; Qi, M. Y.; Tang, Z. R.; Xu, Y. J. Angew. Chem. Int. Ed. 2021, 60, 21150. doi: 10.1002/anie.202101667

    72. [72]

      Song, Q.-W.; Ma, R.; Liu, P.; Zhang, K.; He, L.-N. Green Chem. 2023, 25, 6538. doi: 10.1039/d3gc01892j

    73. [73]

      Qiu, L.-Q.; Li, H.-R.; He, L.-N. Acc. Chem. Res. 2023, 56, 2225. doi: 10.1021/acs.accounts.3c00316

    74. [74]

      Wang, L.; Fan, L. H.; Wang, Y. Z.; Chen, Q.; Zhu, Y. M.; Yi, Y. H. Appl. Catal. B 2024, 350, 123938. doi: 10.1016/j.apcatb.2024.123938

    75. [75]

      Alsaffar, M. A.; Ayodele, B. V.; Ali, J. M.; Abdel Ghany, M. A.; Mustapa, S. I.; Cheng, C. K. Int. J. Hydrog. Energy 2021, 46, 30871. doi: 10.1016/j.ijhydene.2021.04.158

    76. [76]

      Kiani, D.; Wachs, I. E. ACS Catal. 2024, 14, 16770. doi: 10.1021/acscatal.4c05188

    77. [77]

      Al-Shafei, E. N.; Robert Brown, D.; Katikaneni, S. P.; Aljama, H.; H. Al-Badairy, H. Chem. Eng. J. 2021, 419, 129416. doi: 10.1016/j.cej.2021.129416

    78. [78]

      Dou, L. G.; Liu, Y. D.; Gao, Y.; Li, J. W.; Hu, X. C.; Zhang, S.; Ostrikov, K. (Ken); Shao, T. Appl. Catal. B 2022, 318, 121830. doi: 10.1016/j.apcatb.2022.121830

    79. [79]

      Schwach, P.; Pan, X. L.; Bao, X. H. Chem. Rev. 2017, 117, 8497. doi: 10.1021/acs.chemrev.6b00715

    80. [80]

      He, C. X.; Gong, Y. L.; Li, S. T.; Wu, J. X.; Lu, Z. J.; Li, Q. X.; Wang, L. Z.; Wu, S. Q.; Zhang, J. L. Adv. Mater. 2024, 36, 2311628. doi: 10.1002/adma.202311628

    81. [81]

      Wu, S. Y.; Wu, S. Y.; Sun, Y. G. Solar RRL 2021, 5, 2000507. doi: 10.1002/solr.202000507

    82. [82]

      Sun, J.; Lian, G.; Chen, Z.; Zou, Z.; Wang, L. ACS Nano 2024, 18, 34572. doi: 10.1021/acsnano.4c13030

    83. [83]

      Cheng, Q. P.; Yao, X. L.; Ou, L. F.; Hu, Z. P.; Zheng, L. R.; Li, G. X.; Morlanes, N.; Cerrillo, J. L.; Castaño, P.; Li, X. G.; et al. J. Am. Chem. Soc. 2023, 145, 25109. doi: 10.1021/jacs.3c04581

    84. [84]

      Wang, J. Y.; Fu, Y.; Kong, W. B.; Li, S. Q.; Yuan, C. K.; Bai, J. R.; Chen, X.; Zhang, J.; Sun, Y. H. ACS Catal. 2022, 12, 4382. doi: 10.1021/acscatal.2c00027

    85. [85]

      Niu, J. T.; Wang, Y. L.; E. Liland, S.; K. Regli, S.; Yang, J.; Rout, K. R.; Luo, J.; Rønning, M.; Ran, J. Y.; Chen, D. ACS Catal. 2021, 11, 2398. doi: 10.1021/acscatal.0c04429

    86. [86]

      Wang, H.; Hu, Y. S.; Shen, Y. L.; Chukwu, E.; Xi, W.; Shen, G. R.; Wang, J.; Shen, M. Q.; Yang, M.; Lu, T. B. ACS Catal. 2024, 14, 10712. doi: 10.1021/acscatal.4c02608

    87. [87]

      Shen, D. Y.; Li, Z.; Shan, J.; Yu, G. W.; Wang, X. Y.; Zhang, Y. H.; Liu, C. C.; Lyu, S.; Li, J. L.; Li, L. Appl. Catal. B 2022, 318, 121809. doi: 10.1016/j.apcatb.2022.121809

    88. [88]

      Gangarajula, Y.; Hong, F.; Li, Q. H.; Jiang, X. Z.; Liu, W.; Akri, M.; Su, Y.; Zhang, Y. J.; Li, L.; Qiao, B. T. Appl. Catal. B 2024, 343, 123503. doi: 10.1016/j.apcatb.2023.123503

    89. [89]

      Androulakis, A.; Yentekakis, I. V.; Panagiotopoulou, P. Int. J. Hydrog. Energy 2023, 48, 33886. doi: 10.1016/j.ijhydene.2023.03.114

    90. [90]

      Yentekakis, I. V.; Goula, G.; Hatzisymeon, M.; Betsi-Argyropoulou, I.; Botzolaki, G.; Kousi, K.; Kondarides, D. I.; Taylor, M. J.; Parlett, C. M. A.; Osatiashtiani, A.; et al. Appl. Catal. B 2019, 243, 490. doi: 10.1016/j.apcatb.2018.10.048

    91. [91]

      Li, Q.; Wang, H. L.; Zhang, M.; Li, G. H.; Chen, J.; Jia, H. P. Angew. Chem. Int. Ed. 2023, 62, e202300129. doi: 10.1002/anie.202300129

    92. [92]

      Liu, Z. Y.; Zhang, F.; Rui, N.; Li, X.; Lin, L. L.; Betancourt, L. E.; Su, D.; Xu, W. Q.; Cen, J. J.; Attenkofer, K.; et al. ACS Catal. 2019, 9, 3349. doi: 10.1021/acscatal.8b05162

    93. [93]

      Sun, J.; Yamaguchi, D.; Tang, L.; D’Angelo, A. M.; Chiang, K. Int. J. Hydrog. Energy 2024, 51, 822. doi: 10.1016/j.ijhydene.2023.07.079

    94. [94]

      Chang, K.; Zhang, H. C.; Cheng, M.; Lu, Q. ACS Catal. 2020, 10, 613. doi: 10.1021/acscatal.9b03935

    95. [95]

      Xiao, Y. C.; Xie, K. Angew. Chem. Int. Ed. 2022, 61, e202113079. doi: 10.1002/anie.202113079

    96. [96]

      Wang, H.; Cui, G. Q.; Lu, H.; Li, Z. Y.; Wang, L.; Meng, H.; Li, J.; Yan, H.; Yang, Y. S.; Wei, M. Nat. Commun. 2024, 15, 3765. doi: 10.1038/s41467-024-48122-6

    97. [97]

      Bai, X. Q.; Yao, X. L.; Cheng, Q. P.; Mohamed, H. O.; Telalovic, S.; Melinte, G. A.; Emwas, A.-H.; Gascon, J.; Castaño, P. ACS Sustain. Chem. Eng. 2024, 12, 633. doi: 10.1021/acssuschemeng.3c07051

    98. [98]

      Rao, Z. Q.; Wang, K. W.; Cao, Y. H.; Feng, Y. B.; Huang, Z. A.; Chen, Y. L.; Wei, S. Q.; Liu, L. Y.; Gong, Z. M.; Cui, Y.; et al. J. Am. Chem. Soc. 2023, 145, 24625. doi: 10.1021/jacs.3c07077

    99. [99]

      Cai, Y. J.; Zhang, G. J.; Liu, J.; Zhang, Y. F.; Li, T. S.; Zhang, X. D.; Wang, Y.; Zhao, Y. Q.; Li, G. Q. Int. J. Hydrog. Energy 2023, 48, 38251. doi: 10.1016/j.ijhydene.2023.06.152

    100. [100]

      Sun, Y. H.; Zhang, Y. B.; Yin, X. F.; Zhang, C. H.; Li, Y.; Bai, J. Green Chem. 2024, 26, 5103. doi: 10.1039/d3gc05136f

    101. [101]

      Yang, E.; Nam, E.; Jo, Y.; An, K. Appl. Catal. B 2023, 339, 123152. doi: 10.1016/j.apcatb.2023.123152

    102. [102]

      Beheshti Askari, A.; Al Samarai, M.; Morana, B.; Tillmann, L.; Pfänder, N.; Wandzilak, A.; Watts, B.; Belkhou, R.; Muhler, M.; DeBeer, S. ACS Catal. 2020, 10, 6223. doi: 10.1021/acscatal.9b05517

    103. [103]

      Li, Y. X.; Li, J. L.; Yu, T. Q.; Qiu, L.; Hasan, S. M. N.; Yao, L.; Pan, H.; Arafin, S.; Sadaf, S. Md.; Zhu, L.; Zhou, B. W. Sci. Bull. 2024, 69, 1400. doi: 10.1016/j.scib.2024.02.020

    104. [104]

      Tu, C.; Nie, X.; Chen, J. G. ACS Catal. 2021, 11, 3384. doi: 10.1021/acscatal.0c05492

    105. [105]

      Zhao, Y. T.; Cui, C. N.; Han, J. Y.; Wang, H.; Zhu, X. L.; Ge, Q. F. J. Am. Chem. Soc. 2016, 138, 10191. doi: 10.1021/jacs.6b04446

    106. [106]

      Wang, Y.; Fan, L.; Xu, H.; Du, X.; Xiao, H.; Qian, J.; Zhu, Y.; Tu, X.; Wang, L. Appl. Catal. B 2022, 315, 121583. doi: 10.1016/j.apcatb.2022.121583

    107. [107]

      Yan, B. H.; Yao, S. Y.; Kattel, S.; Wu, Q. Y.; Xie, Z. H.; Gomez, E.; Liu, P.; Su, D.; Chen, J. G. Proc. Natl. Acad. Sci. U.S.A. 2018, 115, 8278. doi: 10.1073/pnas.1806950115

    108. [108]

      Theofanidis, S. A.; Loizidis, C.; Heracleous, E.; Lemonidou, A. A. J. Catal. 2020, 388, 52. doi: 10.1016/j.jcat.2020.05.004

    109. [109]

      Zhou, W. Q.; Felvey, N.; Guo, J. W.; Hoffman, A. S.; Bare, S. R.; Kulkarni, A. R.; Runnebaum, R. C.; Kronawitter, C. X. J. Am. Chem. Soc. 2024, 146, 10060. doi: 10.1021/jacs.4c00995

    110. [110]

      Liu, J.; He, N.; Zhang, Z.; Yang, J.; Jiang, X.; Zhang, Z.; Su, J.; Shu, M.; Si, R.; Xiong, G.; Xie, H.; Vilé, G. ACS Catal. 2021, 11, 2819. doi: 10.1021/acscatal.1c00126

    111. [111]

      Zheng, Y. B.; Zhang, X. B.; Li, J. J.; An, J.; Zhu, X. X.; Li, X. J. J. Catal. 2023, 428, 115130. doi: 10.1016/j.jcat.2023.115130

    112. [112]

      Zheng, Y. B.; Li, J. J.; Zhang, X. B.; An, J.; Xin, W. J.; Zhu, X. X.; Li, X. J. ACS Catal. 2023, 13, 11153. doi: 10.1021/acscatal.3c02029

    113. [113]

      Zheng, Y. B.; Li, J. J.; Zhang, X. B.; Li, S. G.; An, J.; Chen, F. C.; Li, X. J.; Zhu, X. X. ACS Catal. 2024, 14, 4749. doi: 10.1021/acscatal.4c00324

    114. [114]

      Yuan, Y.; Huang, E.; Hwang, S.; Liu, P.; Chen, J. G. Angew. Chem. Int. Ed. 2024, 63, e202404047. doi: 10.1002/anie.202404047

    115. [115]

      Chen, S.; Chang, X.; Sun, G. D.; Zhang, T. T.; Xu, Y. Y.; Wang, Y.; Pei, C. L.; Gong, J. L. Chem. Soc. Rev. 2021, 50, 3315. doi: 10.1039/D0CS00814A

    116. [116]

      Gao, X. F.; Zhu, L.; Yang, F.; Zhang, L.; Xu, W. H.; Zhou, X.; Huang, Y. K.; Song, H. H.; Lin, L. L.; Wen, X. D.; et al. Nat. Commun. 2023, 14, 1478. doi: 10.1038/s41467-023-37261-x

    117. [117]

      Wang, G. M.; Chen, S. H.; Duan, Q. W.; Wei, F. F.; Lin, S.; Xie, Z. L. Angew. Chem. Int. Ed. 2023, 62, e202307470. doi: 10.1002/anie.202307470

    118. [118]

      Chen, S.; Luo, R.; Zhao, Z. J.; Pei, C. L.; Xu, Y. Y.; Lu, Z. P.; Zhao, C. J.; Song, H. B.; Gong, J. L. Nat. Commun. 2023, 14, 2620. doi: 10.1038/s41467-023-38284-0

    119. [119]

      Wang, Z. Y.; He, Z. H.; Li, L. Y.; Yang, S. Y.; He, M. X.; Sun, Y. C.; Wang, K.; Chen, J. G.; Liu, Z. T. Rare Met. 2022, 41, 2129. doi: 10.1007/s12598-021-01959-y

    120. [120]

      Jiang, X.; Sharma, L.; Fung, V.; Park, S. J.; Jones, C. W.; Sumpter, B. G.; Baltrusaitis, J.; Wu, Z. L. ACS Catal. 2021, 11, 2182. doi: 10.1021/acscatal.0c03999

    121. [121]

      Xing, F. L.; Nakaya, Y.; Yasumura, S.; Shimizu, K.; Furukawa, S. Nat. Catal. 2022, 5, 55. doi: 10.1038/s41929-021-00730-x

    122. [122]

      Xing, F. L.; Ma, J. M.; Shimizu, K.; Furukawa, S. Nat. Commun. 2022, 13, 5065. doi: 10.1038/s41467-022-32842-8

    123. [123]

      Wang, J.; Zhu, M. L.; Song, Y. H.; Liu, Z. T.; Wang, L.; Liu, Z. W. J. Catal. 2022, 409, 87. doi: 10.1016/j.jcat.2022.03.027

    124. [124]

      Wang, J.; Song, Y. H.; Liu, Z. T.; Liu, Z. W. Appl. Catal. B 2021, 297, 120400. doi: 10.1016/j.apcatb.2021.120400

    125. [125]

      Bu, K. K.; Kang, Y. K.; Li, Y. F.; Zhang, Y. H.; Tang, Y.; Huang, Z.; Shen, W.; Xu, H. L. Appl. Catal. B 2024, 343, 123528. doi: 10.1016/j.apcatb.2023.123528

    126. [126]

      Yang, K.; Li, J. Z.; Wei, C. C.; Zhao, Z. K.; Liu, Z. M. ACS Catal. 2023, 13, 10405. doi: 10.1021/acscatal.3c02158

    127. [127]

      Wei, C. C.; Zhang, W. N.; Yang, K.; Bai, X.; Xu, S. T.; Li, J. Z.; Liu, Z. M. Chin. J. Catal. 2023, 47, 138. doi: 10.1016/S1872‐2067(23)64416‐X

    128. [128]

      He, Z.-H.; Wu, B.-T.; Xia, Y.; Yang, S.-Y.; Wang, Z.-Y.; Wang, K.; Wang, W.; Yang, Y.; Liu, Z.-T. Mol. Catal. 2022, 524, 112262. doi: 10.1016/j.mcat.2022.112262

    129. [129]

      Zhang, X.; Li, J.; Zheng, Y.; Xin, W.; An, J.; Zhu, X.; Li, X. Chem. Eng. J. 2023, 473, 145370. doi: 10.1016/j.cej.2023.145370

    130. [130]

      Wang, J. P.; Liu, M.; Li, J. J.; Wang, C. F.; Zhang, X. B.; Zheng, Y. B.; Li, X. J.; Xu, L. Y.; Guo, X. W.; Song, C. S.; et al. ACS Catal. 2022, 12, 5930. doi: 10.1021/acscatal.1c05907

    131. [131]

      Zhou, L.; Li, L. P.; Zhang, S. D.; Kuang, X.-K.; Zhou, Y.-Y.; Tang, Y. J. Am. Chem. Soc. 2024, 146, 18823. doi: 10.1021/jacs.4c05217

    132. [132]

      Meng, Q.-Y.; Wang, S.; Huff, G. S.; König, B. J. Am. Chem. Soc. 2018, 140, 3198. doi: 10.1021/jacs.7b13448

    133. [133]

      Tortajada, A.; Juliá-Hernández, F.; Börjesson, M.; Moragas, T.; Martin, R. Angew. Chem. Int. Ed. 2018, 57, 15948. doi: 10.1002/anie.201803186

    134. [134]

      Liu, L. N.; Dai, J.; Das, S.; Wang, Y. L.; Yu, H.; Xi, S. B.; Zhang, Z. K.; Tu, X. JACS Au 2023, 3, 785. doi: 10.1021/jacsau.2c00603

    135. [135]

      Shang, X.; Zhuo, H.; Han, Q.; Yang, X.; Hou, G.; Liu, G.; Su, X.; Huang, Y.; Zhang, T. Angew. Chem. Int. Ed. 2023, 62, e202309377. doi: 10.1002/anie.202309377

    136. [136]

      Wang, L. C.; Wang, Y. Y.; Zhang, R.; Ding, R. M.; Chen, X. H.; Lv, B. L. ACS Catal. 2020, 10, 6697. doi: 10.1021/acscatal.0c00070

    137. [137]

      Yang, G. Q.; Wang, H.; Gong, T.; Song, Y. H.; Feng, H.; Ge, H. Q.; Ge, H. B.; Liu, Z. T.; Liu, Z. W. J. Catal. 2019, 380, 195. doi: 10.1016/j.jcat.2019.10.009

    138. [138]

      Vidal, F.; Van Der Marel, E. R.; Kerr, R. W. F.; McElroy, C.; Schroeder, N.; Mitchell, C.; Rosetto, G.; Chen, T. T. D.; Bailey, R. M.; Hepburn, C.; Redgwell, C.; et al. Nature 2024, 626, 45. doi: 10.1038/s41586-023-06939-z

    139. [139]

      Ma, D. Nat. Sustain. 2023, 6, 1142. doi: 10.1038/s41893-023-01224-3

    140. [140]

      Conk, R. J.; Hanna, S.; Shi, J. X.; Yang, J.; Ciccia, N. R.; Qi, L.; Bloomer, B. J.; Heuvel, S.; Wills, T.; Su, J.; et al. Science 2022, 377, 1561. doi: 10.1126/science.add1088

    141. [141]

      Sun, J. K.; Dong, J. H.; Gao, L. J.; Zhao, Y.-Q.; Moon, H.; Scott, S. L. Chem. Rev. 2024, 124, 9457. doi: 10.1021/acs.chemrev.3c00943

    142. [142]

      Hou, G. Q.; Wang, Q.; Xu, D.; Fan, H. F.; Liu, K. D.; Li, Y. Y.; Gu, X. K.; Ding, M. Y. Angew. Chem. Int. Ed. 2024, 63, e202402053. doi: 10.1002/anie.202402053

    143. [143]

      Xuan, K.; Chen, S. K.; Pu, Y. F.; Guo, Y. P.; Guo, Y. D.; Li, Y.; Pu, C. X.; Zhao, N.; Xiao, F. K. J. CO2 Util. 2022, 59, 101960. doi: 10.1016/j.jcou.2022.101960

    144. [144]

      Liu, Q.; Lin, J. J.; Cheng, H.; Wei, L. L.; Wang, F. X. Angew. Chem. Int. Ed. 2023, 62, e202218720. doi: 10.1002/anie.202218720

    145. [145]

      Behrendt, D.; Banerjee, S.; Clark, C.; Rappe, A. M. J. Am. Chem. Soc. 2023, 145, 4730. doi: 10.1021/jacs.2c13253

    146. [146]

      Li, H. B.; Li, X.; Wang, P. T.; Zhang, Z.; Davey, K.; Shi, J. Q.; Qiao, S. Z. J. Am. Chem. Soc. 2024, 146, 22850. doi: 10.1021/jacs.4c09079

  • 加载中
    1. [1]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    2. [2]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    3. [3]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    4. [4]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    5. [5]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    6. [6]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    7. [7]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    8. [8]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    9. [9]

      Hengwei Wei Liqiu Zhao Jiqiang Geng Xuebo Xu Yingpeng Ma Yuhao Liu Mingzhe Han Huan Jiao Lingling Wei . Research on Safety Management of Hazardous Chemicals and Talent Cultivation in Universities Driven by Production-Education Integration. University Chemistry, 2024, 39(10): 289-298. doi: 10.12461/PKU.DXHX202403022

    10. [10]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    11. [11]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    12. [12]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    13. [13]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    14. [14]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    15. [15]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    16. [16]

      Hongling Yuan Jialin Xie Jiawei Wang Jixiang Zhao Jiayan Liu Qing Feng Wei Qi Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041

    17. [17]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    18. [18]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    19. [19]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    20. [20]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

Metrics
  • PDF Downloads(0)
  • Abstract views(11)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return