Citation: Yi Yang,  Xin Zhou,  Miaoli Gu,  Bei Cheng,  Zhen Wu,  Jianjun Zhang. Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation[J]. Acta Physico-Chimica Sinica, ;2025, 41(6): 100064. doi: 10.1016/j.actphy.2025.100064 shu

Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation

  • Received Date: 22 January 2025
    Revised Date: 12 February 2025
    Accepted Date: 13 February 2025

    Fund Project: The project was supported by National Natural Science Foundation of China (22278324, 52202375, 22469001) and the Science Foundation of Hubei Province of China (2022CFA001).

  • Photocatalytic hydrogen peroxide (H2O2) production is a crucial process for clean energy conversion, involving the reduction of O2 through two electrons. However, this process is often hampered by the sluggish water oxidation involving the photogenerated holes. To address this challenge, we have constructed a dual-functional S-scheme ZnO/CdIn2S4 heterojunction systerm coupling the H2O2 generation with a value-added benzylamine (BA) oxidation reaction. In this dual-functional photocatalytic system, photogenerated electrons in CdIn2S4 efficiently reduce O2 to produce H2O2, while photogenerated holes in ZnO selectively oxidize BA to N-benzylidenebenzylamine. Leveraging the advantages of the S-scheme heterojunction, the optimized ZnO/CdIn2S4 photocatalyst displays an enhanced H2O2 production rate (386 μmol·L-1·h-1) and BA oxidation fraction (81%) than pure ZnO or CdIn2S4. Femtosecond transient absorption (fs-TA) spectroscopy confirm the ultrafast S-scheme electron transfer from the ZnO conduction band (CB) to the CdIn2S4 valence band (VB) upon photoexcitation of the ZnO/CdIn2S4 composite. Besides, timely depletion of VB holes in ZnO and CB electrons in CdIn2S4 can accelerate the interfacial electron transfer in the ZnO/CdIn2S4 S-scheme heterojunction. The innovative design of the ZnO/CdIn2S4 S-scheme photocatalyst provides new insights for developing efficient dual-functional heterojunction photocatalytic systems and introduces a novel method for studying S-scheme heterojunctions using fs-TA spectroscopy.
  • 加载中
    1. [1]

      Das, P.; Roeser, J.; Thomas, A. Angew. Chem. Int. Ed. 2023, 62, e202304349. doi:10.1002/anie.202304349

    2. [2]

      Shiraishi, Y.; Matsumoto, M.; Ichikawa, S.; Tanaka, S.; Hirai, T. J. Am. Chem. Soc. 2021, 143, 12590. doi:10.1021/jacs.1c04622

    3. [3]

      Toan, H. P.; Nguyen, D.-V.; Phan, P. D. M.; Anh, N. H.; Ly, P. P.; Pham, M.-T.; Hur, S. H.; Ung, T. D. T.; Bich, D. D.; Nguyen, M. C.; et al. ACS Appl. Mater. Interfaces 2024, 16, 29421. doi:10.1021/acsami.4c04387

    4. [4]

      Sareshkeh, A. T.; Rasoulifard, M. H.; Abdi, A.; Dorraji, M. S. S.; Hosseini, S. F. J. Alloys Compd. 2024, 1005, 175822. doi:10.1016/j.jallcom.2024.175822

    5. [5]

      Wu, Y.; Cheng, C.; Qi, K.; Cheng, B.; Zhang, J.; Yu, J.; Zhang, L. Acta Phys. -Chim. Sin. 2024, 40, 2406027. doi:10.3866/PKU.WHXB202406027

    6. [6]

      Pradhan, S. K.; Bariki, R.; Kumar, A.; Nayak, S. K.; Panda, S.; Das, N. K.; Mishra, B. G. Surfaces and Interfaces 2024, 52, 104824. doi:10.1016/j.surfin.2024.104824

    7. [7]

      Zhu, B.; Liu, J.; Sun, J.; Xie, F.; Tan, H.; Cheng, B.; Zhang, J. J. Mater. Sci. Technol. 2023, 162, 90. doi:10.1016/j.jmst.2023.03.054

    8. [8]

      Jiang, Z.; Long, Q.; Cheng, B.; He, R.; Wang, L. J. Mater. Sci. Technol. 2023, 162, 1. doi:10.1016/j.jmst.2023.03.045

    9. [9]

      Moon, G.-h.; Fujitsuka, M.; Kim, S.; Majima, T.; Wang, X.; Choi, W. ACS Catal. 2017, 7, 2886. doi:10.1021/acscatal.6b03334

    10. [10]

      Yin, X.; Shi, H.; Wang, Y.; Wang, X.; Wang, P.; Yu, H. Acta Phys. Chim. Sin. 2024, 40, 2312007. doi:10.3866/PKU.WHXB202312007

    11. [11]

      Zhang, X.; Gao, D.; Zhu, B.; Cheng, B.; Yu, J.; Yu, H. Nat. Commun. 2024, 15, 3212. doi:10.1038/s41467-024-47624-7

    12. [12]

      Cheng, C.; Yu, J.; Xu, D.; Wang, L.; Liang, G.; Zhang, L.; Jaroniec, M. Nat. Commun. 2024, 15, 1313. doi:10.1038/s41467-024-45604-5

    13. [13]

      Gu, M.; Yang, Y.; Cheng, B.; Zhang, L.; Xiao, P.; Chen, T. Chin. J. Catal. 2024, 59, 185. doi:10.1016/s1872-2067(23)64610-8

    14. [14]

      Liu, X.; Dai, D.; Cui, Z.; Zhang, Q.; Gong, X.; Wang, Z.; Liu, Y.; Zheng, Z.; Cheng, H.; Dai, Y.; Huang, B.; Wang, P. ACS Catal. 2022, 12, 12386. doi:10.1021/acscatal.2c03550

    15. [15]

      Malefane, M. E.; Managa, M.; Nkambule, T. T. I.; Kuvarega, A. T. ChemSusChem 2024, e202401471. doi:10.1002/cssc.202401471

    16. [16]

      Shiraishi, Y.; Kanazawa, S.; Kofuji, Y.; Sakamoto, H.; Ichikawa, S.; Tanaka, S.; Hirai, T. Angew. Chem. Int. Ed. 2014, 53, 13454. doi:10.1002/anie.201407938

    17. [17]

      He, B.; Wang, Z.; Xiao, P.; Chen, T.; Yu, J.; Zhang, L. Adv. Mater. 2022, 34, 2203225. doi:10.1002/adma.202203225

    18. [18]

      Liu, B.; Cai, J.; Zhang, J.; Tan, H.; Cheng, B.; Xu, J. Chin. J. Catal. 2023, 51, 204. doi:10.1016/S1872-2067(23)64466-3

    19. [19]

      Liu, G.; Chen, R.; Xia, B.; Wu, Z.; Liu, S.; Talebian-Kiakalaieh, A.; Ran, J. Chin. J. Catal. 2024, 61, 97. doi:10.1016/s1872-2067(24)60014-8

    20. [20]

      Kalyakin, A.; Volkov, A.; Vylkov, A.; Gorbova, E.; Medvedev, D.; Demin, A.; Tsiakaras, P. J. Electroanal. Chem. 2018, 808, 133. doi:10.1016/j.jelechem.2017.12.001

    21. [21]

      He, B.; Zhang, S.; Zhang, Y.; Li, G.; Zhang, B.; Ma, W.; Rao, B.; Song, R.; Zhang, L.; Zhang, Y.; He, G. J. Am. Chem. Soc. 2022, 144, 4422. doi:10.1021/jacs.1c11577

    22. [22]

      Wang, P.; Li, X.; Fan, S.; Yin, Z.; Wang, L.; Tadé, M. O.; Liu, S. Nano Energy 2021, 83, 105831. doi:10.1016/j.nanoen.2021.105831

    23. [23]

      He, B.; Xiao, P.; Wan, S.; Zhang, J.; Chen, T.; Zhang, L.; Yu, J. Angew. Chem. Int. Ed. 2023, 62, e202313172. doi:10.1002/anie.202313172

    24. [24]

      Tian, Z.; Han, C.; Zhao, Y.; Dai, W.; Lian, X.; Wang, Y.; Zheng, Y.; Shi, Y.; Pan, X.; Huang, Z.; et al. Nat. Commun. 2021, 12, 2039. doi:10.1038/s41467-021-22394-8

    25. [25]

      Bariki, R.; Pradhan, S. K.; Panda, S.; Nayak, S. K.; Pati, A. R.; Mishra, B. G. Langmuir 2023, 39, 7707. doi:10.1021/acs.langmuir.3c00519

    26. [26]

      Yang, Y.; Liu, J.; Gu, M.; Cheng, B.; Wang, L.; Yu, J. Appl. Catal. B-Environ. 2023, 333, 122780. doi:10.1016/j.apcatb.2023.122780

    27. [27]

      Sahoo, S. K.; Acharya, L.; Biswal, L.; Priyadarshini, P.; Parida, K. Inorg. Chem. Front. 2024, 11, 4914. doi:10.1039/d4qi00950a

    28. [28]

      Sun, T.; Li, C.; Bao, Y.; Fan, J.; Liu, E. Acta Phys. Chim. Sin. 2023, 39, 2212009. doi:10.3866/PKU.WHXB202212009

    29. [29]

      Wu, X.; Chen, G.; Wang, J.; Li, J.; Wang, G. Acta Phys. Chim. Sin. 2023, 39, 2212016. doi:10.3866/PKU.WHXB202212016

    30. [30]

      He, R.; Xu, D.; Li, X. J. Mater. Sci. Technol. 2023, 138, 256. doi:10.1016/j.jmst.2022.09.002

    31. [31]

      Mansingh, S.; Das, K. K.; Priyadarshini, N.; Sahoo, D. P.; Prusty, D.; Sahu, J.; Mohanty, U. A.; Parida, K. Energy Fuels 2023, 37, 9873. doi:10.1021/acs.energyfuels.3c00717

    32. [32]

      Zhang, X.; Yu, J.; Macyk, W.; Wageh, S.; Al-Ghamdi, A. A.; Wang, L. Adv. Sustain. Syst. 2023, 7, 2200113. doi:10.1002/adsu.202200113

    33. [33]

      Ma, Y.; Wang, S.; Zhang, Y.; Cheng, B.; Zhang, L. J. Materiomics 2025, 11, 100978. doi:10.1016/j.jmat.2024.100978

    34. [34]

      Oyegbeda, O.; Akpotu, S. O.; Moodley, B. Environ. Res. 2025, 266, 120501. doi:10.1016/j.envres.2024.120501

    35. [35]

      Zhu, B.; Sun, J.; Zhao, Y.; Zhang, L.; Yu, J. Adv. Mater. 2024, 36, 2310600. doi:10.1002/adma.202310600

    36. [36]

      Wu, Y.; Yang, Y.; Gu, M.; Bie, C.; Tan, H.; Cheng, B.; Xu, J. Chin. J. Catal. 2023, 53, 123. doi:10.1016/S1872-2067(23)64514-0

    37. [37]

      Jiang, Z.; Cheng, B.; Zhang, L.; Zhang, Z.; Bie, C. Chin. J. Catal. 2023, 52, 32. doi:10.1016/S1872-2067(23)64502-4

    38. [38]

      Jiang, Z.; Cheng, B.; Zhang, Y.; Wageh, S.; Al-Ghamdi, A. A.; Yu, J.; Wang, L. J. Mater. Sci. Technol. 2022, 124, 193. doi:10.1016/j.jmst.2022.01.029

    39. [39]

      Ghoreishian, S. M.; Ranjith, K. S.; Park, B.; Hwang, S.-K.; Hosseini, R.; Behjatmanesh-Ardakani, R.; Pourmortazavi, S. M.; Lee, H. U.; Son, B.; Mirsadeghi, S.; et al. Chem. Eng. J. 2021, 419, 129530. doi:10.1016/j.cej.2021.129530

    40. [40]

      Sayed, M.; Xu, F.; Kuang, P.; Low, J.; Wang, S.; Zhang, L.; Yu, J. Nat. Commun. 2021, 12, 4936. doi:10.1038/s41467-021-25007-6

    41. [41]

      Li, K.; Mei, J.; Li, J.; Liu, Y.; Wang, G.; Hu, D.; Yan, S.; Wang, K. Sci. China Mater. 2024, 67, 484. doi:10.1007/s40843-023-2717-0

    42. [42]

      Xu, Q.; Wageh, S.; Al-Ghamdi, A. A.; Li, X. J. Mater. Sci. Technol. 2022, 124, 171. doi:10.1016/j.jmst.2022.02.016

    43. [43]

      Yang, Y.; Cheng, B.; Yu, J.; Wang, L.; Ho, W. Nano Res. 2023, 16, 4506. doi:10.1007/s12274-021-3733-0

    44. [44]

      Sun, J.; Liu, H.; Wang, S.; Zhang, Y.; Bie, C.; Zhang, L. J. Materiomics 2025, 11, 100975. doi:10.1016/j.jmat.2024.100975

    45. [45]

      Tahir, M.; Tahir, B. J. Mater. Sci. Technol. 2022, 106, 195. doi:10.1016/j.jmst.2021.08.019

    46. [46]

      Zan, Z.; Li, X.; Gao, X.; Huang, J.; Luo, Y.; Han, L. Acta Phys. -Chim. Sin. 2023, 39, 2209016. doi:10.3866/PKU.WHXB202209016

    47. [47]

      Zhang, J.; Zhang, L.; Wang, W.; Yu, J. J. Phys. Chem. Lett. 2022, 13, 8462. doi:10.1021/acs.jpclett.2c02125

    48. [48]

      Ghalehsefid, E. S.; Jahani, Z. G.; Aliabadi, A.; Ghodrati, M.; Khamesan, A.; Parsaei-Khomami, A.; Mousavi, M.; Hosseini, M.-A.; Ghasemi, J. B.; Li, X. J. Environ. Chem. Eng. 2023, 11, 110160. doi:10.1016/j.jece.2023.110160

    49. [49]

      Sharma, K.; Sudhaik, A.; Raizada, P.; Thakur, P.; Pham, X. M.; Van Le, Q.; Nguyen, V.-H.; Ahamad, T.; Thakur, S.; Singh, P. Environ. Sci. Pollut. Res. 2023, 30, 124902. doi:10.1007/s11356-022-24940-3

    50. [50]

      Das, K. K.; Mansingh, S.; Mohanty, R.; Sahoo, D. P.; Priyadarshini, N.; Parida, K. J. Phys. Chem. C 2022, 127, 22. doi:10.1021/acs.jpcc.2c06369

    51. [51]

      Khamesan, A.; Esfahani, M. M.; Ghasemi, J. B.; Farzin, F.; Parsaei-Khomami, A.; Mousavi, M. Adv. Powder Technol. 2022, 33, 103777. doi:10.1016/j.apt.2022.103777

    52. [52]

      Cai, C.; Teng, Y.; Wu, J. H.; Li, J. Y.; Chen, H. Y.; Chen, J. H.; Dai-Bin, K. Adv. Funct. Mater. 2020, 30, 2001478. doi:10.1002/adfm.202001478

    53. [53]

      Cheng, C.; Zhu, B.; Cheng, B.; Macyk, W.; Wang, L.; Yu, J. ACS Catal. 2023, 13, 459. doi:10.1021/acscatal.2c05001

    54. [54]

      Zhu, J.; Wageh, S.; Al-Ghamdi, A. A. Chin. J. Catal. 2023, 49, 5. doi:10.1016/S1872-2067(23)64438-9

    55. [55]

      Gao, R.; Bai, J.; Shen, R.; Hao, L.; Huang, C.; Wang, L.; Liang, G.; Zhang, P.; Li, X. J. Mater. Sci. Technol. 2023, 137, 223. doi:10.1016/j.jmst.2022.09.001

    56. [56]

      Li, Y.; Ma, J.; Xu, L.; Liu, T.; Xiao, T.; Chen, D.; Song, Z.; Qiu, J.; Yueli, Z. Adv. Sci. 2023, 10, 2207514. doi:10.1002/advs.202207514

    57. [57]

      Zhang, Y.; Qiu, J.; Zhu, B.; Fedin, M. V.; Cheng, B.; Yu, J.; Zhang, L. Chem. Eng. J. 2022, 444, 136584. doi:10.1016/j.cej.2022.136584

    58. [58]

      Luo, C.; Long, Q.; Cheng, B.; Zhu, B.; Wang, L. Acta Phys. -Chim. Sin. 2023, 39, 2212026. doi:10.3866/PKU.WHXB202212026

    59. [59]

      Lin, M.; Luo, M.; Liu, Y.; Shen, J.; Long, J.; Zhang, Z. Chin. J. Catal. 2023, 50, 239. doi:10.1016/S1872-2067(23)64477-8

    60. [60]

      Wang, L.; Sun, J.; Cheng, B.; He, R.; Yu, J. J. Phys. Chem. Lett. 2023, 14, 4803. doi:10.1021/acs.jpclett.3c00811

    61. [61]

      He, G.; Lai, Y.; Guo, Y.; Yin, H.; Chang, B.; Liu, M.; Zhang, S.; Yang, B.; Wang, J. ACS Appl. Mater. Interfaces 2022, 14, 53724. doi:10.1021/acsami.2c14554

    62. [62]

      Zhang, H.; Liu, J.; Zhang, Y.; Cheng, B.; Zhu, B.; Wang, L. J. Mater. Sci. Technol. 2023, 166, 241. doi:10.1016/j.jmst.2023.05.030

    63. [63]

      Lei, M.; Gao, M.; Yang, X.; Zou, Y.; Alghamdi, A.; Ren, Y.; Deng, Y. ACS Appl. Mater. Interfaces 2021, 13, 51933. doi:10.1021/acsami.1c07322

    64. [64]

      Wang, H.; Song, Y.; Xiong, J.; Bi, J.; Li, L.; Yu, Y.; Liang, S.; Wu, L. Appl. Catal. B-Environ. 2018, 224, 394. doi:10.1016/j.apcatb.2017.10.069

    65. [65]

      Wei, S.; Zhong, H.; Wang, H.; Song, Y.; Jia, C.; Anpo, M.; Wu, L. Appl. Catal. B-Environ. 2022, 305, 121032. doi:10.1016/j.apcatb.2021.121032

    66. [66]

      Xu, J.; Li, X.; Ju, Z.; Sun, Y.; Jiao, X.; Wu, J.; Wang, C.; Yan, W.; Ju, H.; Zhu, J.; Xie, Y. Angew. Chem. Int. Ed. 2019, 58, 3032. doi:10.1002/anie.201807332

  • 加载中
    1. [1]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    2. [2]

      Xinyu Miao Hao Yang Jie He Jing Wang Zhiliang Jin . Adjusting the electronic structure of Keggin-type polyoxometalates to construct S-scheme heterojunction for photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-. doi: 10.1016/j.actphy.2025.100051

    3. [3]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    4. [4]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    5. [5]

      Peng Li Yuanying Cui Zhongliao Wang Graham Dawson Chunfeng Shao Kai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-. doi: 10.1016/j.actphy.2025.100065

    6. [6]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    7. [7]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    8. [8]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    9. [9]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    10. [10]

      Jinwang Wu Qijing Xie Chengliang Zhang Haifeng Shi . 自旋极化增强ZnFe1.2Co0.8O4/BiVO4 S型异质结光催化性能降解四环素. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-. doi: 10.1016/j.actphy.2025.100050

    11. [11]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    12. [12]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    13. [13]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    14. [14]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    15. [15]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    16. [16]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    17. [17]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    18. [18]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    19. [19]

      Yu Wang Haiyang Shi Zihan Chen Feng Chen Ping Wang Xuefei Wang . Hollow AgPt@Pt core-shell cocatalyst with electron-rich Ptδ- shell for boosting selectivity of photocatalytic H2O2 production for faceted BiVO4. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081

    20. [20]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

Metrics
  • PDF Downloads(2)
  • Abstract views(77)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return