Citation: Xianghai Song,  Xiaoying Liu,  Zhixiang Ren,  Xiang Liu,  Mei Wang,  Yuanfeng Wu,  Weiqiang Zhou,  Zhi Zhu,  Pengwei Huo. Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction[J]. Acta Physico-Chimica Sinica, ;2025, 41(6): 100055. doi: 10.1016/j.actphy.2025.100055 shu

Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction

  • Received Date: 26 November 2024
    Revised Date: 23 January 2025
    Accepted Date: 23 January 2025

    Fund Project: The project was supported by the National Natural Science Foundation of China (22108102, 22078131), the Fundamental Research Funds for the Universities of Henan Province (NSFRF240609), the GHfund B (202302026857), the Science and Technology Planning Social Development Project of Zhenjiang City (SH2023102), the International Innovation Center for Forest Chemicals and Materials of Nanjing Forestry.

  • Photocatalytic carbon dioxide (CO2) reduction represents a hopeful approach to addressing global energy and environmental issues. The quest for catalysts that demonstrate both high activity and selectivity for CO2 conversion has attracted significant attention. In this study, ultrathin N-doped BiOBr was synthesized using a simple straightforward method. Systematic experimental results indicated that N-doping reduced the thickness of the BiOBr nanosheets and increased their specific surface area. Moreover, the efficiency of photogenerated charge carrier migration and the CO2 adsorption capacity were significantly enhanced, contributing to improved CO2 photoreduction performance. Experimental results showed that the 2N-BiOBr exhibited the best catalytic performance, with a CO evolution rate of 18.28 μmol·g-1·h-1 and nearly 100% CO selectivity in water, which was three times higher than that of pure BiOBr. The potential photocatalytic mechanism was investigated using in situ FTIR analysis and DFT simulations. Mechanistic studies revealed that N atoms replaced O atoms as adsorption centers, enhancing the strong adsorption selectivity towards CO2 over O―H in BiOBr and facilitating the formation of key reaction intermediates. This study provides new perspectives on the creation and development of effective photocatalytic materials, offering theoretical support for the application of photocatalytic technology in energy and environmental science.
  • 加载中
    1. [1]

      Chen, K.; Jiang, T.; Liu, T.; Yu, J.; Zhou, S.; Ali, A.; Wang, S.; Liu, Y.; Zhu, L.; Xu, X. Adv. Funct. Mater. 2021, 32, 2109336. doi:10.1002/adfm.202109336

    2. [2]

      Qian, Z.; Zhang, L.; Zhang, Y.; Cui, H. Sep. Purif. Technol. 2023, 324, 124581. doi:10.1016/j.seppur.2023.124581

    3. [3]

      Ali, S.; Lee, J.; Kim, H.; Hwang, Y.; Razzaq, A.; Jung, J.-W.; Cho, C.-H.; In, S.-I. Appl. Catal. B 2020, 279, 119344. doi:10.1016/j.apcatb.2020.119344

    4. [4]

      Sun, W.; Zhu, J.; Zhang, M.; Meng, X.; Chen, M.; Feng, Y.; Chen, X.; Ding, Y. Chin. J. Catal. 2022, 43, 2273. doi:10.1016/s1872-2067(21)63939-6

    5. [5]

      Yin, S.; Zhao, X.; Jiang, E.; Yan, Y.; Zhou, P.; Huo, P. Energy Environ. Sci. 2022, 15, 1556. doi:10.1039/d1ee03764a

    6. [6]

      Kong, X. Y.; Lee, W. P. C.; Ong, W.-J.; Chai, S.-P.; Mohamed, A. R. ChemCatChem. 2016, 8, 3074. doi:10.1002/cctc.201600782

    7. [7]

      Li, R.; Luan, Q.; Dong, C.; Dong, W.; Tang, W.; Wang, G.; Lu, Y. Appl. Catal., B. 2021, 286, 119832. doi:10.1016/j.apcatb.2020.119832

    8. [8]

      Hua, J.; Wang, Z.; Zhang, J.; Dai, K.; Shao, C.; Fan, K. J. Mater. Sci. Technol. 2023, 156, 64. doi:10.1016/j.jmst.2023.03.003

    9. [9]

      Song, X.; Li, X.; Zhang, X.; Wu, Y.; Ma, C.; Huo, P.; Yan, Y. Appl. Catal. B 2020, 268, 118736. doi:10.1016/j.apcatb.2020.118736

    10. [10]

      Di, J.; Zhao, X.; Lian, C.; Ji, M.; Xia, J.; Xiong, J.; Zhou, W.; Cao, X.; She, Y.; Liu, H.; et al. Nano Energy 2019, 61, 54. doi:10.1016/j.nanoen.2019.04.029

    11. [11]

      Xu, L.; Iqbal, R.; Wang, Y.; Taimoor, S.; Hao, L.; Dong, R.; Liu, K.; Texter, J.; Sun, Z. Innova. Mater. 2024, 2, 100060. doi:10.59717/j.xinn-mater.2024.100060

    12. [12]

      Yang, C.; Zhang, Q.; Wang, W.; Cheng, B.; Yu, J.; Cao, S. Sci. China Mater. 2024, 67, 1830. doi:10.1007/s40843-024-2789-0

    13. [13]

      Dong, J.; Ji, S.; Zhang, Y.; Ji, M.; Wang, B.; Li, Y.; Chen, Z.; Xia, J.; Li, H. Acta Phys. -Chim. Sin. 2023, 39, 2212011. doi:10.3866/PKU.WHXB202212011

    14. [14]

      Duo, F.; Wang, Y.; Fan, C.; Zhang, X.; Wang, Y. J. Alloy. Compd. 2016, 685, 34. doi:10.1016/j.jallcom.2016.05.259

    15. [15]

      Zhao, H.j.; Yu, Z.; Wu, R. J.; Yi, M.; Zhang, G.h.; Zhou, Y.; Han, Z.b.; Li, X.; Ma, F. J. Chin. Chem. Soc. 2022, 69, 925. doi:10.1002/jccs.202200016

    16. [16]

      Zhao, J. Z.; Xue, M.; Ji, M. X.; Wang, B.; Wang, Y.; Li, Y. J.; Chen, Z. R.; Li, H. M.; Xia, J. X. Chin. J. Catal. 2022, 43, 1324. doi:10.1016/s1872-2067(21)64037-8

    17. [17]

      Li, T.; Zhang, L.; Gao, Y.; Xing, X.; Zhang, X.; Li, F.; Hu, C. Appl. Catal., B. 2022, 307, 121192. doi:10.1016/j.apcatb.2022.121192

    18. [18]

      Jiang, Z.; Yang, F.; Yang, G. D.; Kong, L. A.; Jones, M. O.; Xiao, T. C.; Edwards, P. P. J. Photochem. Photobiol. A-Chem. 2010, 212, 8. doi:10.1016/j.jphotochem.2010.03.004

    19. [19]

      Xu, X.; Shao, C.; Zhang, J.; Wang, Z.; Dai, K. Acta Phys. -Chim. Sin. 2024, 40, 2309031. doi:10.3866/PKU.WHXB202309031

    20. [20]

      Yan, C.; Xu, M.; Cao, W.; Chen, Q.; Song, X.; Huo, P.; Zhou, W.; Wang, H. J. Environ. Chem. Eng. 2023, 11, 111479. doi:10.1016/j.jece.2023.111479

    21. [21]

      Wan, S.-J.; Hou, Y.-T.; Wang, W.; Luo, G.-Q.; Wang, C.-B.; Tu, R.; Cao, S.-W. Rare Met. 2024, 43, 5880. doi:10.1007/s12598-024-02861-z

    22. [22]

      Jo, W.-K.; Kumar, S.; Eslava, S.; Tonda, S. Appl. Catal. B 2018, 239, 586. doi:10.1016/j.apcatb.2018.08.056

    23. [23]

      Pan, J.; Guan, Z.; Yang, J.; Li, Q. Chin. J. Catal. 2020, 41, 200. doi:10.1016/s1872-2067(19)63422-4

    24. [24]

      Li, X.; Jiang, H.; Ma, C.; Zhu, Z.; Song, X.; Wang, H.; Huo, P.; Li, X. Appl. Catal. B 2021, 283, 119638. doi:10.1016/j.apcatb.2020.119638

    25. [25]

      Bárdos, E.; Márta, V.; Baia, L.; Todea, M.; Kovács, G.; Baán, K.; Garg, S.; Pap, Z.; Hernadi, K. Appl. Surf. Sci. 2020, 518, 146184. doi:10.1016/j.apsusc.2020.146184

    26. [26]

      Shi, J.; Meng, X.; Hao, M.; Cao, Z.; He, W.; Gao, Y.; Liu, J. J. Phys. Chem. Solids. 2018, 113, 142. doi:10.1016/j.jpcs.2017.10.031

    27. [27]

      Guan, C.; Hou, T.; Nie, W.; Zhang, Q.; Duan, L.; Zhao, X. J. Colloid Interface Sci. 2023, 633, 177. doi:10.1016/j.jcis.2022.11.106

    28. [28]

      Qu, J.; Du, Y.; Ji, P.; Li, Z.; Jiang, N.; Sun, X.; Xue, L.; Li, H.; Sun, G. J. Alloy. Compd. 2021, 881, 160391. doi:10.1016/j.jallcom.2021.160391

    29. [29]

      Andrade, Ó.; Rodríguez, V.; Camarillo, R.; Martínez, F.; Jiménez, C.; Rincón, J. Nanomaterials 2022, 12, 111793. doi:10.3390/nano12111793

    30. [30]

      Li, Y.Q.; Luo, S.L.; Sun, L.; Kong, D.Z.; Sheng, J.G.; Wang, K.; Dong, C.W. Food Anal. Methods. 2019, 12, 1658. doi:10.1007/s12161-019-01505-8

    31. [31]

      Yu, X.; Chen, Y.; Sun, D.; Yin, Y.; Zhang, Q.; Ru, Y.; Tian, G. ACS Appl. Nano Mater. 2024, 7, 17406. doi:10.1021/acsanm.4c02400

    32. [32]

      Wang, F.; Yu, Z.; Shi, K.; Li, X.; Lu, K.; Huang, W.; Yu, C.; Yang, K. Molecules 2023, 28, 062435. doi:10.3390/molecules28062435

    33. [33]

      Jia, Z. W.; Ning, S. B.; Tong, Y. X.; Chen, X.; Hu, H. L.; Liu, L. Q.; Ye, J. H.; Wang, D. F. ACS Appl. Nano Mater. 2021, 4, 10485. doi:10.1021/acsanm.1c01991

    34. [34]

      Zhang, N.; Li, J.; Sun, X.; Ma, J.; Li, S. J. Environ. Chem. Eng. 2024, 12, 113212. doi:10.1016/j.jece.2024.113212

    35. [35]

      Dong, Z.; Wang, Y.; Zhang, X.; Guan, X.; Zhang, C.; Wu, W.; Fan, C. Mater. Lett. 2024, 358, 135887. doi:10.1016/j.matlet.2024.135887

    36. [36]

      Wen, M.; Benabdesselam, M.; Beauger, C. J. CO2 Util. 2024, 81, 102719. doi:10.1016/j.jcou.2024.102719

    37. [37]

      Yan, X.; Gao, B.; Zheng, X.; Cheng, M.; Zhou, N.; Liu, X.; Du, L.; Yuan, F.; Wang, J.; Cui, X.; et al. Appl. Catal., B. 2024, 343, 123484. doi:10.1016/j.apcatb.2023.123484

    38. [38]

      Yu, X.; Chen, Y.; Zhang, Q.; Yin, Y.; Sun, D.; Ru, Y.; Tian, G. Surf. Interfaces. 2023, 38, 102789. doi:10.1016/j.surfin.2023.102789

    39. [39]

      Song, T.; Zhang, X.; Xie, C.; Yang, P. Carbon. 2023, 210, 118052. doi:10.1016/j.carbon.2023.118052

    40. [40]

      Chen, J.; Guan, M.; Cai, W.; Guo, J.; Xiao, C.; Zhang, G. PCCP. 2014, 16, 20909. doi:10.1039/c4cp02972k

    41. [41]

      Wang, H.; Yong, D.; Chen, S.; Jiang, S.; Zhang, X.; Shao, W.; Zhang, Q.; Yan, W.; Pan, B.; Xie, Y. J. Am. Chem. Soc. 2018, 140, 1760. doi:10.1021/jacs.7b10997

    42. [42]

      Zhu, Z.; Ye, J.; Tang, X.; Chen, Z.; Yang, J.; Huo, P.; Ng, Y. H.; Crittenden, J. Environ. Sci. Technol. 2023, 57, 16131. doi:10.1021/acs.est.3c03037

    43. [43]

      Li, J.; Sun, X.; Duan, Y.; Ma, J.; He, C.; Li, S. Chem. Eng. J. 2023, 473, 145383. doi:10.1016/j.cej.2023.145383

    44. [44]

      Chao, Y. H.; Pang, J. Y.; Bai, Y.; Wu, P. W.; Luo, J.; He, J.; Jin, Y.; Li, X. W.; Xiong, J.; Li, H. M.; et al. Food Chem. 2020, 320, 126666. doi:10.1016/j.foodchem.2020.126666

    45. [45]

      Yang, D.; Wang, W.; An, K.; Chen, Y.; Zhao, Z.; Gao, Y.; Jiang, Z. Appl. Surf. Sci. 2021, 562, 150256. doi:10.1016/j.apsusc.2021.150256

    46. [46]

      Wu, D.; Ye, L.; Yip, H. Y.; Wong, P. K. Catal. Sci. Technol. 2017, 7, 265. doi:10.1039/c6cy02040b

    47. [47]

      Liu, G.; Xu, H.; Li, D.; Zou, Z.; Li, Q.; Xia, D. Eur. J. Inorg. Chem. 2019, 2019, 4887. doi:10.1002/ejic.201900948

    48. [48]

      Ma, Y. B.; Xu, X. Y.; Yang, T. Y.; Shen, Y.Y.; Jiang, F.; Zhang, Y. W.; Lv, X. T.; Liu, Y. M.; Feng, B.; Che, G. B.; et al. J. Alloy. Compd. 2024, 970, 172663. doi:10.1016/j.jallcom.2023.172663

    49. [49]

      He, L.; Zhang, W.; Liu, S.; Zhao, Y. Appl. Catal. B 2021, 298, 120546 doi:10.1016/j.apcatb.2021.120546

    50. [50]

      You, X.; Liu, F.; Jiang, G.; Chen, S.; An, B.; Cui, R. ChemistrySelect. 2022, 7, 203024. doi:10.1002/slct.202203024

    51. [51]

      Zhu, Z.; Xing, X.; Qi, Q.; Shen, W.; Wu, H.; Li, D.; Li, B.; Liang, J.; Tang, X.; Zhao, J.; et al. Chin. J. Struct. Chem. 2023, 42, 100194. doi:10.1016/j.cjsc.2023.100194

    52. [52]

      Li, C.; Zhang, P.; Gu, F.; Tong, L.; Jiang, J.; Zuo, Y.; Dong, H. Chem. Eng. J. 2023, 476, 146514. doi:10.1016/j.cej.2023.146514

    53. [53]

      Dong, H.; Xiao, M.; Zhu, D.; Zuo, Y.; Cheng, S.; Han, Z.; Li, C. Int. J. Hydrog. Energy 2021, 46, 32044. doi:10.1016/j.ijhydene.2021.06.222

    54. [54]

      Xu, D.; Zhang, S.; Yu, Y.; Zhang, S.; Ding, Q.; Lei, Y.; Shi, W. Fuel. 2023, 351, 128774. doi:10.1016/j.fuel.2023.128774

    55. [55]

      Du, X. J.; Du, W. H.; Sun, J.; Jiang, D. Food Chem. 2022, 385, 132731. doi:10.1016/j.foodchem.2022.132731

    56. [56]

      Yang, N.; Zhou, X.; Yu, D. F.; Jiao, S. Y.; Han, X.; Zhang, S. L.; Yin, H.; Mao, H. P. J. Food Process Eng. 2020, 43, e13544. doi:10.1111/jfpe.13544

    57. [57]

      Yan, M.; Jiang, F.; Wu, Y. Int. J. Hydrog. Energy 2023, 48, 8867. doi:10.1016/j.ijhydene.2022.12.002

    58. [58]

      Du, J.; Ma, Y. Y.; Tan, H.; Kang, Z. H.; Li, Y. Chin. J. Catal. 2021, 42, 920. doi:10.1016/S1872-2067(20)63718-4

    59. [59]

      Li, C.; Liu, X.; Ding, G.; Huo, P.; Yan, Y.; Yan, Y.; Liao, G. Inorg. Chem. 2022, 61, 4681. doi:10.1021/acs.inorgchem.1c03936

    60. [60]

      Zhang, Y.; Gao, M.; Chen, S.; Wang, H.; Huo, P. Acta Phys. -Chim. Sin. 2023, 39, 2211051. doi:10.3866/PKU.WHXB202211051

    61. [61]

      Pan, Y.; Liang, W.; Wang, Z.; Gong, J.; Wang, Y.; Xu, A.; Teng, Z.; Shen, S.; Gu, L.; Zhong, W.; et al. Interdiscip. Mater. 2024, 3, 935. doi:10.1002/idm2.12203

    62. [62]

      Zhou, T.; Zhang, P.; Zhu, D.; Cheng, S.; Dong, H.; Wang, Y.; Che, G.; Niu, Y.; Yan, M.; Li, C. Chem. Eng. J. 2022, 442, 136190. doi:10.1016/j.cej.2022.136190

    63. [63]

      Dao, X.-Y.; Guo, J.-H.; Wei, Y.-P.; Guo, F.; Liu, Y.; Sun, W.-Y. Inorg. Chem. 2019, 58, 8517. doi:10.1021/acs.inorgchem.9b00824

    64. [64]

      Guo, J.; Wang, K.; Wang, X. Catal. Sci. Technol. 2017, 7, 6013. doi:10.1039/c7cy01869j

    65. [65]

      Jia, Y.; Zhang, W.; Do, J.Y.; Kang, M.; Liu, C. Chem. Eng. J. 2020, 402, 126193. doi:10.1016/j.cej.2020.126193

    66. [66]

      Han, Q.; Li, L.; Gao, W.; Shen, Y.; Wang, L.; Zhang, Y.; Wang, X.; Shen, Q.; Xiong, Y.; Zhou, Y.; Zou, Z. ACS Appl. Mater. Interfaces. 2021, 13, 15092. doi:10.1021/acsami.0c21266

    67. [67]

      Zhu, J.-Y.; Li, Y.-P.; Wang, X.-J.; Zhao, J.; Wu, Y.-S.; Li, F.-T. ACS Sustain. Chem. Eng. 2019, 7, 14953. doi:10.1021/acssuschemeng.9b03196

    68. [68]

      Xie, Y.; Yiqiao, W.; Yipeng, Z.; Fahui, W.; Yang, X.; Senlin, R.; Jingshen, Z. Appl. Catal. A Gen. 2024, 669, 119504. doi:10.1016/j.apcata.2023.119504

    69. [69]

      Yu, H.; Huang, J.; Jiang, L.; Leng, L.; Yi, K.; Zhang, W.; Zhang, C.; Yuan, X. Appl. Catal. B 2021, 298, 120618. doi:10.1016/j.apcatb.2021.120618

    70. [70]

      Gao, M. C.; Yang, J. X.; Sun, T.; Zhang, Z. Z.; Zhang, D. F.; Huang, H. J.; Lin, H. X.; Fang, Y.; Wang, X. X. Appl. Catal. B 2019, 243, 734. doi:10.1016/j.apcatb.2018.11.020

    71. [71]

      Liu, G.; Wang, L.; Wang, B.; Zhu, X.; Yang, J.; Liu, P.; Zhu, W.; Chen, Z.; Xia, J. Chin. Chem. Lett. 2023, 34, 107962. doi:10.1016/j.cclet.2022.107962

    72. [72]

      Zhao, M.; Qin, J.; Wang, N.; Zhang, Y.; Cui, H. Sep. Purif. Technol. 2024, 329, 125179. doi:10.1016/j.seppur.2023.125179

    73. [73]

      Meng, J.; Duan, Y.; Jing, S.; Ma, J.; Wang, K.; Zhou, K.; Ban, C.; Wang, Y.; Hu, B.; Yu, D.; Gan, L.; Zhou, X. Nano Energy. 2022, 92, 106671. doi:10.1016/j.nanoen.2021.106671

    74. [74]

      Fang, R.; Yang, Z.; Sun, J.; Zhu, C.; Chen, Y.; Wang, Z.; Xue, C. J. Mater. Chem. A 2024, 12, 3398. doi:10.1039/d3ta07006a

    75. [75]

      Shi, W.; Zhang, R.; Wang, J.-C.; Li, W.; Guo, X.; Guo, J.; Li, R.; Hou, Y.; Zhang, W.; Gao, H.-L. J. Catal. 2024, 429, 115235. doi:10.1016/j.jcat.2023.115235

    76. [76]

      Fang, X.; Wang, C.-Y.; Zhou, L.-P.; Zeng, Q.; Zhou, H.-D.; Wang, Q.; Zhu, G. J. Environ. Chem. Eng. 2023, 11, 109986. doi:10.1016/j.jece.2023.109986

    77. [77]

      Li, H.; Song, Q.; Wan, S.; Tung, C. W.; Liu, C.; Pan, Y.; Luo, G.; Chen, H. M.; Cao, S.; Yu, J.; Zhang, L. Small 2023, 19, 301711. doi:10.1002/smll.202301711

  • 加载中
    1. [1]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    2. [2]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    3. [3]

      Xueqi Yang Juntao Zhao Jiawei Ye Desen Zhou Tingmin Di Jun Zhang . Modulating the d-band center of NNU-55(Fe) for enhanced CO2 adsorption and photocatalytic activity. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-. doi: 10.1016/j.actphy.2025.100074

    4. [4]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    5. [5]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    6. [6]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    7. [7]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    8. [8]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

    9. [9]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    10. [10]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    11. [11]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    12. [12]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    13. [13]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    14. [14]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    15. [15]

      Runhua Chen Qiong Wu Jingchen Luo Xiaolong Zu Shan Zhu Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052

    16. [16]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    17. [17]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    18. [18]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    19. [19]

      Zhinan GUOJunli WANGQiang ZHAOZhifang JIAZuopeng LIKewei WANGYong GUO . Cu2O/Bi2CrO6 Z-scheme heterojunction: Construction and photocatalytic degradation properties for tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 741-752. doi: 10.11862/CJIC.20240403

    20. [20]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

Metrics
  • PDF Downloads(1)
  • Abstract views(20)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return