Citation:
Xinyu Miao, Hao Yang, Jie He, Jing Wang, Zhiliang Jin. Adjusting the electronic structure of Keggin-type polyoxometalates to construct S-scheme heterojunction for photocatalytic hydrogen evolution[J]. Acta Physico-Chimica Sinica,
;2025, 41(6): 100051.
doi:
10.1016/j.actphy.2025.100051
-
The sluggish electron migration rate and pronounced electron-hole recombination, pose significant obstacles to achieving high photocatalytic efficiency. The utilization of multiple catalysts for the construction of heterojunctions can effectively enhance charge separation. A series of Keggin-type hollow dodecahedral polyoxometalates were prepared via hydrothermal synthesis, and their molecular orbitals were modified through the addition of metal elements. The incorporation of metal elements modulated the electronic structure of polyoxometalates, effectively enhancing the electron aggregation capability of polyoxometalates. Single-component catalysts often face serious hole-electron recombination. In order to solve this problem, the scheme of constructing heterojunction is proposed to improve the electron transport efficiency. By immobilizing ZnCdS nanoparticles onto the polyoxometalate surface, the heterojunction architecture was engineered to significantly enhance the interfacial charge transfer capability. Density Functional Theory (DFT) calculations and the experimental results indicate that the modulation of metallic components renders the polyoxometalate a more favorable energy-level orbital. The catalytic mechanism of ZnCdS and KMoP S-scheme heterojunction was also verified. The formation of S-scheme heterojunctions further improves the electron transfer efficiency compared to other traditional heterojunctions, achieving efficient utilization of photo generated electrons and holes. Additionally, the S-scheme heterojunction shifts the catalyst's d-band center closer to the Fermi level, thereby improving electrical conductivity. This article provides a new approach for energy level regulation of polyoxometalates and the design of S-scheme heterojunctions.
-
-
-
[1]
He, L.; Yang, Z.; Xu, Y.; Lu, X.; Kaba, S.; Li, C.; Yao, X.; Xu, D.; Yao, Z. J. Cleaner Prod. 2024, 451, 142103. doi:10.1016/j.jclepro.2024.142103
-
[2]
Zhang, L.; Wu, Y.; Tsubaki, N.; Jin, Z. Acta Phys. -Chim. Sin. 2023, 39, 2302051. doi:10.3866/PKU.WHXB202302051
-
[3]
Zhai, H.; He, J.; Liu, G.; Miao, X.; Jin, Z. J. Energy Storage 2024, 99, 113472. doi:10.1016/j.est.2024.113472
-
[4]
Li, X.; Li, Y.; Guo, X.; Jin, Z. Front. Chem. Sci. Eng. 2023, 17, 606. doi:10.1007/s11705-022-2233-4
-
[5]
Huang, X.; Chen, Y.; Wang, N.; Deng, G.-J.; Long, B.; Song, T. J. Catal. 2024, 429, 115281. doi:10.1016/j.jcat.2023.115281
-
[6]
Jin, F.; Yang, B.; Wang, X.; Li, T.; Tsubaki, N.; Jin, Z. Chin. J. Struct. Chem. 2023, 42, 100198. doi:10.1016/j.cjsc.2023.100198
-
[7]
Wang, H.; Li, X.; Zhao, X.; Li, C.; Song, X.; Zhang, P.; Huo, P.; Li, X. Chin. J. Catal. 2022, 43, 178. doi:10.1016/S1872-2067(21)63910-4
-
[8]
Zhang, S.; Zhang, G.; Wu, S.; Guan, Z.; Li, Q.; Yang, J. J. Colloid Interface Sci. 2023, 650, 1974. doi:10.1016/j.jcis.2023.07.147
-
[9]
Meng, A.; Zhou, S.; Wen, D.; Han, P.; Su, Y. Chin. J. Catal. 2024, 43, 2548. doi:10.1016/S1872-2067(22)64111-1
-
[10]
Cai, X.; Du, J.; Zhong, G.; Zhang, Y.; Mao, L.; Lou, Z. Acta Phys. -Chim. Sin. 2023, 39, 2302017. doi:10.3866/PKU.WHXB202302017
-
[11]
Ye, L.; Xia, Z.; Xu, Q.; Yang, Y.; Xu, X.; Jin, H.; Wang, S. Chem. Commun. 2023, 59, 9872. doi:10.1039/D3CC02914J
-
[12]
Sun, L.; Yu, X.; Tang, L.; Wang, W.; Liu, Q. Chin. J. Catal. 2023, 52, 164. doi:10.1016/S1872-2067(23)64507-3
-
[13]
Zhang, Y.; Zhang, Z. J. Mater. Sci. Technol. 2024, 171, 147. doi:10.1016/j.jmst.2023.06.048
-
[14]
Li, T.; Zhang, L.; Li, X.; Wang, X.; Jin, Z. J. Liaocheng Univ. 2023, 36, 25. doi:10.19728/j.issn1672-6634.2022030011
-
[15]
Jin, Z.; Li, H.; Li, J. Chin. J. Catal. 2022, 43, 303. doi:10.1016/s1872-2067(21)63818-4
-
[16]
Li, T.; Tsubaki, N.; Jin, Z. J. Mater. Sci. Technol. 2024, 169, 82. doi:10.1016/j.jmst.2023.04.049
-
[17]
Hu, P.; Liang, G.; Zhu, B.; Macyk, W.; Yu, J.; Xu, F. ACS Catal. 2023, 13, 12623. doi:10.1021/acscatal.3c03095
-
[18]
Wan, S.; Wang, W.; Cheng, B.; Luo, G.; Shen, Q.; Yu, J.; Zhang, J.; Cao, S.; Zhang, L. Nat. Commun. 2024, 15, 9612. doi:10.1038/s41467-024-53951-6
-
[19]
Cao, S.; Zhong, B.; Bie, C.; Cheng, B.; Xu, F. Acta Phys. -Chim. Sin. 2024, 40, 2307016. doi:10.3866/PKU.WHXB202307016
-
[20]
Deng, X.; Zhang, J.; Qi, K.; Liang, G.; Xu, F.; Yu, J. Nat. Commun. 2024, 15, 4807. doi:10.1038/s41467-024-49004-7
-
[21]
Xiao, Q.; Yang, T.; Guo, X.; Jin, Z. Surf. Interfaces 2023, 43, 103577. doi:10.1016/j.surfin.2023.103577
-
[22]
Antonello, A.; Benedetti, C.; Pérez-Pla, F. F.; Kokkinopoulou, M.; Kirchhoff, K.; Fischer, V.; Landfester, K.; Gross, S.; Muñoz-Espí, R. ACS Appl. Mater. Interfaces 2018, 10, 23174. doi:10.1021/acsami.8b01617
-
[23]
Zhao, Z.; Diao, X.; Wang, P.; Gao, H.; Irvine, J. T. S.; Liu, R.; Zhang, X.; Wang, G. Chem. Eng. J. 2024, 482, 149184. doi:10.1016/j.cej.2024.149184
-
[24]
Zhang, H.; Shao, C.; Wang, Z.; Zhang, J.; Dai, K. J. Mater. Sci. Technol. 2024, 195, 146. doi:10.1016/j.jmst.2023.11.081
-
[25]
Cui, Y.; Xing, Z.; Guo, M.; Qiu, Y.; Fang, B.; Li, Z.; Yang, S.; Zhou, W. J. Colloid Interface Sci. 2022, 607, 942. doi:10.1016/j.jcis.2021.09.075
-
[26]
Liu, J.; Yang, X.; Guo, X.; Jin, Z. J. Mater. Sci. Technol. 2024, 196, 112. doi:10.1016/j.jmst.2024.01.058
-
[27]
Jin Z. Journal of The Chinese Ceramic Society 2023, 51, 106. doi:10.14062/j.issn.0454-5648.2022033
-
[28]
Wu, H.; Zhao, L.; He, X.; Chen, H.; Fang, W.; Du, X.; Li, W.; Wang, D. J. Cleaner Prod. 2023, 425, 138921. doi:10.1016/j.jclepro.2023.138921
-
[29]
Fan, Z.; Guo, X.; Yang, M.; Jin, Z. Chin. J. Catal. 2022, 43, 2708. doi:10.1016/s1872-2067(21)64053-6
-
[30]
Calvin, J. J.; Ben-Moshe, A.; Curling, E. B.; Brewer, A. S.; Sedlak, A. B.; Kaufman, T. M.; Alivisatos, A. P. J. Phys. Chem. C 2022, 126, 12958. doi:10.1021/acs.jpcc.2c04223
-
[31]
MacSwain, W.; Lin, H.; Li, Z.-J.; Li, S.; Chu, C.; Dube, L.; Chen, O.; Leem, G.; Zheng, W. J. Mater. Chem. A 2023, 11, 7066. doi:10.1039/d2ta08409k
-
[32]
Li, H.; Gong, H.; Jin, Z. Acta Phys.-Chim. Sin. 2022, 38, 2201037. doi:10.3866/PKU.WHXB202201037
-
[33]
Shi, Y.; Li, L.; Xu, Z.; Guo, F.; Shi, W. Chem. Eng. J. 2023, 459, 141549. doi:10.1016/j.cej.2023.141549
-
[34]
Fu, X.; Ren, T.; Jiao, S.; Tian, Z.; Yang, J.; Li, Q. J. Energy Chem. 2023, 83, 397. doi:10.1016/j.jechem.2023.04.028
-
[35]
Yang, W.; Zhang, J.; Xu, Q.; Yang, Y.; Zhang, L. Acta Phys.-Chim. Sin. 2024, 40, 2312014. doi:10.3866/PKU.WHXB202312014
-
[36]
Collini, H.; Jackson, M. D. Adv. Colloid Interface Sci. 2023, 320, 102962. doi:10.1016/j.cis.2023.102962
-
[37]
Muff, L. F.; Luxbacher, T.; Burgert, I.; Michen, B. J. Colloid Interface Sci. 2018, 518, 165. doi:10.1016/j.jcis.2018.02.022
-
[38]
Miao, X.; He, J.; Wang, X.; Jin, Z. Sep. Purif. Technol. 2024, 339, 126581. doi:10.1016/j.seppur.2024.126581
-
[39]
Xu, S.; Wang, Y.; Wu, Y.; Li, M. Surf. Interfaces 2024, 44, 103576. doi:10.1016/j.surfin.2023.103576
-
[40]
Ping, J.; He, D.; Wang, F.; Wang, N.; Fu, Y.-C.; Xing, Z.; Jia, Z.; Yang, G.-Y. Nano Res. 2024, 17, 1281. doi:10.1007/s12274-023-6393-4
-
[41]
Wang, T.; Jin, Z. J. Mater. Sci. Technol. 2023, 155, 132. doi:10.1016/j.jmst.2023.03.002
-
[42]
He, B.; Xiao, P.; Wan, S.; Zhang, J.; Chen, T.; Zhang, L.; Yu, J. Angew. Chem. Int. Ed. 2023, 62, e202313172. doi:10.1002/anie.202313172
-
[43]
Deng, C.; Peng, L.; Ling, X.; Wang, T.; Xu, R.; Zhu, Y.; Wang, C.; Qian, X.; Wang, L.; Wu, Y.; et al. J. Cleaner Prod. 2023, 414, 137616. doi:10.1016/j.jclepro.2023.137616
-
[44]
Liu, L.; Wang, Z.; Zhang, J.; Ruzimuradov, O.; Dai, K.; Low, J. Adv. Mater. 2023, 35, 2300643. doi:10.1002/adma.202300643
-
[45]
Xie, H.; Wang, K.; Li, S.; Jin, Z. Surf. Interfaces 2023, 42, 103353. doi:10.1016/j.surfin.2023.103353
-
[46]
Zhang, H.; Li, Q.; Li, B.; Weng, B.; Tian, Z.; Yang, J.; Hofkens, J.; Lai, F.; Liu, T. J. Catal. 2022, 407, 1. doi:10.1016/j.jcat.2022.01.017
-
[47]
Yang, S.; Wang, K.; Chen, Q.; Wu, Y. J. Mater. Sci. Technol. 2024, 175, 104. doi:10.1016/j.jmst.2023.07.044
-
[48]
Zhang, L.; Liu, T.; Liu, T.; Hussain, S.; Li, Q.; Yang, J. Chem. Eng. J. 2023, 463, 142358. doi:10.1016/j.cej.2023.142358
-
[49]
Cai, J.; Liu, B.; Zhang, S.; Wang, L.; Wu, Z.; Zhang, J.; Cheng, B. J. Mater. Sci. Technol. 2024, 197, 183. doi:10.1016/j.jmst.2024.02.012
-
[50]
Miao, X.; Zhang, J.; He, J.; Zhou, S.; Wu, Y.; Jin, Z. J. Phys. Chem. C 2024, 128, 1982. doi:10.1021/acs.jpcc.3c08379
-
[51]
Lin, J.; Yang, H.; Zhang, J.; Yang, S.; Lu, G.; Zhang, Y.; Qin, H.; Xi, J.; Song, L. Ceram. Int. 2024, 50, 6713. doi:10.1016/j.ceramint.2023.12.010
-
[52]
Li, Y.; Sun, Y.; Liu, Y.; Zheng, T.; Li, A.; Levchenko, G. G.; Han, W.; Pashchenko, A. V.; Sasaki, S.-i.; Tamiaki, H.; et al. J. Colloid Interface Sci. 2024, 654, 1001. doi:10.1016/j.jcis.2023.10.097
-
[53]
Noh, S. H.; Lee, K. H.; Yang, H. S.; Jung, J.; Suh, E. H.; Oh, J. G.; Paik, U.; Park, S. C.; Jang, J. Chem. Eng. J. 2024, 481, 148127. doi:10.1016/j.cej.2023.148127
-
[54]
Bu, D.; Bu, D.; Chen, W.; Huang, C.; Li, L.; Lei, H.; Huang, S. J. Catal. 2022, 407, 10. doi:10.1016/j.jcat.2022.01.008
-
[55]
Shen, X.; Watanabe, M.; Song, J. T.; Takagaki, A.; Abe, T.; Tanaka, K.; Ishihara, T. J. Mater. Chem. A 2023, 11, 21153. doi:10.1039/d3ta03682k
-
[56]
Li, J.; Huang, Z.; Wang, C.; Tian, L.; Yang, X.; Zhou, R.; Ghazzal, M. N.; Liu, Z.-Q. Appl. Catal. B Environ. Energy 2024, 340, 123181. doi:10.1016/j.apcatb.2023.123181
-
[57]
Zhu, J.; Wageh, S.; Al-Ghamdi, A. A. Chin. J. Catal. 2023, 49, 5. doi:10.1016/S1872-2067(23)64438-9
-
[58]
Xu, Q.; Zhang, L.; Cheng, B.; Fan, J.; Yu, J. Chem 2020, 6, 1543. doi:10.1016/j.chempr.2020.06.010
-
[59]
He, H.; Wang, Z.; Zhang, J.; Shao, C.; Dai, K.; Fan, K. Adv. Funct. Mater. 2024, 34, 2315426. doi:10.1002/adfm.202315426
-
[60]
Zhu, B.; Sun, J.; Zhao, Y.; Zhang, L.; Yu, J. Adv. Mater. 2024, 36, 2310600. doi:10.1002/adma.202310600
-
[61]
Wang, Z.; Yue, X.; Xiang, Q. Coord. Chem. Rev. 2024, 504, 215674. doi:10.1016/j.ccr.2024.215674
-
[62]
Li, S.; Wang, C.; Dong, K.; Zhang, P.; Chen, X.; Li, X. Chin. J. Catal. 2023, 51, 101. doi:10.1016/S1872-2067(23)64479-1
-
[63]
Deng, J.; Xu, D.; Zhang, J.; Xu, Q.; Yang, Y.; Wei, Z.; Su, Z. J. Mater. Sci. Technol. 2024, 180, 150. doi:10.1016/j.jmst.2023.04.053
-
[64]
Yu, J.; Li, X.; Fu, J.; Dai, K. Sci. China Mater. 2024, 67, 379. doi:10.1007/s40843-024-2779-5
-
[1]
-
-
-
[1]
Jiaxing Cai , Wendi Xu , Haoqiang Chi , Qian Liu , Wa Gao , Li Shi , Jingxiang Low , Zhigang Zou , Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002
-
[2]
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
-
[3]
Yuejiao An , Wenxuan Liu , Yanfeng Zhang , Jianjun Zhang , Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021
-
[4]
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
-
[5]
Peng Li , Yuanying Cui , Zhongliao Wang , Graham Dawson , Chunfeng Shao , Kai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-. doi: 10.1016/j.actphy.2025.100065
-
[6]
Xiutao Xu , Chunfeng Shao , Jinfeng Zhang , Zhongliao Wang , Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031
-
[7]
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005
-
[8]
Jianyu Qin , Yuejiao An , Yanfeng Zhang . In Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002
-
[9]
Kaihui Huang , Dejun Chen , Xin Zhang , Rongchen Shen , Peng Zhang , Difa Xu , Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020
-
[10]
Jinwang Wu , Qijing Xie , Chengliang Zhang , Haifeng Shi . 自旋极化增强ZnFe1.2Co0.8O4/BiVO4 S型异质结光催化性能降解四环素. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-. doi: 10.1016/j.actphy.2025.100050
-
[11]
Changjun You , Chunchun Wang , Mingjie Cai , Yanping Liu , Baikang Zhu , Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014
-
[12]
Kexin Dong , Chuqi Shen , Ruyu Yan , Yanping Liu , Chunqiang Zhuang , Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013
-
[13]
Tieping CAO , Yuejun LI , Dawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366
-
[14]
Yang Xia , Kangyan Zhang , Heng Yang , Lijuan Shi , Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012
-
[15]
Yi Yang , Xin Zhou , Miaoli Gu , Bei Cheng , Zhen Wu , Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064
-
[16]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
-
[17]
Zhengyu Zhou , Huiqin Yao , Youlin Wu , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010
-
[18]
Juntao Yan , Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024
-
[19]
Asif Hassan Raza , Shumail Farhan , Zhixian Yu , Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020
-
[20]
Jingzhuo Tian , Chaohong Guan , Haobin Hu , Enzhou Liu , Dongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-. doi: 10.1016/j.actphy.2025.100068
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(17)
- HTML views(0)