Citation: Xinyu Miao,  Hao Yang,  Jie He,  Jing Wang,  Zhiliang Jin. Adjusting the electronic structure of Keggin-type polyoxometalates to construct S-scheme heterojunction for photocatalytic hydrogen evolution[J]. Acta Physico-Chimica Sinica, ;2025, 41(6): 100051. doi: 10.1016/j.actphy.2025.100051 shu

Adjusting the electronic structure of Keggin-type polyoxometalates to construct S-scheme heterojunction for photocatalytic hydrogen evolution

  • Received Date: 25 November 2024
    Revised Date: 10 January 2025
    Accepted Date: 13 January 2025

    Fund Project: The project was supported by the Innovative Team for Transforming Waste Cooking Oil into Clean Energy and High Value-Added Chemicals of China and Ningxia Low-Grade Resource High Value Utilization And Environmental Chemical Integration Technology Innovation Team Project of Ningxia.

  • The sluggish electron migration rate and pronounced electron-hole recombination, pose significant obstacles to achieving high photocatalytic efficiency. The utilization of multiple catalysts for the construction of heterojunctions can effectively enhance charge separation. A series of Keggin-type hollow dodecahedral polyoxometalates were prepared via hydrothermal synthesis, and their molecular orbitals were modified through the addition of metal elements. The incorporation of metal elements modulated the electronic structure of polyoxometalates, effectively enhancing the electron aggregation capability of polyoxometalates. Single-component catalysts often face serious hole-electron recombination. In order to solve this problem, the scheme of constructing heterojunction is proposed to improve the electron transport efficiency. By immobilizing ZnCdS nanoparticles onto the polyoxometalate surface, the heterojunction architecture was engineered to significantly enhance the interfacial charge transfer capability. Density Functional Theory (DFT) calculations and the experimental results indicate that the modulation of metallic components renders the polyoxometalate a more favorable energy-level orbital. The catalytic mechanism of ZnCdS and KMoP S-scheme heterojunction was also verified. The formation of S-scheme heterojunctions further improves the electron transfer efficiency compared to other traditional heterojunctions, achieving efficient utilization of photo generated electrons and holes. Additionally, the S-scheme heterojunction shifts the catalyst's d-band center closer to the Fermi level, thereby improving electrical conductivity. This article provides a new approach for energy level regulation of polyoxometalates and the design of S-scheme heterojunctions.
  • 加载中
    1. [1]

      He, L.; Yang, Z.; Xu, Y.; Lu, X.; Kaba, S.; Li, C.; Yao, X.; Xu, D.; Yao, Z. J. Cleaner Prod. 2024, 451, 142103. doi:10.1016/j.jclepro.2024.142103

    2. [2]

      Zhang, L.; Wu, Y.; Tsubaki, N.; Jin, Z. Acta Phys. -Chim. Sin. 2023, 39, 2302051. doi:10.3866/PKU.WHXB202302051

    3. [3]

      Zhai, H.; He, J.; Liu, G.; Miao, X.; Jin, Z. J. Energy Storage 2024, 99, 113472. doi:10.1016/j.est.2024.113472

    4. [4]

      Li, X.; Li, Y.; Guo, X.; Jin, Z. Front. Chem. Sci. Eng. 2023, 17, 606. doi:10.1007/s11705-022-2233-4

    5. [5]

      Huang, X.; Chen, Y.; Wang, N.; Deng, G.-J.; Long, B.; Song, T. J. Catal. 2024, 429, 115281. doi:10.1016/j.jcat.2023.115281

    6. [6]

      Jin, F.; Yang, B.; Wang, X.; Li, T.; Tsubaki, N.; Jin, Z. Chin. J. Struct. Chem. 2023, 42, 100198. doi:10.1016/j.cjsc.2023.100198

    7. [7]

      Wang, H.; Li, X.; Zhao, X.; Li, C.; Song, X.; Zhang, P.; Huo, P.; Li, X. Chin. J. Catal. 2022, 43, 178. doi:10.1016/S1872-2067(21)63910-4

    8. [8]

      Zhang, S.; Zhang, G.; Wu, S.; Guan, Z.; Li, Q.; Yang, J. J. Colloid Interface Sci. 2023, 650, 1974. doi:10.1016/j.jcis.2023.07.147

    9. [9]

      Meng, A.; Zhou, S.; Wen, D.; Han, P.; Su, Y. Chin. J. Catal. 2024, 43, 2548. doi:10.1016/S1872-2067(22)64111-1

    10. [10]

      Cai, X.; Du, J.; Zhong, G.; Zhang, Y.; Mao, L.; Lou, Z. Acta Phys. -Chim. Sin. 2023, 39, 2302017. doi:10.3866/PKU.WHXB202302017

    11. [11]

      Ye, L.; Xia, Z.; Xu, Q.; Yang, Y.; Xu, X.; Jin, H.; Wang, S. Chem. Commun. 2023, 59, 9872. doi:10.1039/D3CC02914J

    12. [12]

      Sun, L.; Yu, X.; Tang, L.; Wang, W.; Liu, Q. Chin. J. Catal. 2023, 52, 164. doi:10.1016/S1872-2067(23)64507-3

    13. [13]

      Zhang, Y.; Zhang, Z. J. Mater. Sci. Technol. 2024, 171, 147. doi:10.1016/j.jmst.2023.06.048

    14. [14]

      Li, T.; Zhang, L.; Li, X.; Wang, X.; Jin, Z. J. Liaocheng Univ. 2023, 36, 25. doi:10.19728/j.issn1672-6634.2022030011

    15. [15]

      Jin, Z.; Li, H.; Li, J. Chin. J. Catal. 2022, 43, 303. doi:10.1016/s1872-2067(21)63818-4

    16. [16]

      Li, T.; Tsubaki, N.; Jin, Z. J. Mater. Sci. Technol. 2024, 169, 82. doi:10.1016/j.jmst.2023.04.049

    17. [17]

      Hu, P.; Liang, G.; Zhu, B.; Macyk, W.; Yu, J.; Xu, F. ACS Catal. 2023, 13, 12623. doi:10.1021/acscatal.3c03095

    18. [18]

      Wan, S.; Wang, W.; Cheng, B.; Luo, G.; Shen, Q.; Yu, J.; Zhang, J.; Cao, S.; Zhang, L. Nat. Commun. 2024, 15, 9612. doi:10.1038/s41467-024-53951-6

    19. [19]

      Cao, S.; Zhong, B.; Bie, C.; Cheng, B.; Xu, F. Acta Phys. -Chim. Sin. 2024, 40, 2307016. doi:10.3866/PKU.WHXB202307016

    20. [20]

      Deng, X.; Zhang, J.; Qi, K.; Liang, G.; Xu, F.; Yu, J. Nat. Commun. 2024, 15, 4807. doi:10.1038/s41467-024-49004-7

    21. [21]

      Xiao, Q.; Yang, T.; Guo, X.; Jin, Z. Surf. Interfaces 2023, 43, 103577. doi:10.1016/j.surfin.2023.103577

    22. [22]

      Antonello, A.; Benedetti, C.; Pérez-Pla, F. F.; Kokkinopoulou, M.; Kirchhoff, K.; Fischer, V.; Landfester, K.; Gross, S.; Muñoz-Espí, R. ACS Appl. Mater. Interfaces 2018, 10, 23174. doi:10.1021/acsami.8b01617

    23. [23]

      Zhao, Z.; Diao, X.; Wang, P.; Gao, H.; Irvine, J. T. S.; Liu, R.; Zhang, X.; Wang, G. Chem. Eng. J. 2024, 482, 149184. doi:10.1016/j.cej.2024.149184

    24. [24]

      Zhang, H.; Shao, C.; Wang, Z.; Zhang, J.; Dai, K. J. Mater. Sci. Technol. 2024, 195, 146. doi:10.1016/j.jmst.2023.11.081

    25. [25]

      Cui, Y.; Xing, Z.; Guo, M.; Qiu, Y.; Fang, B.; Li, Z.; Yang, S.; Zhou, W. J. Colloid Interface Sci. 2022, 607, 942. doi:10.1016/j.jcis.2021.09.075

    26. [26]

      Liu, J.; Yang, X.; Guo, X.; Jin, Z. J. Mater. Sci. Technol. 2024, 196, 112. doi:10.1016/j.jmst.2024.01.058

    27. [27]

      Jin Z. Journal of The Chinese Ceramic Society 2023, 51, 106. doi:10.14062/j.issn.0454-5648.2022033

    28. [28]

      Wu, H.; Zhao, L.; He, X.; Chen, H.; Fang, W.; Du, X.; Li, W.; Wang, D. J. Cleaner Prod. 2023, 425, 138921. doi:10.1016/j.jclepro.2023.138921

    29. [29]

      Fan, Z.; Guo, X.; Yang, M.; Jin, Z. Chin. J. Catal. 2022, 43, 2708. doi:10.1016/s1872-2067(21)64053-6

    30. [30]

      Calvin, J. J.; Ben-Moshe, A.; Curling, E. B.; Brewer, A. S.; Sedlak, A. B.; Kaufman, T. M.; Alivisatos, A. P. J. Phys. Chem. C 2022, 126, 12958. doi:10.1021/acs.jpcc.2c04223

    31. [31]

      MacSwain, W.; Lin, H.; Li, Z.-J.; Li, S.; Chu, C.; Dube, L.; Chen, O.; Leem, G.; Zheng, W. J. Mater. Chem. A 2023, 11, 7066. doi:10.1039/d2ta08409k

    32. [32]

      Li, H.; Gong, H.; Jin, Z. Acta Phys.-Chim. Sin. 2022, 38, 2201037. doi:10.3866/PKU.WHXB202201037

    33. [33]

      Shi, Y.; Li, L.; Xu, Z.; Guo, F.; Shi, W. Chem. Eng. J. 2023, 459, 141549. doi:10.1016/j.cej.2023.141549

    34. [34]

      Fu, X.; Ren, T.; Jiao, S.; Tian, Z.; Yang, J.; Li, Q. J. Energy Chem. 2023, 83, 397. doi:10.1016/j.jechem.2023.04.028

    35. [35]

      Yang, W.; Zhang, J.; Xu, Q.; Yang, Y.; Zhang, L. Acta Phys.-Chim. Sin. 2024, 40, 2312014. doi:10.3866/PKU.WHXB202312014

    36. [36]

      Collini, H.; Jackson, M. D. Adv. Colloid Interface Sci. 2023, 320, 102962. doi:10.1016/j.cis.2023.102962

    37. [37]

      Muff, L. F.; Luxbacher, T.; Burgert, I.; Michen, B. J. Colloid Interface Sci. 2018, 518, 165. doi:10.1016/j.jcis.2018.02.022

    38. [38]

      Miao, X.; He, J.; Wang, X.; Jin, Z. Sep. Purif. Technol. 2024, 339, 126581. doi:10.1016/j.seppur.2024.126581

    39. [39]

      Xu, S.; Wang, Y.; Wu, Y.; Li, M. Surf. Interfaces 2024, 44, 103576. doi:10.1016/j.surfin.2023.103576

    40. [40]

      Ping, J.; He, D.; Wang, F.; Wang, N.; Fu, Y.-C.; Xing, Z.; Jia, Z.; Yang, G.-Y. Nano Res. 2024, 17, 1281. doi:10.1007/s12274-023-6393-4

    41. [41]

      Wang, T.; Jin, Z. J. Mater. Sci. Technol. 2023, 155, 132. doi:10.1016/j.jmst.2023.03.002

    42. [42]

      He, B.; Xiao, P.; Wan, S.; Zhang, J.; Chen, T.; Zhang, L.; Yu, J. Angew. Chem. Int. Ed. 2023, 62, e202313172. doi:10.1002/anie.202313172

    43. [43]

      Deng, C.; Peng, L.; Ling, X.; Wang, T.; Xu, R.; Zhu, Y.; Wang, C.; Qian, X.; Wang, L.; Wu, Y.; et al. J. Cleaner Prod. 2023, 414, 137616. doi:10.1016/j.jclepro.2023.137616

    44. [44]

      Liu, L.; Wang, Z.; Zhang, J.; Ruzimuradov, O.; Dai, K.; Low, J. Adv. Mater. 2023, 35, 2300643. doi:10.1002/adma.202300643

    45. [45]

      Xie, H.; Wang, K.; Li, S.; Jin, Z. Surf. Interfaces 2023, 42, 103353. doi:10.1016/j.surfin.2023.103353

    46. [46]

      Zhang, H.; Li, Q.; Li, B.; Weng, B.; Tian, Z.; Yang, J.; Hofkens, J.; Lai, F.; Liu, T. J. Catal. 2022, 407, 1. doi:10.1016/j.jcat.2022.01.017

    47. [47]

      Yang, S.; Wang, K.; Chen, Q.; Wu, Y. J. Mater. Sci. Technol. 2024, 175, 104. doi:10.1016/j.jmst.2023.07.044

    48. [48]

      Zhang, L.; Liu, T.; Liu, T.; Hussain, S.; Li, Q.; Yang, J. Chem. Eng. J. 2023, 463, 142358. doi:10.1016/j.cej.2023.142358

    49. [49]

      Cai, J.; Liu, B.; Zhang, S.; Wang, L.; Wu, Z.; Zhang, J.; Cheng, B. J. Mater. Sci. Technol. 2024, 197, 183. doi:10.1016/j.jmst.2024.02.012

    50. [50]

      Miao, X.; Zhang, J.; He, J.; Zhou, S.; Wu, Y.; Jin, Z. J. Phys. Chem. C 2024, 128, 1982. doi:10.1021/acs.jpcc.3c08379

    51. [51]

      Lin, J.; Yang, H.; Zhang, J.; Yang, S.; Lu, G.; Zhang, Y.; Qin, H.; Xi, J.; Song, L. Ceram. Int. 2024, 50, 6713. doi:10.1016/j.ceramint.2023.12.010

    52. [52]

      Li, Y.; Sun, Y.; Liu, Y.; Zheng, T.; Li, A.; Levchenko, G. G.; Han, W.; Pashchenko, A. V.; Sasaki, S.-i.; Tamiaki, H.; et al. J. Colloid Interface Sci. 2024, 654, 1001. doi:10.1016/j.jcis.2023.10.097

    53. [53]

      Noh, S. H.; Lee, K. H.; Yang, H. S.; Jung, J.; Suh, E. H.; Oh, J. G.; Paik, U.; Park, S. C.; Jang, J. Chem. Eng. J. 2024, 481, 148127. doi:10.1016/j.cej.2023.148127

    54. [54]

      Bu, D.; Bu, D.; Chen, W.; Huang, C.; Li, L.; Lei, H.; Huang, S. J. Catal. 2022, 407, 10. doi:10.1016/j.jcat.2022.01.008

    55. [55]

      Shen, X.; Watanabe, M.; Song, J. T.; Takagaki, A.; Abe, T.; Tanaka, K.; Ishihara, T. J. Mater. Chem. A 2023, 11, 21153. doi:10.1039/d3ta03682k

    56. [56]

      Li, J.; Huang, Z.; Wang, C.; Tian, L.; Yang, X.; Zhou, R.; Ghazzal, M. N.; Liu, Z.-Q. Appl. Catal. B Environ. Energy 2024, 340, 123181. doi:10.1016/j.apcatb.2023.123181

    57. [57]

      Zhu, J.; Wageh, S.; Al-Ghamdi, A. A. Chin. J. Catal. 2023, 49, 5. doi:10.1016/S1872-2067(23)64438-9

    58. [58]

      Xu, Q.; Zhang, L.; Cheng, B.; Fan, J.; Yu, J. Chem 2020, 6, 1543. doi:10.1016/j.chempr.2020.06.010

    59. [59]

      He, H.; Wang, Z.; Zhang, J.; Shao, C.; Dai, K.; Fan, K. Adv. Funct. Mater. 2024, 34, 2315426. doi:10.1002/adfm.202315426

    60. [60]

      Zhu, B.; Sun, J.; Zhao, Y.; Zhang, L.; Yu, J. Adv. Mater. 2024, 36, 2310600. doi:10.1002/adma.202310600

    61. [61]

      Wang, Z.; Yue, X.; Xiang, Q. Coord. Chem. Rev. 2024, 504, 215674. doi:10.1016/j.ccr.2024.215674

    62. [62]

      Li, S.; Wang, C.; Dong, K.; Zhang, P.; Chen, X.; Li, X. Chin. J. Catal. 2023, 51, 101. doi:10.1016/S1872-2067(23)64479-1

    63. [63]

      Deng, J.; Xu, D.; Zhang, J.; Xu, Q.; Yang, Y.; Wei, Z.; Su, Z. J. Mater. Sci. Technol. 2024, 180, 150. doi:10.1016/j.jmst.2023.04.053

    64. [64]

      Yu, J.; Li, X.; Fu, J.; Dai, K. Sci. China Mater. 2024, 67, 379. doi:10.1007/s40843-024-2779-5

  • 加载中
    1. [1]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    2. [2]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    3. [3]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    4. [4]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    5. [5]

      Peng Li Yuanying Cui Zhongliao Wang Graham Dawson Chunfeng Shao Kai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-. doi: 10.1016/j.actphy.2025.100065

    6. [6]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    7. [7]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    8. [8]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    9. [9]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    10. [10]

      Jinwang Wu Qijing Xie Chengliang Zhang Haifeng Shi . 自旋极化增强ZnFe1.2Co0.8O4/BiVO4 S型异质结光催化性能降解四环素. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-. doi: 10.1016/j.actphy.2025.100050

    11. [11]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    12. [12]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    13. [13]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    14. [14]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    15. [15]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    16. [16]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    17. [17]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    18. [18]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    19. [19]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    20. [20]

      Jingzhuo Tian Chaohong Guan Haobin Hu Enzhou Liu Dongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-. doi: 10.1016/j.actphy.2025.100068

Metrics
  • PDF Downloads(0)
  • Abstract views(17)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return