Citation: Xue Liu, Lipeng Wang, Luling Li, Kai Wang, Wenju Liu, Biao Hu, Daofan Cao, Fenghao Jiang, Junguo Li, Ke Liu. Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming[J]. Acta Physico-Chimica Sinica, ;2025, 41(5): 100049. doi: 10.1016/j.actphy.2025.100049 shu

Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming

  • Corresponding author: Ke Liu, liuk@sustech.edu.cn
  • Received Date: 18 November 2024
    Revised Date: 13 December 2024
    Accepted Date: 20 December 2024

    Fund Project: Shenzhen Science and Technology Innovation Committee KQTD20180411143418361Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Catalysis 2020B121201002Key Scientific Research Project of Colleges and Universities in Henan Province 24B530001National Natural Science Foundation of China U22B20149

  • Methanol steam reforming (MSR) is a critical pathway for on-board hydrogen production from methanol, playing a significant role in clean energy applications. The catalytic performance in MSR reactions directly influences hydrogen yield and byproduct composition, with Cu-based and Pt-based catalysts extensively studied for their high efficiency. The catalytic mechanism primarily involves the cleavage of C―H and O―H bonds in methanol and water molecules. The activity of Cu-based catalysts depends on the ratio and synergistic interaction of Cu0 and Cu+ active sites, while Pt-based catalysts operate through Pt0, Ptδ+ or Pt2+ active sites, in conjunction with oxygen vacancies. However, the electron transfer and interaction mechanisms between active metals and supports remain contentious, impacting the metal oxidation states, adsorption sites, and reaction pathway selectivity. This is particularly evident in the pathways for methanol dehydrogenation and intermediate product formation (e.g., formaldehyde, formic acid, and methyl formate), which lack a unified understanding. This review systematically examines the unitary and synergistic roles of Cu0 and Cu+ sites, explores the direct and synergistic pathways of Pt-based catalysts, and analyzes the effects of additives such as In2O3 on Pt site modulation and oxygen vacancy generation. By integrating catalytic performance evaluations with mechanistic insights, strategies are proposed to enhance catalyst activity and stability. This comprehensive review not only advances the understanding of MSR mechanisms but also provides a theoretical foundation and research direction for the development of high-performance catalysts for on-board hydrogen production.
  • 加载中
    1. [1]

      Wang, R.; Chen, Z.; Zeng, J.; Wang, Y.; Cao, J.; Tang, X.; Zhang, R. Sci.Technol. Rev. 2024, 42, 10.  doi: 10.3981/j.issn.1000-7857.2024.02.00232

    2. [2]

      Raimi, D.; Zhu, Y.; Newell, D. R. G.; Prest, B. C.; Bergman, A. Resources for the Future 2024. Report: https://www.rff.org/publications/reports/global-energy-outlook-2024

    3. [3]

      Gu, B.; Yu, D.; Wang, C.; Wang, Y. Bull. Chin. Acad. Sci. 2024, 39, 726.  doi: 10.16418/j.issn.1000-3045.20230505003

    4. [4]

      Dai, L.; Xiong, J.; Liu, H. Chem. Ind. Eng. Prog. 2013, 32, 2068.  doi: 10.3969/j.issn.1000-6613.2013.09.011

    5. [5]

      Pham, T. T.; Mollaamin, F.; Monajjemi, M.; Dang, C. M. Int. J. Nanotechnol. 2020, 17, 498. doi: 10.1504/IJNT.2020.111320  doi: 10.1504/IJNT.2020.111320

    6. [6]

      Hu, B.; Xu, P.; Wang, L.; Xiang, D.; Jiang, F.; Cao, D.; Liu, K. Int. J. Hydrog. Energy 2024, 91, 434. doi: 10.1016/j.ijhydene.2024.09.342  doi: 10.1016/j.ijhydene.2024.09.342

    7. [7]

      James, L.; Andrew, D. Fuel Cell Systems Explained; John Wiley & Sons: New Jersey, USA, 2003.

    8. [8]

      Acres, G. J. K.; Frost, J. C.; Hards, G. A.; Potter, R. J.; Ralph, T. R.; Thompsett, D.; Burstein, G. T.; Hutchings, G. J. Catal. Today 1997, 38, 393. doi: 10.1016/S0920-5861(97)00050-3  doi: 10.1016/S0920-5861(97)00050-3

    9. [9]

      Urian, R. C.; Gullá, A. F.; Mukerjee, S. J. Electroanal. Chem. 2003, 554–555, 307. doi: 10.1016/s0022-0728(03)00241-9  doi: 10.1016/s0022-0728(03)00241-9

    10. [10]

      Li, J.; Wu, C.; Cao, D.; Hu, S.; Weng, L.; Liu, K. Engineering 2023, 29, 27. doi: 10.1016/j.eng.2023.08.005  doi: 10.1016/j.eng.2023.08.005

    11. [11]

      Jiang, D.; Jia, Y.; Lu, Q.; Hong, B.; Shen, R.; Zhang, Y. Electric. Power 2020, 53, 135.  doi: 10.11930/j.issn.1004-9649.202003195

    12. [12]

      Li, X. Energy Conserv. Environ. Prot.Transport. 2023, 19, 45.  doi: 10.3969/j.issn.1673-6478.2023.04.012

    13. [13]

      Li, Q.; Liu, X.; Liu, K.; Zhang, T.; Kong, F. Low-Carbon Chem. Chem. Eng. 2015, 40, 78.  doi: 10.3969/j.issn.1001-9219.2015.01.021

    14. [14]

      Zheng, L.; Zhao, D.; Qi, X.; Chen, Y. J. Eng. Thermophys. 2022, 43, 2305.

    15. [15]

      Shao, L.; Zhang, Y.; Tang, Y.; Yang, P.; Wang, Y.; Wang, H. Refin. Chem. Ind. 2024, 35, 10.  doi: 10.16049/j.cnki.lyyhg.2024.02.013

    16. [16]

      Feng, Y.; Cao, T.; Song, H.; Lin, W. China Pet. Process. Pe. 2022, 53, 11.

    17. [17]

      Liu, K.; Song, C.; Subramani, V. Hydrogen and Syngas Production and Purification Technologies; Wiley and AIChE: New Jersey, USA, 2009.

    18. [18]

      Wang, L.; Cao, D.; Liu, X.; Li, C.; Liu, K. Acta Chim. Sin. 2024, 82, 819.  doi: 10.6023/A24020056

    19. [19]

      Wang, L.; Li, Q.; Liu, X.; Li, C.; Zhao, Z.; Diao, S.; Cao, D.; Xiang, D.; Wu, C.; Liu, K. Appl. Surf. Sci. 2024, 649, 159087. doi: 10.1016/j.apsusc.2023.159087  doi: 10.1016/j.apsusc.2023.159087

    20. [20]

      Zhao, H.; Liu, X.; Cao, D.; Li, C.; Jiang, F.; Wu, C.; Liu, K. Low-Carbon Chem. Chem. Eng. 2022, 47, 49.  doi: 10.3969/j.issn.1001-9219.2022.05.007

    21. [21]

      Tang, Y.; Deng, Q.; Lu, Y.; He, M. Low-Carbon Chem. Chem. Eng. 2009, 34, 65.

    22. [22]

      Lee, J. K.; Ko, J. B.; Kim, D. H. Appl. Catal. A 2004, 278, 25. doi: 10.1016/j.apcata.2004.09.022  doi: 10.1016/j.apcata.2004.09.022

    23. [23]

      Cao, J.; Ma, Y.; Guan, G.; Hao, X.; Ma, X.; Wang, Z.; Kusakabe, K.; Abudula, A. Appl. Catal. B 2016, 189, 12. doi: 10.1016/j.apcatb.2016.02.021  doi: 10.1016/j.apcatb.2016.02.021

    24. [24]

      Hassan, A. Int. J. Hydrog. Energy 2024, 93, 1487. doi: 10.1016/j.ijhydene.2024.11.084  doi: 10.1016/j.ijhydene.2024.11.084

    25. [25]

      Wang, S.; Gu, X.; Su, H.; Li W. J. Phys. Chem. C 2018, 122, 10811. doi: 10.1021/acs.jpcc.8b00085  doi: 10.1021/acs.jpcc.8b00085

    26. [26]

      Feng, K.; Meng, H.; Yang, Y.; Wei, M. Chem. Ind. Eng. Prog. 2024, 43, 5498.  doi: 10.16085/j.issn.1000-6613.2023-1705

    27. [27]

      Iruretagoyena, D.; Hellgardt, K.; Chadwick, D. Int. J. Hydrog. Energy 2018, 43, 4211. doi: 10.1016/j.ijhydene.2018.01.043  doi: 10.1016/j.ijhydene.2018.01.043

    28. [28]

      Deng, Y.; Li, S.; Appels, L.; Dewil, R.; Zhang, H.; Baeyens, J.; Mikulcic, H. J. Environ. Manage. 2022, 321, 116019. doi: 10.1016/j.jenvman.2022.116019  doi: 10.1016/j.jenvman.2022.116019

    29. [29]

      Ito, S.; Suwa, Y.; Kondo, S.; Kameoka, S.; Tomishige, K.; Kunimori, K. Catal. Commun. 2003, 4, 499. doi: 10.1016/s1566-7367(03)00132-8  doi: 10.1016/s1566-7367(03)00132-8

    30. [30]

      Miyao, T.; Yamauchi, M.; Narita, H.; Naito, S. Appl. Catal. A 2006, 299, 285. doi: 10.1016/j.apcata.2005.10.043  doi: 10.1016/j.apcata.2005.10.043

    31. [31]

      Barthos, R.; Solymosi, F. J. Catal. 2007, 249, 289. doi: 10.1016/j.jcat.2007.05.003  doi: 10.1016/j.jcat.2007.05.003

    32. [32]

      Akagi, T.; Ikenaga, N. Int. J. Hydrog. Energy 2023, 48, 25693. doi: 10.1016/j.ijhydene.2023.03.147  doi: 10.1016/j.ijhydene.2023.03.147

    33. [33]

      Liu, S.; Wang, R.; Chen, J. Int. J. Hydrog. Energy 2023, 48, 34382. doi: 10.1016/j.ijhydene.2023.05.238  doi: 10.1016/j.ijhydene.2023.05.238

    34. [34]

      Huang, H.; Chih, Y.; Chen, W.; Hsu, C.; Lin, K.; Lin, H.; Hsu, C. Int. J. Hydrog. Energy 2021, 47, 88. doi: 10.1016/j.ijhydene.2021.12.080  doi: 10.1016/j.ijhydene.2021.12.080

    35. [35]

      Li, J.; Mei, X.; Zhang, L.; Yu, Z.; Liu, Q.; Wei, T.; Wu, W.; Dong, D.; Xu, L.; Hu X. Int. J. Hydrog. Energy 2020, 45, 3815. doi: 10.1016/j.ijhydene.2019.03.269  doi: 10.1016/j.ijhydene.2019.03.269

    36. [36]

      Wang, Q.; Zhao, Q.; Wu, R.; Tao, X.; Zhang, C. Mod. Chem. Ind. 2019, 39, 50.  doi: 10.16606/j.cnki.issn0253-4320.2019.06.010

    37. [37]

      Ni, Z.; Mao, J.; Pan, G.; Xu, Q.; Li, X. Acta. Phys.-Chim. Sin. 2009, 25, 876.  doi: 10.3866/PKU.WHXB20090507

    38. [38]

      Yang, W.; Polo‐Garzon, F.; Zhou, H.; Huang, Z.; Chi, M.; Meyer, H.; Yu, X.; Li, Y.; Wu, Z. Angew. Chem. 2022, 135. doi: 10.1002/ange.202217323  doi: 10.1002/ange.202217323

    39. [39]

      Park, H.; Yoon, S. ACS Sustain. Chem. Eng. 2023, 11, 12036. doi: 10.1021/acssuschemeng.3c02330  doi: 10.1021/acssuschemeng.3c02330

    40. [40]

      Rui, N.; Zhang, F.; Sun, K.; Liu, Z.; Xu, W.; Stavitski, E.; Senanayake, S. D.; Rodriguez, J. A.; Liu, C. ACS Catal. 2020, 10, 11307. doi: 10.1021/acscatal.0c02120  doi: 10.1021/acscatal.0c02120

    41. [41]

      Gu, X.; Qiao, B.; Huang, C.; Ding, W.; Sun, K.; Zhan, E.; Zhang, T.; Liu, J.; Li, W. ACS Catal. 2014, 4, 3886. doi: 10.1021/cs500740u  doi: 10.1021/cs500740u

    42. [42]

      Davda, R. R.; Shabaker, J. W.; Huber, G. W.; Cortright, R. D.; Dumesic, J. A.; Appl. Catal. B 2005, 56, 171. doi: 10.1016/j.apcatb.2004.04.027  doi: 10.1016/j.apcatb.2004.04.027

    43. [43]

      Yong, S. T.; Ooi, C. W.; Chai, S. P.; Wu, X. S. Int. J. Hydrog. Energy 2013, 38, 9541. doi: 10.1016/j.ijhydene.2013.03.023  doi: 10.1016/j.ijhydene.2013.03.023

    44. [44]

      Herdem, M. S.; Sinaki, M. Y.; Farhad, S.; Hamdullahpur, F. Int. J. Energy Res. 2019, 43, 5076. doi: 10.1002/er.4440  doi: 10.1002/er.4440

    45. [45]

      Shishido, T.; Yamamoto, Y.; Morioka, H.; Takaki, K.; Takehira, K. Appl. Catal. A 2004, 263, 249. doi: 10.1016/j.apcata.2003.12.018  doi: 10.1016/j.apcata.2003.12.018

    46. [46]

      Tong, W.; West, A.; Cheung, K.; Yu, K.-M.; Tsang, S. C. E. ACS Catal. 2013, 3, 1231. doi: 10.1021/cs400011m  doi: 10.1021/cs400011m

    47. [47]

      Chang, C.; Wang, J.; Chang, C.; Liaw, B.; Chen, Y. Chem. Eng. J. 2012, 192, 350. doi: 10.1016/j.cej.2012.03.063  doi: 10.1016/j.cej.2012.03.063

    48. [48]

      Huang, G.; Liaw, B.; Jhang, C.; Chen, Y. Appl. Catal. A 2009, 358, 7. doi: 10.1016/j.apcata.2009.01.031  doi: 10.1016/j.apcata.2009.01.031

    49. [49]

      LeValley, T. L.; Richard, A. R.; Fan, M. Int. J. Hydrog. Energy 2014, 39, 16983. doi: 10.1016/j.ijhydene.2014.08.041  doi: 10.1016/j.ijhydene.2014.08.041

    50. [50]

      Krajčí, M.; Tsai, A. P.; Hafner, J. J. Catal. 2015, 330, 6. doi: 10.1016/j.jcat.2015.06.020  doi: 10.1016/j.jcat.2015.06.020

    51. [51]

      Tahay, P.; Khani, Y.; Jabari, M.; Bahadoran, F.; Safari, N. Appl. Catal. A 2018, 554, 44. doi: 10.1016/j.apcata.2018.01.022  doi: 10.1016/j.apcata.2018.01.022

    52. [52]

      Chen, L. N.; Hou, K. P.; Liu, Y. S.; Qi, Z. Y.; Zheng, Q.; Lu, Y. H.; Chen, J. Y.; Chen, J. L.; Pao, C. W.; Wang, S. B.; et al. J. Am. Chem. Soc. 2019, 141, 17995. doi: 10.1021/jacs.9b09431  doi: 10.1021/jacs.9b09431

    53. [53]

      Cai, F.; Ibrahim, J. J.; Fu, Y.; Kong, W.; Li, S.; Zhang, J.; Sun Y. Ind. Eng. Chem. Res. 2020, 59, 18756. doi: 10.1021/acs.iecr.0c03311  doi: 10.1021/acs.iecr.0c03311

    54. [54]

      Shanmugam, V.; Neuberg, S.; Zapf, R.; Pennemann, H.; Kolb, G. Int. J. Hydrog. Energy 2020, 45, 1658. doi: 10.1016/j.ijhydene.2019.11.015  doi: 10.1016/j.ijhydene.2019.11.015

    55. [55]

      Ma, Y.; Guan, G.; Phanthong, P.; Li, X.; Cao, J.; Hao, X.; Wang, Z. Abudula, A. Int. J. Hydrog. Energy 2014, 39, 18803. doi: 10.1016/j.ijhydene.2014.09.062  doi: 10.1016/j.ijhydene.2014.09.062

    56. [56]

      Ke, C.; Lin, Z. Molecules 2020, 25, 1531. doi: 10.3390/molecules25071531  doi: 10.3390/molecules25071531

    57. [57]

      Rönsch, S.; Schneider, J.; Matthischke, S.; Schlüte, r M.; Götz, M.; Lefebvre, J.; Prabhakaran, P.; Bajohr, S. Fuel 2016, 166, 276. doi: 10.1016/j.fuel.2015.10.111  doi: 10.1016/j.fuel.2015.10.111

    58. [58]

      Aziz, M. A. A.; Jalil, A. A.; Triwahyono, S.; Ahmad, A. Green Chem. 2015, 17, 2647. doi: 10.1039/c5gc00119f  doi: 10.1039/c5gc00119f

    59. [59]

      Jia, J.; Qian, C.; Dong, Y.; Li, Y. F.; Wang, H.; Ghoussoub, M.; Butler, K. T.; Walsh, A.; Ozink, G. A. Chem. Soc. Rev. 2017, 46, 4631. doi: 10.1039/C7CS00026J  doi: 10.1039/C7CS00026J

    60. [60]

      Guo, Y.; Mei, S.; Yuan, K.; Wang, D.; Liu, H.; Yan, C.; Zhang, Y. ACS Catal. 2018, 8, 6203. Doi: 10.1021/acscatal.7b04469  doi: 10.1021/acscatal.7b04469

    61. [61]

      Tauster, S. J.; Fung, S. C.; Baker, R. T. K.; Horsley, J. A. Science 1981, 211, 1121. doi: 10.1126/science.211.4487.1121  doi: 10.1126/science.211.4487.1121

    62. [62]

      Acerbi, N.; Tsang, S. C. E.; Jones, G.; Golunski, S.; Collier, P. Angew. Chem. Int. Ed. 2013, 125, 7891. doi: 10.1002/ange.201300130  doi: 10.1002/ange.201300130

    63. [63]

      Willinger, M. G.; Zhang, W.; Bondarchuk, O.; Shaikhutdinov, S.; Freund H.; Schlögl, R. Angew. Chem. Int. Ed. 2014, 53, 5998. doi: 10.1002/anie.201400290  doi: 10.1002/anie.201400290

    64. [64]

      Matsubu, J. C.; Zhang, S.; DeRita, L.; Marinkovic, N. S.; Chen, J. G.; Graham, G. W.; Pan, X.; Christopher, P. Nat. Chem. 2017, 9, 120. doi: 10.1038/nchem.2607  doi: 10.1038/nchem.2607

    65. [65]

      Ahmadi, M.; Mistry, H.; Roldan, C. J. Phys. Chem. Lett. 2016, 7, 3519. doi: 10.1021/acs.jpclett.6b01198  doi: 10.1021/acs.jpclett.6b01198

    66. [66]

      Mutz, B.; Belimov, M.; Wang, W.; Sprenger, P.; Serrer, M.; Wang, D.; Pfeifer, P.; Kleist, W.; Grunwaldt, J. ACS Catal. 2017, 7, 6802. doi: 10.1021/acscatal.7b01896  doi: 10.1021/acscatal.7b01896

    67. [67]

      Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev. 2011, 40, 3703. doi: 10.1039/c1cs15008a  doi: 10.1039/c1cs15008a

    68. [68]

      Liu, C.; Yang, B.; Tyo, E.; Seifert, S.; DeBartolo, J.; Von Issendorff, B.; Zapol, P.; Vajda, S.; Curtiss, L. J. Am. Chem. Soc. 2015, 137, 8676. doi: 10.1021/jacs.5b03668  doi: 10.1021/jacs.5b03668

    69. [69]

      Wu, C.; Zhang, Z.; Zhu, Q.; Han, H.; Yang, Y.; Han, B. Green Chem. 2015, 17, 1467. doi: 10.1039/c4gc01818d  doi: 10.1039/c4gc01818d

    70. [70]

      Cargnello, M.; Doan-Nguyen, V. V. T.; Gordon, T. R.; Diaz, R. E.; Stach, E. A.; Gorte, R. J.; Fornasiero, P.; Murray, C. B. Science 2013, 341, 771. doi: 10.1126/science.1240148  doi: 10.1126/science.1240148

    71. [71]

      Larmier, K.; Liao, W. C.; Tada, S.; Lam, E.; Verel, R.; Bansode, A.; Urakawa, A.; Comas‐Vives, A.; Copéret, C. Angew. Chem. Int. Ed. 2017, 56, 2318. doi: 10.1002/anie.201610166  doi: 10.1002/anie.201610166

    72. [72]

      Kattel, S.; Yu, W.; Yang, X.; Yan, B.; Huang, Y.; Wan, W.; Liu, P.; Chen, J. G. Angew. Chem. Int. Ed. 2016, 55, 7968. doi: 10.1002/anie.201601661  doi: 10.1002/anie.201601661

    73. [73]

      Van Santen, R. A. Acc. Chem. Res. 2009, 42, 57. doi: 10.1021/ar800022m  doi: 10.1021/ar800022m

    74. [74]

      Takezawa, N.; Iwasa, N. Catal. Today 1997, 36, 45. doi: 10.1016/s0920-5861(96)00195-2  doi: 10.1016/s0920-5861(96)00195-2

    75. [75]

      Idem, R. O.; Bakhshi, N. N. Chem. Eng. Sci. 1996, 51, 3697. doi: 10.1016/0009-2509(96)00008-5  doi: 10.1016/0009-2509(96)00008-5

    76. [76]

      Lin, S.; Xie, D.; Guo, H. ACS Catal. 2011, 1, 1263. doi: 10.1021/cs200311t  doi: 10.1021/cs200311t

    77. [77]

      Sun, K.; Liu, J.; Browning, N. D. Appl. Catal. B 2002, 38, 271. doi: 10.1016/S0926-3373(02)00055-3  doi: 10.1016/S0926-3373(02)00055-3

    78. [78]

      Ruano, D.; Cored, J.; Azenha, C.; Pérez-Dieste, V.; Mendes, A.; Mateos-Pedrero, C.; Concepción, P. ACS Catal. 2019, 9, 2922. doi: 10.1021/acscatal.8b05042  doi: 10.1021/acscatal.8b05042

    79. [79]

      López-Suárez, F. E.; Bueno-López, A.; Illán-Gómez, M. J. Appl. Catal. B. 2008, 84, 651. doi: 10.1016/j.apcatb.2008.05.019  doi: 10.1016/j.apcatb.2008.05.019

    80. [80]

      Liu, A.; Liu, L.; Cao, Y.; Wang, J.; Si, R.; Gao, F.; Dong, L. ACS Catal. 2019, 9, 9840. doi: 10.1021/acscatal.9b02773  doi: 10.1021/acscatal.9b02773

    81. [81]

      Hattori, M.; Hattori, T.; Ozawa; M. Appl. Catal. A 2024, 670, 119515. doi: 10.1016/j.apcata.2023.119515  doi: 10.1016/j.apcata.2023.119515

    82. [82]

      Ploner, K.; Delir, Kheyrollahi Nezhad P.; Watschinger, M.; Schlicker, L.; Bekheet, M. F.; Gurlo, A.; Gili, A.; Doran, A.; Schwarz, S.; Stöger-Pollach, M.; et al. Appl. Catal. A 2021, 623, 118279. doi: 10.1016/j.apcata.2021.118279  doi: 10.1016/j.apcata.2021.118279

    83. [83]

      Xi, H.; Hou, X.; Liu, Y.; Qing, S.; Gao, Z.; Angew. Chem. Int. Ed. 2014, 53, 11886. doi: 10.1002/anie.201405213  doi: 10.1002/anie.201405213

    84. [84]

      Liu, Y.; Kang, H.; Hou, X.; Qing, S.; Zhang, L.; Gao, Z.; Xiang, H. Appl. Catal. B 2023, 323, 122043. doi: 10.1016/j.apcatb.2022.122043  doi: 10.1016/j.apcatb.2022.122043

    85. [85]

      Liu, X.; Xu, J.; Li, S.; Chen, Z.; Xu, X.; Fang, X; Wang, X. Catal. Today 2022, 402, 228. doi: 10.1016/j.cattod.2022.04.012  doi: 10.1016/j.cattod.2022.04.012

    86. [86]

      Finger, P. H.; Osmari, T. A.; Cabral, N. M.; Bueno, J. M. C.; Gallo, J. M. R. Catal. Today 2021, 381, 26. doi: 10.1016/j.cattod.2020.10.019  doi: 10.1016/j.cattod.2020.10.019

    87. [87]

      Bansode, A.; Tidona, B.; von Rohr, P. R.; Urakawa, A. Catal. Sci. Technol. 2013, 3, 767. doi: 10.1039/c2cy20604h  doi: 10.1039/c2cy20604h

    88. [88]

      Liu, Y.; Liu, X.; Xia, L.; Huang, C.; Wu, Z.; Wang, H.; Sun, Y. Acta. Phys.-Chim. Sin. 2022, 38, 2002017. doi: 10.3866/pku.Whxb202002017  doi: 10.3866/pku.Whxb202002017

    89. [89]

      Jiang, X.; Chen, X.; Ling, C.; Chen, S.; Wu, Z. Appl. Catal. A Gen. 2019, 570, 192. doi: 10.1016/j.apcata.2018.11.023  doi: 10.1016/j.apcata.2018.11.023

    90. [90]

      Li, C.; Chen, K.; Wang, X.; Xue, N.; Yang, H. Acta. Phys.-Chim. Sin. 2021, 37, 2009101. doi: 10.3866/PKU.WHXB202009101  doi: 10.3866/PKU.WHXB202009101

    91. [91]

      Walenta, C. A.; Courtois, C.; Kollmannsberger, S. L.; Eder, M.; Tschurl, M.; Heiz, U. ACS Catal. 2020, 10, 4080. doi: 10.1021/acscatal.0c00260  doi: 10.1021/acscatal.0c00260

    92. [92]

      Patel, S.; Pant, K. K. J. Power Sources 2006, 159, 139. doi: 10.1016/j.jpowsour.2006.04.008  doi: 10.1016/j.jpowsour.2006.04.008

    93. [93]

      Guo, C.; Li, M.; Guo, W.; Xie, J.; Qin, H.; Liao, M.; Zhang, Y.; Gao, P.; Xiao, H. Chem. Eng. J. 2024, 486, 150331. doi: 10.1016/j.cej.2024.150331  doi: 10.1016/j.cej.2024.150331

    94. [94]

      Mateos-Pedrero, C.; Silva, H.; Pacheco Tanaka, D. A.; Liguori, S.; Iulianelli, A.; Basile, A.; Mendes, A. Appl. Catal. B 2015, 174–175, 67. doi: 10.1016/j.apcatb.2015.02.039  doi: 10.1016/j.apcatb.2015.02.039

    95. [95]

      Lunkenbein, T.; Schumann, J.; Behrens, M.; Schlögl, R.; Willinger, M. G. Angew. Chem. Int. Ed. 2015, 54, 4544. doi: 10.1002/anie.201411581  doi: 10.1002/anie.201411581

    96. [96]

      Li, D.; Xu, F.; Tang, X.; Dai, S.; Pu, T.; Liu, X.; Tian, P.; Xuan, F.; Xu, Z.; Wachs, I. E.; et al. Nat. Catal. 2022, 5, 99. doi: 10.1038/s41929-021-00729-4  doi: 10.1038/s41929-021-00729-4

    97. [97]

      Li, H.; Tian, F.; Liu, Q.; Han, Y.; Zhu, M. Catal. Sci. Technol. 2022, 12, 6590. doi: 10.1039/D2CY01490D  doi: 10.1039/D2CY01490D

    98. [98]

      Shiqing, J.; Zekai, Z.; Didi, L.; Yiming, W.; Cheng, L.; Minghui, Z. Angew. Chem. Int. Ed. 2023, 62, 1. doi: 10.1002/anie.202301563  doi: 10.1002/anie.202301563

    99. [99]

      Tu, W.; Ren, P.; Li, Y.; Yang, Y.; Tian, Y.; Zhang, Z.; Zhu, M.; Chin, Y.; Gong, J.; Han, Y. J. Am. Chem. Soc. 2023, 145, 8751. doi: 10.1021/jacs.2c13784  doi: 10.1021/jacs.2c13784

    100. [100]

      Mateos-Pedrero, C.; Azenha, C.; D.A P. T.; Sousa, J. M.; Mendes, A. Appl. Catal. B 2020, 277, 119243. doi: 10.1016/j.apcatb.2020.119243  doi: 10.1016/j.apcatb.2020.119243

    101. [101]

      Ploner, K.; Watschinger, M.; Kheyrollahi Nezhad, P. D.; Götsch, T.; Schlicker, L.; Köck, E.-M.; Gurlo, A.; Gili, A.; Doran, A.; Zhang, L.; et al. J. Catal. 2020, 391, 497. doi: 10.1016/j.jcat.2020.09.018  doi: 10.1016/j.jcat.2020.09.018

    102. [102]

      Zhang, C.; Wang, L.; Etim, U. J.; Song, Y.; Gazit, O. M.; Zhong, Z. J. Catal. 2022, 413, 284. doi: 10.1016/j.jcat.2022.06.026  doi: 10.1016/j.jcat.2022.06.026

    103. [103]

      Bossola, F.; Scotti, N.; Somodi, F.; Coduri, M.; Evangelisti, C.; Dal Santo, V. Appl. Catal. B 2019, 258, 118016. doi: 10.1016/j.apcatb.2019.118016  doi: 10.1016/j.apcatb.2019.118016

    104. [104]

      Lin, S.; Xie, D.; Guo, H. J. Phys. Chem. C 2011, 115, 20583. doi: 10.1021/jp206511q  doi: 10.1021/jp206511q

    105. [105]

      Hu, J.; Li, Y.; Zhen, Y.; Chen, M.; Wan, H. Chin. J. Catal. 2021, 42, 367. doi: 10.1016/s1872-2067(20)63672-5  doi: 10.1016/s1872-2067(20)63672-5

    106. [106]

      Huang, X.; Eggart, D.; Qin, G.; Sarma, B. B.; Gaur, A.; Yang, J.; Pan, Y.; Li, M.; Hao, J.; Yu, H.; et al. Nat. Commun. 2023, 14, 5716. doi: 10.1038/s41467-023-41192-y  doi: 10.1038/s41467-023-41192-y

    107. [107]

      Chu, C.; Liu, X.; Wu, C.; Li, J.; Liu, K. Catal. Sci. Technol. 2021, 11, 823. doi: 10.1039/d0cy02269a  doi: 10.1039/d0cy02269a

    108. [108]

      Chu, C.; Li, C.; Liu, X.; Zhao, H.; Wu, C.; Li, J.; Liu, K.; Li, Q.; Cao, D. Catal. Sci. Technol. 2022, 12, 1130. doi: 10.1039/d1cy01554k  doi: 10.1039/d1cy01554k

    109. [109]

      Zhu, T.; Chen, Q.; Liao, P.; Duan, W.; Liang, S.; Yan, Z.; Feng, C. Small 2020, 16, e2004526. doi: 10.1002/smll.202004526  doi: 10.1002/smll.202004526

    110. [110]

      Cui, Z.; Song, S.; Liu, H.; Zhang, Y.; Gao, F.; Ding, T.; Tian, Y.; Fan, X.; Li, X. Appl. Catal. B 2022, 313, 121468. doi: 10.1016/j.apcatb.2022.121468  doi: 10.1016/j.apcatb.2022.121468

    111. [111]

      Fan, Y.; Li, R.; Wang, B.; Feng, X.; Du, X.; Liu, C.; Wang, F.; Liu, C.; Dong, C.; Ning, Y.; et al. Nat. Commun. 2024, 15, 3046. doi: 10.1038/s41467-024-47397-z  doi: 10.1038/s41467-024-47397-z

    112. [112]

      Wang, A.; Zhang, Y.; Fu, P.; Zheng, Q.; Fan, Q.; Wei, P.; Zheng, L. J. Environ. Chem. Eng. 2022, 10, 107676. doi: 10.1016/j.jece.2022.107676  doi: 10.1016/j.jece.2022.107676

    113. [113]

      Yao, Y.; Wu, X.; Gutiérrez, O. Y.; Ji, J.; Jin, P.; Wang, S.; Xu, Y.; Zhao, Y.; Wang, S.; Ma, X.; et al. Appl. Catal. B 2020, 267, 118698. doi: 10.1016/j.apcatb.2020.118698  doi: 10.1016/j.apcatb.2020.118698

    114. [114]

      Ren, Y.; Yang, Y.; Chen, L.; Wang, L.; Shi, Y.; Yin, P.; Wang, W.; Shao, M.; Zhang, X.; Wei, M. Appl. Catal. B 2022, 314, 121515. doi: 10.1016/j.apcatb.2022.121515  doi: 10.1016/j.apcatb.2022.121515

    115. [115]

      Yuan, X.; Chen, S.; Cheng, D.; Li, L.; Zhu, W.; Zhong, D.; Zhao, Z. J.; Li, J.; Wang, T.; Gong, J. Angew. Chem. Int. Ed. 2021, 60, 15344. doi: 10.1002/anie.202105118  doi: 10.1002/anie.202105118

    116. [116]

      Ma, K.; Tian, Y.; Zhao, Z. J.; Cheng, Q.; Ding, T.; Zhang, J.; Zheng, L.; Jiang, Z.; Abe, T.; Tsubaki, N.; et al. Chem. Sci. 2019, 10, 2578. doi: 10.1039/c9sc00015a  doi: 10.1039/c9sc00015a

    117. [117]

      Liu, X.; Ma, J.; Mao, L.; Xu, J.; Xu, X.; Fang, X.; Wang, X. Fuel 2024, 357, 130080. doi: 10.1016/j.fuel.2023.130080  doi: 10.1016/j.fuel.2023.130080

    118. [118]

      Yang, H.; Chen, Y.; Cui, X.; Wang, G.; Cen, Y.; Deng, T.; Yan, W.; Gao, J.; Zhu, S.; Olsbye, U.; et al. Angew. Chem. Int. Ed. 2018, 57, 1836. doi: 10.1002/anie.201710605  doi: 10.1002/anie.201710605

    119. [119]

      Liu, X.; Wang, K.; Ran, Q.; Liu, Z.; Wang, L.; Wang, M.; Li, Q.; Cao, D.; Wu, C.; Liu, K. Surf. Interfaces 2024, 51, 104633. doi: 10.1016/j.surfin.2024.104633  doi: 10.1016/j.surfin.2024.104633

    120. [120]

      Feng, G.; Ganduglia-Pirovano, M. V.; Huo, C.-F.; Sauer, J. J. Phys. Chem. C 2018, 122, 18445. doi: 10.1021/acs.jpcc.8b03764  doi: 10.1021/acs.jpcc.8b03764

    121. [121]

      Li, M.; My Pham, T. H.; Ko, Y.; Zhao, K.; Zhong, L.; Luo, W.; Züttel, A. ACS Sustain. Chem. Eng. 2022, 10, 1524. doi: 10.1021/acssuschemeng.1c06935  doi: 10.1021/acssuschemeng.1c06935

    122. [122]

      Wang, A.; Fu, P.; Fan, Q.; Wang, Y.; Zheng, L.; Hu, S.; Xiang, J.; Song, C. Fuel 2024, 357, 129840. doi: 10.1016/j.fuel.2023.129840  doi: 10.1016/j.fuel.2023.129840

    123. [123]

      Meng, H.; Yang, Y.; Shen, T.; Yin, Z.; Wang, L.; Liu, W.; Yin, P.; Ren, Z.; Zheng, L.; Zhang, J.; et al. Nat. Commun. 2023, 14, 7980. doi: 10.1038/s41467-023-43679-0  doi: 10.1038/s41467-023-43679-0

    124. [124]

      Luo, S.; Song, H.; Ichihara, F.; Oshikiri, M.; Lu, W.; Tang, D.-M.; Li, S.; Li, Y.; Li, Y.; Davin, P.; et al. J. Am. Chem. Soc. 2023, 145, 20530. doi: 10.1021/jacs.3c06688  doi: 10.1021/jacs.3c06688

    125. [125]

      Chen, M.; Mei, Z.; Chen, K.; Luo, Y. Pet. Technol. 2017, 46, 1536.  doi: 10.3969/j.issn.1000-8144.2017.12.017

    126. [126]

      Hughes, R. Deactivation of Catalysts; Academic Press: London, U.K., 1984.

    127. [127]

      Chen, Y.; Huang, Y. Int. J. Hydrog. Energy 2023, 48, 1323. doi: 10.1016/j.ijhydene.2022.10.046  doi: 10.1016/j.ijhydene.2022.10.046

    128. [128]

      Tonelli, F.; Gorriz, O.; Tarditi, A.; Cornaglia, L.; Arrúa, L.; Cristina Abello, M. Int. J. Hydrog. Energy 2015, 40, 13379. doi: 10.1016/j.ijhydene.2015.08.046  doi: 10.1016/j.ijhydene.2015.08.046

    129. [129]

      Tang, X.; Wu, Y.; Fang, Z.; Dong, X.; Du, Z.; Deng, B.; Sun, C.; Zhou, F.; Qiao, X.; Li, X. Energy 2024, 295, 131091. doi: 10.1016/j.energy.2024.131091  doi: 10.1016/j.energy.2024.131091

    130. [130]

      Xu, T.; Zou, J.; Tao, W.; Zhang, S.; Cui, L.; Zeng, F.; Wang, D.; Cai, W. Fuel 2016, 183, 238. doi: 10.1016/j.fuel.2016.06.081  doi: 10.1016/j.fuel.2016.06.081

    131. [131]

      Zhao, Y.; Zhang, H.; Xu, Y.; Wang, S.; Xu, Y.; Wang, S.; Ma, X. J. Energy Chem. 2020, 49, 248. doi: 10.1016/j.jechem.2020.02.038  doi: 10.1016/j.jechem.2020.02.038

    132. [132]

      Palo, D. R.; Dagle, R.; Holladay, J. Chem. Rev. 2007, 107, 3992. doi: 10.1021/cr050198b  doi: 10.1021/cr050198b

    133. [133]

      Kappis, K.; Papavasiliou, J.; Avgouropoulos, G. Energies 2021, 14, 8442. doi: 10.3390/en14248442  doi: 10.3390/en14248442

    134. [134]

      Azenha, C.; Lagarteira, T.; Mateos-Pedrero, C.; Mendes, A. Int. J. Hydrog. Energy 2021, 46, 17490. doi: 10.1016/j.ijhydene.2020.04.040  doi: 10.1016/j.ijhydene.2020.04.040

    135. [135]

      Xie, H.; Du, Q.; Li, H.; Zhou, G.; Chen, S.; Jiao, Z.; Ren, J. Korean J. Chem. Eng. 2017, 34, 1944. doi: 10.1007/s11814-017-0111-4  doi: 10.1007/s11814-017-0111-4

    136. [136]

      Eaimsumang, S.; Chollacoop, N.; Luengnaruemitchai, A.; Taylor, S. H. J. Catal. 2020, 392, 254. doi: 10.1016/j.jcat.2020.10.023  doi: 10.1016/j.jcat.2020.10.023

    137. [137]

      Guo, Y.; Qin, Y.; Liu, H.; Wang, H.; Han, J.; Zhu, X.; Ge, Q. ACS Catal. 2022, 12, 2998. doi: 10.1021/acscatal.1c05994  doi: 10.1021/acscatal.1c05994

    138. [138]

      Yuan, B.; Tan, Z.; Guo, Q.; Shen, X.; Zhao, C.; Chen, J. L.; Peng, Y.-K. ACS Nano 2023, 17, 17383. doi: 10.1021/acsnano.3c05409  doi: 10.1021/acsnano.3c05409

    139. [139]

      Chen, Y.; Wan, Q.; Cao, L.; Gao, Z.; Lin, J.; Li, L.; Pan, X.; Lin, S.; Wang, X.; Zhang, T. J. Catal. 2022, 415, 174. doi: 10.1016/j.jcat.2022.10.002  doi: 10.1016/j.jcat.2022.10.002

    140. [140]

      Jiang, F.; Wang, S.; Liu, B.; Liu, J.; Wang, L.; Xiao, Y.; Xu, Y.; Liu, X. ACS Catal. 2020, 10, 11493. doi: 10.1021/acscatal.0c03324  doi: 10.1021/acscatal.0c03324

    141. [141]

      Ma, Y.; Tian, Z.; Zhai, W.; Qu, Y. Nano Res. 2022, 15, 10328. doi: 10.1007/s12274-022-4666-y  doi: 10.1007/s12274-022-4666-y

    142. [142]

      Chen, W.; Xue, J.; Bao, Y.; Feng, L. Chem. Eng. J. 2020, 381, 122752. doi: 10.1016/j.cej.2019.122752  doi: 10.1016/j.cej.2019.122752

    143. [143]

      Song, B.; Si, S.; Soleymani, A.; Xin, Y.; Hagelin-Weaver, H. E. Nano Res. 2022, 15, 5922. doi: 10.1007/s12274-022-4251-4  doi: 10.1007/s12274-022-4251-4

    144. [144]

      Yoon, S.; Ha, H.; Kim, J.; Nam, E.; Yoo, M.; Jeong, B.; Kim, H. Y. An, K. J. Mater. Chem. A 2021, 9, 26381. doi: 10.1039/d1ta06850d  doi: 10.1039/d1ta06850d

    145. [145]

      Rui, N.; Wang, X.; Deng, K.; Moncada, J.; Rosales, R.; Zhang, F.; Xu, W.; Waluyo, I.; Hunt, A.; Stavitski, E.; et al. ACS Catal. 2023, 13, 3187. doi: 10.1021/acscatal.2c06029  doi: 10.1021/acscatal.2c06029

    146. [146]

      Regalado Vera C. Y.; Manavi, N.; Zhou, Z.; Wang, L.; Diao, W.; Karakalos S.; Liu, B.; Stowers, K. J.; Zhou, M.; Luo, H.; et al. Chem. Eng. J. 2021, 426, 131767. doi: 10.1016/j.cej.2021.131767  doi: 10.1016/j.cej.2021.131767

    147. [147]

      Dou, M.; Zhang, M.; Chen, Y.; Yu, Y. Catal. Lett. 2018, 148, 3723. doi: 10.1007/s10562-018-2577-z  doi: 10.1007/s10562-018-2577-z

    148. [148]

      Pinheiro Araújo, T.; Morales‐Vidal, J.; Zou, T.; García‐Muelas, R.; Willi, P. O.; Engel, K. M.; Safonova, O. V.; Faust Akl, D.; Krumeich, F.; Grass, R. N.; et al. Adv. Energy Mater. 2022, 12, 2103707. doi: 10.1002/aenm.202103707  doi: 10.1002/aenm.202103707

    149. [149]

      Sun, K.; Rui, N.; Zhang, Z.; Sun, Z.; Ge, Q.; Liu, C. Green Chem. 2020, 22, 5059. doi: 10.1039/d0gc01597k  doi: 10.1039/d0gc01597k

    150. [150]

      Shen, C.; Sun, K.; Zou, R.; Wu, Q.; Mei, D.; Liu, C. ACS Catal. 2022, 12, 12658. doi: 10.1021/acscatal.2c03709  doi: 10.1021/acscatal.2c03709

    151. [151]

      Köwitsch, N.; Thoni, L.; Klemmed, B.; Benad, A.; Paciok, P.; Heggen, M.; Köwitsch, I.; Mehring, M.; Eychmüller, A.; Armbrüster, M. ACS Catal. 2020, 11, 304. doi: 10.1021/acscatal.0c04073  doi: 10.1021/acscatal.0c04073

    152. [152]

      Zhang, X.; Kirilin, A. V.; Rozeveld, S.; Kang, J. H.; Pollefeyt, G.; Yancey, D. F.; Chojecki, A.; Vanchura, B.; Blum, M. ACS Catal. 2022, 12, 3868. doi: 10.1021/acscatal.2c00207  doi: 10.1021/acscatal.2c00207

    153. [153]

      Kolb, G.; Keller, S.; Tiemann, D.; Schelhaas, K.-P.; Schürer, J.; Wiborg, O. Chem. Eng. J. 2012, 207–208, 388. doi: 10.1016/j.cej.2012.06.141  doi: 10.1016/j.cej.2012.06.141

    154. [154]

      Liu, X.; Men, Y.; Wang, J.; He, R.; Wang, Y. J. Power Sources 2017, 364, 341. doi: 10.1016/j.jpowsour.2017.08.043  doi: 10.1016/j.jpowsour.2017.08.043

    155. [155]

      Liu, D.; Men, Y.; Wang, J.; Kolb, G.; Liu, X.; Wang, Y.; Sun, Q. Int. J. Hydrog. Energy 2016, 41, 21990. doi: 10.1016/j.ijhydene.2016.08.184  doi: 10.1016/j.ijhydene.2016.08.184

    156. [156]

      Zhang, J.; Men, Y.; Wang, Y.; Liao, L.; Liu, S.; Wang, J.; An, W. Int. J. Hydrog. Energy 2023, 51, 1185. doi: 10.1016/j.ijhydene.2023.07.186  doi: 10.1016/j.ijhydene.2023.07.186

    157. [157]

      Lorenz, H.; Jochum, W.; Klötzer, B.; Stöger-Pollach, M.; Schwarz, S.; Pfaller, K.; Penner, S. Appl. Catal. A 2008, 347, 34. doi: 10.1016/j.apcata.2008.05.028  doi: 10.1016/j.apcata.2008.05.028

    158. [158]

      Gac, W.; Zawadzki, W.; Greluk, M.; Słowik, G.; Machocki, A.; Papavasiliou, J.; Avgouropoulos, G. ChemCatChem 2019, 11, 3264. doi: 10.1002/cctc.201900738  doi: 10.1002/cctc.201900738

    159. [159]

      Wichert, M.; Zapf, R.; Ziogas, A.; Kolb, G.; Klemm, E. Chem. Eng. Sci. 2016, 155, 201. doi: 10.1016/j.ces.2016.08.009  doi: 10.1016/j.ces.2016.08.009

    160. [160]

      Tsoukalou, A.; Abdala, P. M.; Stoian, D.; Huang, X.; Willinger, M.-G.; Fedorov, A.; Müller, C. R. J. Am. Chem. Soc. 2019, 141, 13497. doi: 10.1021/jacs.9b04873  doi: 10.1021/jacs.9b04873

    161. [161]

      Tsoukalou, A.; Abdala, P. M.; Armutlulu, A.; Willinger, E.; Fedorov, A.; Müller, C. R. ACS Catal. 2020, 10, 10060. doi: 10.1021/acscatal.0c01968  doi: 10.1021/acscatal.0c01968

    162. [162]

      Sun, K.; Shen, C.; Zou, R.; Liu, C. Appl. Catal. B 2023, 320, 122018. doi: 10.1016/j.apcatb.2022.122018  doi: 10.1016/j.apcatb.2022.122018

    163. [163]

      Shao, Z.; Zhang, S.; Liu, X.; Luo, H.; Huang, C.; Zhou, H.; Wu, Z.; Li, J.; Wang, H.; Sun, Y. Appl. Catal. B 2022, 316, 121669. doi: 10.1016/j.apcatb.2022.121669  doi: 10.1016/j.apcatb.2022.121669

    164. [164]

      Zhang, S.; Liu, Y.; Zhang, M.; Ma, Y.; Hu, J.; Qu, Y. Nat. Commun. 2022, 13, 5527. doi: 10.1038/s41467-022-33186-z  doi: 10.1038/s41467-022-33186-z

    165. [165]

      Qi, Z.; Chen, L.; Zhang, S.; Su, J.; Somorjai, G. A. J. Am. Chem. Soc. 2021, 143, 60. doi: 10.1021/jacs.0c10728  doi: 10.1021/jacs.0c10728

    166. [166]

      Iwasa, N.; Takezawa, N. Topics in Catalysis 2003, 22, 215. doi: 10.1023/A:1023571819211  doi: 10.1023/A:1023571819211

    167. [167]

      Papavasiliou, J.; Paxinou, A.; Słowik, G.; Neophytides, S.; Avgouropoulos, G. Catalysts 2018, 8, 544. doi: 10.3390/catal8110544  doi: 10.3390/catal8110544

    168. [168]

      Cai, F.; Ibrahim, J. J.; Fu, Y.; Kong, W.; Zhang, J.; Sun, Y. Appl. Catal. B 2020, 264, 118500. doi: 10.1016/j.apcatb.2019.118500  doi: 10.1016/j.apcatb.2019.118500

    169. [169]

      Lin, L.; Zhou, W.; Gao, R.; Yao, S.; Zhang, X.; Xu, W.; Zheng, S.; Jiang, Z.; Yu, Q.; Li, Y.; et al. Nature 2017, 544, 80. doi: 10.1038/nature21672  doi: 10.1038/nature21672

    170. [170]

      Li, D.; Li, Y.; Liu, X.; Guo, Y.; Pao, C.-W.; Chen, J.; Hu, Y.; Wang, Y. ACS Catal. 2019, 9, 9671. doi: 10.1021/acscatal.9b02243  doi: 10.1021/acscatal.9b02243

    171. [171]

      Wang, Q.; Li, Y.; Serrano-Lotina, A.; Han, W.; Portela, R.; Wang, R.; Banares, M. A.; Yeung, K. L. J. Am. Chem. Soc. 2021, 143, 196. doi: 10.1021/jacs.0c08640  doi: 10.1021/jacs.0c08640

    172. [172]

      Wang, H.; Hui, Y.; Niu, Y.; He, K.; Vovk, E. I.; Zhou, X.; Yang, Y.; Qin, Y.; Zhang, B.; Song, L.; et al. ACS Catal. 2023, 13, 10500. doi: 10.1021/acscatal.3c02552  doi: 10.1021/acscatal.3c02552

    173. [173]

      Liu, X.; Wang, K.; Cao, D.; Li, C.; Wang, L.; Wang, M.; Li, Q.; Wu, C.; Liu, K. Fuel 2024, 362, 130760. doi: 10.1016/j.fuel.2023.130760  doi: 10.1016/j.fuel.2023.130760

  • 加载中
    1. [1]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    2. [2]

      Yinjie XuSuiqin LiLihao LiuJiahui HeKai LiMengxin WangShuying ZhaoChun LiZhengbin ZhangXing ZhongJianguo Wang . Enhanced Electrocatalytic Oxidation of Sterols using the Synergistic Effect of NiFe-MOF and Aminoxyl Radicals. Acta Physico-Chimica Sinica, 2024, 40(3): 2305012-0. doi: 10.3866/PKU.WHXB202305012

    3. [3]

      Yanzhe WANGXiaoming GUOQiangsheng GUOLiang LIBin LUPeihang YE . Effect of Ce introduction on the low-temperature performance of NiAl catalyst for CO2 methanation. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2218-2228. doi: 10.11862/CJIC.20250202

    4. [4]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    5. [5]

      Shiqian WEIXinyu TIANHong LIUMaoxia CHENFan TANGQiang FANWeifeng FANYu HU . Oxygen reduction reaction/oxygen evolution reaction catalytic performances of different active sites on nitrogen-doped graphene loaded with iron single atoms. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1776-1788. doi: 10.11862/CJIC.20250102

    6. [6]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    7. [7]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    8. [8]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    9. [9]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    10. [10]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    11. [11]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    12. [12]

      Ruolin CHENGYue WANGFei YANGHuagen LIANGShijian LU . Application of metal-organic frameworks (MOFs) in photocatalytic CO2 cycloaddition reaction: A mini review. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2429-2440. doi: 10.11862/CJIC.20250242

    13. [13]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

    14. [14]

      Haiqiang Lin Weizheng Weng Jingdong Lin Mingshu Chen Xueming Fang Lefu Yang . Diverse Variables-Driven Catalytic Optimization: Experimental Enhancement and Instructional Design for Selective Methane Oxidation on Supported Nickel-based Catalysts. University Chemistry, 2025, 40(11): 327-336. doi: 10.12461/PKU.DXHX202505106

    15. [15]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    16. [16]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    17. [17]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    18. [18]

      Ruizhi DuanXiaomei WangPanwang ZhouYang LiuCan Li . The role of hydroxyl species in the alkaline hydrogen evolution reaction over transition metal surfaces. Acta Physico-Chimica Sinica, 2025, 41(9): 100111-0. doi: 10.1016/j.actphy.2025.100111

    19. [19]

      Congqi ZhuBo LiuRuchun Li . Dual active sites enhancing alkaline H2-production performance. Acta Physico-Chimica Sinica, 2025, 41(11): 100146-0. doi: 10.1016/j.actphy.2025.100146

    20. [20]

      Qishen WangChangzhao ChenMengqing LiLingmin WuKai Dai . Lignin derived carbon quantum dots and oxygen vacancies coregulated S-scheme LCQDs/Bi2WO6 heterojunction for photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(11): 100147-0. doi: 10.1016/j.actphy.2025.100147

Metrics
  • PDF Downloads(3)
  • Abstract views(425)
  • HTML views(72)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return