Citation: Shiyang He,  Dandan Chu,  Zhixin Pang,  Yuhang Du,  Jiayi Wang,  Yuhong Chen,  Yumeng Su,  Jianhua Qin,  Xiangrong Pan,  Zhan Zhou,  Jingguo Li,  Lufang Ma,  Chaoliang Tan. 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗[J]. Acta Physico-Chimica Sinica, ;2025, 41(5): 100046. doi: 10.1016/j.actphy.2025.100046 shu

铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗

  • Received Date: 6 August 2024
    Revised Date: 18 September 2024
    Accepted Date: 20 September 2024

    Fund Project: The project was supported by the National Natural Science Foundation of China (52102348, 22271130, and 52173143), the Science and Technology Innovation Talent Program of University in Henan Province (23HASTIT016), and the Natural Science Foundation of Henan Province of China (242300421018). C.T. thanks the funding support from the National Natural Science Foundation of China - Excellent Young Scientists Fund (Hong Kong and Macau) (52122002).

  • 面对由病原微生物感染引发疾病所带来的紧迫挑战,开发新型且高效的抗菌策略已成为当务之急。尽管光动力治疗在抗菌治疗领域已得到广泛应用,但在精确调控光敏剂结构以实现高效光动力性能方面仍存在一定的挑战。本文中,我们将铂单原子(SAs)锚定在二维(2D) Al-TCPP金属-有机框架(Pt/Al-TCPP)纳米片上,并将其用作光敏剂增强活性氧(ROS)的产生,实现高效的光动力抗菌治疗。通过将Pt SAs锚定到2D Al-TCPP纳米片上,我们不仅改善了Pt SAs的分散性和稳定性,还利用了MOF晶体多孔结构与Pt SAs之间的协同作用,优化了光子功能和光捕获能力。这种结构增强了Pt SAs与卟啉连接体之间的桥接单元,促进了光照下的高效电荷转移和分离,从而增强ROS的产生。同时,除了Pt SAs的固有光动力性能之外,它的存在还能增加氧气的吸附、加速电子转移、促进电荷分离,从而提高其光动力产生ROS的效率。因此,与Al-TCPP相比,Pt/Al-TCPP光敏剂在660 nm激光照射下显示出更高的ROS生成效率。体外和体内实验均表明,在激光照射下,较低剂量的Pt/Al-TCPP纳米片能够在较短时间内有效杀灭细菌并促进伤口愈合。本研究结果为抗菌策略的开发提供了新视角,并展示了Pt/Al-TCPP纳米片作为高效伤口愈合治疗剂的潜力。
  • 加载中
    1. [1]

      Lin, H.; Yang, C.; Luo, Y.; Ge, M.; Shen, H.; Zhang, X.; Shi, J. ACS Nano 2022, 16, 5943. doi: 10.1021/acsnano.1c11132

    2. [2]

      Bian, Y.; Zhao, K.; Hu, T.; Tan, C.; Liang, R.; Weng, X. Adv. Sci. 2024, 11, 2403791. doi: 10.1002/advs.202403791

    3. [3]

      Hu, T.; Gu, Z.; Williams, G.; Strimaite, M.; Zha, J.; Zhou, Z.; Zhang, X.; Tan, C.; Liang, R. Chem. Soc. Rev. 2022, 51, 6126. doi: 10.1039/d2cs00236a

    4. [4]

      Wang, W.; Cui, Y.; Wei, X.; Zang, Y.; Chen, X.; Cheng, L.; Wang, X. ACS Nano 2024, 18, 15845. doi: 10.1021/acsnano.4c02825

    5. [5]

      Zhao, X.; Qiu, H.; Shao, Y.; Wang, P.; Yu, S.; Li, H.; Zhou, Y.; Zhou, Z.; Ma, L.; Tan, C. Acta Phys. -Chim. Sin. 2023, 39, 2211043.

    6. [6]

      Li, X.; Zhao, X.; Chu, D.; Zhu, X.; Xue, B.; Chen, H.; Zhou, Z.; Li, J. Surf. Interfaces 2022, 33, 102247. doi: 10.1016/j.surfin.2022.102247

    7. [7]

      Yang, Y.; Liang, H.; Tang, C.; Cheng, Y.; Cheng, L. Adv. Funct. Mater. 2024, 34, 2313454. doi: 10.1002/adfm.202313454

    8. [8]

      Zhu, D.; Lu, Y.; Yang, S.; Hu, T.; Tan, C.; Liang, R.; Wang, Y. Adv. Sci. 2024, 11, 2401064. doi: 10.1002/advs.202401064

    9. [9]

      Huang, X.; Cheng, S.; Yang, X.; Pei, Z.; Cui, X.; Hou, G.; Yang, N.; Han, Z.; Chen, Y.; Cheng, Y.; et al. Nano Today 2024, 57, 102400. doi: 10.1016/j.nantod.2024.102400

    10. [10]

      Zhang, Y.; Zhang, N.; Xing, J.; Sun, Y.; Jin, X.; Shen, C.; Cheng, L.; Wang, Y.; Wang, X. Biomaterials 2024, 311, 122675. doi: 10.1016/j.biomaterials.2024.122675

    11. [11]

      Hu, T.; Zhou, Z.; Zha, J.; Williams, G.; Wu, Z.; Zhao, W.; Shen, W.; Li, H.; Weng, X.; Liang, R.; et al. Fundam. Res. 2024, 4, 926. doi: 10.1016/j.fmre.2022.06.001

    12. [12]

      Wei, K.; Wu, Y.; Zheng, X.; Ouyang, L.; Ma, G.; Ji, C.; Yin, M. Angew. Chem. Int. Ed. 2024, 63, e202404395. doi: 10.1002/anie.202404395

    13. [13]

      Zhao, X.; He, X.; Hou, A.; Cheng, C.; Wang, X.; Yue, Y.; Pei, C.; Liu, B.; Li, H.; Shen, J.; et al. Inorg. Chem. 2022, 61, 9328. doi: 10.1021/acs.inorgchem.2c01091

    14. [14]

      Hou, A.; Du, Y.; Su, Y.; Pang, Z.; Liu, S.; Xian, S.; Zhao, X.; Ma, L.; Liu, B.; Wu, H.; et al. ACS Appl. Nano Mater. 2024, 7, 10998. doi: 10.1021/acsanm.4c02067

    15. [15]

      Dang, L.; Zheng, J.; Zhang, J.; Chen, T.; Chai, Y.; Fu, H.; Aznarez, F.; Liu, S.; Li, D.; Ma, L. Angew. Chem. Int. Ed. 2024, 63, e202406552. doi: 10.1002/anie.202406552

    16. [16]

      Zhou, Z.; Li, X.; Hu, T.; Xue, B.; Chen, H.; Ma, L.; Liang, R.; Tan, C. Adv. NanoBiomed Res. 2022, 2, 2200065. doi: 10.1002/anbr.202200065

    17. [17]

      Zhao, Y.; Chai, Y.; Chen, T.; Zheng, J.; Li, T.; Aznarez, F.; Dang, L.; Ma, L. Chin. Chem. Lett. 2024, 35, 109298. doi: 10.1016/j.cclet.2023.109298

    18. [18]

      Zhou, Z.; Wang, Y.; Peng, F.; Meng, F.; Zha, J.; Ma, L.; Du, Y.; Peng, N.; Ma, L.; Zhang, Q.; et al. Angew. Chem. Int. Ed. 2022, 61, e202115939. doi: 10.1002/anie.202115939

    19. [19]

      Li, B.; Chu, D.; Cui, H.; Li, Z.; Zhou, Z.; Tan, C.; Li, J. SmartMat 2023, 4, e1243. doi: 10.1002/smm2.1243

    20. [20]

      Shen, W.; Hu, T.; Liu, X.; Zha, J.; Meng, F.; Wu, Z.; Cui, Z.; Yang, Y.; Li, H.; Zhang, Q.; et al. Nat. Commun. 2022, 13, 3384. doi: 10.1038/s41467-022-31106-9

    21. [21]

      Xue, B.; Geng, X.; Cui, H.; Chen, H.; Wu, Z.; Chen, H.; Li, H.; Zhou, Z.; Zhao, M.; Tan, C.; et al. Chin. Chem. Lett. 2023, 34, 108140. doi: 10.1016/j.cclet.2023.108140

    22. [22]

      Xu, D.; Lin, H.; Qiu, W.; Ge, M.; Chen, Z.; Wu, C.; You, Y.; Lu, X.; Wei, C.; Liu, J.; et al. Biomaterials 2021, 278, 121172. doi: 10.1016/j.biomaterials.2021.121172

    23. [23]

      Li, Z.; Zhang, J.; Tian, X.; Yang, S.; Chen, S.; Zhou, H.; Yang, X. Chem. Sci. 2022, 13, 9381. doi: 10.1039/d2sc02662g

    24. [24]

      He, L.; Brasino, M.; Mao, C.; Cho, S.; Park, W.; Goodwin, A.; Cha, J. Small 2017, 13, 1700504. doi: 10.1002/smll.201700504

    25. [25]

      Zhen, W.; Kang, D.; Fan, Y.; Wang, Z.; Germanas, T.; Nash, G.; Shen, Q.; Leech, R.; Li, J.; Engel, G.; et al. J. Am. Chem. Soc. 2024, 146, 16609. doi: 10.1021/jacs.4c03519

    26. [26]

      Ma, A.; Chen, H.; Cui, Y.; Luo, Z.; Liang, R.; Wu, Z.; Chen, Z.; Yin, T.; Ni, J.; Zheng, M.; et al. Small 2019, 15, 1804028. doi: 10.1002/smll.201804028

    27. [27]

      Lu, X.; Zhang, K.; Niu, X.; Ren, D.; Zhou, Z.; Dang, L.; Fu, H.; Tan, C.; Ma, L.; Zang, S. Chem. Soc. Rev. 2024, 53, 6694. doi: 10.1039/D3CS01026K

    28. [28]

      Zhao, Y.; Wu, D.; Qiao, Y.; Yang, G.; Ma, L.; Wang, Y. Inorg. Chem. Front. 2024, 11, 2071. doi: 10.1039/d3qi02527f

    29. [29]

      Yang, X.; Zhang, J.; Tian, X.; Qin, J.; Zhang, X.; Ma, L. Angew. Chem. Int. Ed. 2022, 61, e202216699. doi: 10.1002/anie.202216699

    30. [30]

      Gao, P.; Zhang, K.; Ren, D.; Liu, H.; Zhang, H.; Fu, H.; Ma, L.; Li, D. Adv. Funct. Mater. 2023, 33, 2300105. doi: 10.1002/adfm.202300105

    31. [31]

      Wu, Q.; Li, A.; He, R.; Wu, Y.; Hou, L.; Yang, G.; Zhang, W.; Wang, Y. Chin. Chem. Lett. 2024, 35, 108639. doi: 10.1016/j.cclet.2023.108639

    32. [32]

      Lai, K.; Li, F.; Li, N.; Gao, Y.; Ge, L. Acta Phys. -Chim. Sin. 2024, 40, 2304018.

    33. [33]

      Qin, J.; Xiao, Z.; Xu, P.; Li, Z.; Lu, X.; Yang, X.; Lu, W.; Ma, L.; Li, D. Inorg. Chem. 2022, 61, 13234. doi: 10.1021/acs.inorgchem.2c01517

    34. [34]

      Li, J.; Song, S.; Meng, J.; Tan, L.; Liu, X.; Zheng, Y.; Li, Z.; Yeung, K.; Cui, Z.; Liang, Y.; et al. J. Am. Chem. Soc. 2021, 143, 15427. doi: 10.1021/jacs.1c07875

    35. [35]

      Tang, Q.; Feng, L.; Li, Z.; Wu, S.; Zhang, L.; Sun, Q.; Wu, M.; Zou, J. Chin. Chem. Lett. 2024, 35, 109454. doi: 10.1016/j.cclet.2023.109454

    36. [36]

      He, W.; Hu, J.; Cui, Y.; Li, J.; Si, Y.; Wang, S.; Zhao, Y.; Zhou, Z.; Ma, L.; Zang, S. Natl. Sci. Rev. 2024, 11, nwae174. doi: 10.1093/nsr/nwae174

    37. [37]

      Zhu, R.; Kang, L.; Li, L.; Pan, X.; Wang, H.; Su, Y.; Li, G.; Cheng, H.; Li, R.; Liu, X.; et al. Acta Phys. -Chim. Sin. 2024, 40, 2303003.

    38. [38]

      He, W.; Zhou, Z.; Han, Z.; Li, S.; Zhou, Z.; Ma, L.; Zang, S. Angew. Chem. Int. Ed. 2021, 60, 8505. doi: 10.1002/anie.202100006

    39. [39]

      Wang, X.; Kang, Z.; Wang, D.; Zhao, Y.; Xiang, X.; Shang, H.; Zhang, B. Nano Energy 2024, 121, 109268. doi: 10.1016/j.nanoen.2024.109268

    40. [40]

      Wang, B.; Chen, S.; Zhang, Z.; Wang, D. SmartMat 2022, 3, 84. doi: 10.1002/smm2.1101

    41. [41]

      Kim, J.; Wu, S.; Zdrazil, L.; Denisov, N.; Schmuki, P. Angew. Chem. Int. Ed. 2024, 63, e202319255. doi: 10.1002/anie.202319255

    42. [42]

      Yao, S.; Zhang, X.; Zhou, W.; Gao, R.; Xu, W.; Ye, Y.; Lin, L.; Wen, X.; Liu, P.; Chen. B.; et al. Science 2017, 357, 389. doi: 10.1126/science.aah4321

    43. [43]

      Chang, J.; Hülsey, M.; Wang, S.; Li, M.; Ma, X.; Yan, N. Angew. Chem. Int. Ed. 2023, 62, e202218265. doi: 10.1002/anie.202218265

    44. [44]

      Zhou, J.; Xu, D.; Tian, G.; He, Q.; Zhang, X.; Liao, J.; Mei, L.; Chen, L.; Gao, L.; Zhao, L.; et al. J. Am. Chem. Soc. 2023, 145, 4279. doi: 10.1021/jacs.2c13597

    45. [45]

      Le, X.; Nguyen, N.; Lee, W.; Yang, Y.; Choi, H.; Youn, Y. Adv. Funct. Mater. 2024, 34, 2401893. doi: 10.1002/adfm.202401893

    46. [46]

      Feng, G.; Huang, H.; Zhang, M.; Wu, Z.; Sun, D.; Chen, Q.; Yang, D.; Zheng, Y.; Chen, Y.; Jing, X. Adv. Sci. 2023, 10, 2302579. doi: 10.1002/advs.202302579

    47. [47]

      Yin, Y.; Ge, X.; Ouyang, J.; Na, N. Nat. Commun. 2024, 15, 2954. doi: 10.1038/s41467-024-46987-1

    48. [48]

      Wang, L.; Qu, X.; Zhao, Y.; Weng, Y.; Waterhouse, G.; Yan, H.; Guan, S.; Zhou, S. ACS Appl. Mater. Interfaces 2019, 11, 35228. doi: 10.1021/acsami.9b11238

    49. [49]

      Feng, X.; Lei, J.; Ma, L.; Ouyang, Q.; Zeng, Y.; Liang, H.; Lei, C.; Li, G.; Tan, L.; Liu, X.; et al. Small 2022, 18, 2105775. doi: 10.1002/smll.202105775

    50. [50]

      Wang, D.; Wang, J.; Gao, X.; Ding, H.; Yang, M.; He, Z.; Xie, J.; Zhang, Z.; Huang, H.; Nie, G.; et al. Adv. Mater. 2024, 36, 2310033. doi: 10.1002/adma.202310033

    51. [51]

      Zhou, Z.; Wang, T.; Hu, T.; Xu, H.; Cui, L.; Xue, B.; Zhao, X.; Pan, X.; Yu, S.; Li, H.; et al. Adv. Mater. 2024, 36, 2311002. doi: 10.1002/adma.202311002

    52. [52]

      Zhou, Z.; Wang, T.; Hu, T.; Cheng, C.; Yu, S.; Li, H.; Liu, S.; Ma, L.; Zhao, M.; Liang, R.; et al. Mater. Chem. Front. 2023, 7, 1684. doi: 10.1039/d2qm01333a

    53. [53]

      Fateeva, A.; Chater, P.; Ireland, C.; Tahir, A.; Khimyak, Y.; Wiper, P.; Darwent, J.; Rosseinsky, M. Angew. Chem. Int. Ed. 2012, 51, 7440. doi: 10.1002/anie.201202471

    54. [54]

      Fang, X.; Shang, Q.; Wang, Y.; Jiao, L.; Yao, T.; Li, Y.; Zhang, Q.; Luo, Y.; Jiang, H. Adv. Mater. 2018, 30, 1705112. doi: 10.1002/adma.201705112

    55. [55]

      Oshida, K.; Yuan, K.; Yamazaki, Y.; Tsukimura, R.; Nishio, H.; Nomoto, K.; Miura, H.; Shishido, T.; Jin, X.; Nozaki, K. Angew. Chem. Int. Ed. 2024, 63, e202403092. doi: 10.1002/anie.202403092

    56. [56]

      Zhang, S.; Li, Y.; Ding, C.; Niu, Y.; Zhang, Y.; Yang, B.; Li, G.; Wang, J.; Ma, Z.; Yu, L. Small Struct. 2023, 4, 2200115. doi: 10.1002/sstr.202200115

    57. [57]

      Xu, T.; Zhao, H.; Zheng, H.; Zhang, P. Chem. Eng. J. 2020, 385, 123832. doi: 10.1016/j.cej.2019.123832

    58. [58]

      Jin, L.; Yan, S.; Du, M.; Zhang, J.; Wu, N.; Liu, G.; Chen, H.; Yuan, C.; Qin, A.; Liu, X. J. Colloid Interface Sci. 2024, 662, 183. doi: 10.1016/j.jcis.2024.02.049

    59. [59]

      Xu, T.; Zheng, H.; Zhang, P. J. Hazard. Mater. 2020, 388, 121746. doi: 10.1016/j.jhazmat.2019.121746

    60. [60]

      Guan, G.; Zheng, S.; Xia, M.; Li, K.; Ouyang, Y.; Yang, G.; Yang, Q. Chem. Eng. J. 2023, 464, 142530. doi: 10.1016/j.cej.2023.142530

    61. [61]

      Zhou, R.; Lv, W.; Li, B.; Yu, B.; Zhang, S.; Zhou, Y.; Liu, S.; Zhao, Q. Sci. China Chem. 2024, 67, 604. doi: 10.1007/s11426-023-1836-y

    62. [62]

      Chen, Y.; Wang, Z.; Wang, H.; Lu, J.; Yu, S.; Jiang, H. J. Am. Chem. Soc. 2017, 139, 2035. doi: 10.1021/jacs.6b12074

  • 加载中
    1. [1]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    2. [2]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    3. [3]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    4. [4]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    5. [5]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    6. [6]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    7. [7]

      Runhua Chen Qiong Wu Jingchen Luo Xiaolong Zu Shan Zhu Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052

    8. [8]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    9. [9]

      Jialiang XUJiabin CUI . Recent biological applications of corroles: From diagnosis to therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2303-2317. doi: 10.11862/CJIC.20240245

    10. [10]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    11. [11]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    12. [12]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    13. [13]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    14. [14]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    15. [15]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    16. [16]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    17. [17]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    18. [18]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    19. [19]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    20. [20]

      Haiyu Zhu Zhuoqun Wen Wen Xiong Xingzhan Wei Zhi Wang . Accurate and efficient prediction of Schottky barrier heights in 2D semimetal/silicon heterojunctions. Acta Physico-Chimica Sinica, 2025, 41(7): 100078-. doi: 10.1016/j.actphy.2025.100078

Metrics
  • PDF Downloads(0)
  • Abstract views(16)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return