Citation: Jiahao Lu, Xin Ming, Yingjun Liu, Yuanyuan Hao, Peijuan Zhang, Songhan Shi, Yi Mao, Yue Yu, Shengying Cai, Zhen Xu, Chao Gao. High-Precision and Reliable Thermal Conductivity Measurement for Graphene Films Based on an Improved Steady-State Electric Heating Method[J]. Acta Physico-Chimica Sinica, ;2025, 41(5): 100045. doi: 10.1016/j.actphy.2025.100045 shu

High-Precision and Reliable Thermal Conductivity Measurement for Graphene Films Based on an Improved Steady-State Electric Heating Method

  • Corresponding author: Yingjun Liu, yingjunliu@zju.edu.cn Chao Gao, chaogao@zju.edu.cn
  • Received Date: 4 July 2024
    Revised Date: 22 August 2024
    Accepted Date: 26 August 2024

    Fund Project: the National Natural Science Foundation of China 52272046the National Natural Science Foundation of China 52090030the National Natural Science Foundation of China 52090031the National Natural Science Foundation of China 51973191the National Natural Science Foundation of China 52122301the National Natural Science Foundation of China 52303354the Natural Science Foundation of Zhejiang Province LR23E020003the Fundamental Research Funds for the Central Universities 226-2024-00074the Fundamental Research Funds for the Central Universities 226-2023-00023the Fundamental Research Funds for the Central Universities 226-2023-00082the Fundamental Research Funds for the Central Universities 2023QZJH26Shanxi-Zheda Institute of New Materials and Chemical Engineering 2022SZ-TD011Shanxi-Zheda Institute of New Materials and Chemical Engineering 2022SZ-TD012Shanxi-Zheda Institute of New Materials and Chemical Engineering 2021SZ-FR004

  • The graphene film with high thermal conductivity has garnered considerable attention in recent years as an ideal material for dissipating heat in high-power electronic devices. Thermal conductivity is a crucial parameter for evaluating its fundamental performance. High-precision measurement holds significant importance for understanding its basic properties, fabrication optimization, and industrial applications. However, it is difficult to simultaneously achieve efficient, accurate, and reliable measurements with existing commercial thermal conductivity testing methods. The development of a convenient, high-precision, and reliable measurement approach remains a great challenge. Here, we introduce a thermal conductivity testing methodology with superior accuracy and excellent efficiency based on an improved steady-state electric heating method, refined through the optimization of heat transfer principles, experimental operation, and data analysis, supported by finite element simulation. The accuracy of measurements is affected by four factors: heat loss calibration, sample size, device design, and data treatment. The experimental results show that the heat loss caused by heat radiation and heat convection affects the temperature distribution and the measurements of the sample, which should be strictly controlled by sample size and temperature rise. Reasonable screening and preprocessing of data are also necessary to improve measurement accuracy. Through the comparative analysis of the temperature distribution and thermal conductivity measurements of samples under different conditions, we propose feasible operational guidance and a standardized testing protocol to minimize measurement error. The measurement error is less than 3.0%, and uncertainty is reduced to 0.5%. Simulation results confirm that the response time of this method is down to milliseconds, correlating well with the experiment, which can effectively improve test efficiency. Considering the combined merits of high accuracy, repeatability, and fast response, the improved steady-state electric heating method offers useful guidance for the accurate evaluation of the thermal conductivity of materials and crucial technical support for research and application in thermal management.
  • 加载中
    1. [1]

      Song, H.; Kang, F. Acta Phys.-Chim. Sin. 2022, 38 (1), 2101013.  doi: 10.3866/PKU.WHXB202101013

    2. [2]

      Li, S.; Zheng, Q.; Lv, Y.; Liu, X.; Wang, X.; Huang, P. Y.; Cahill, D. G.; Lv, B. Science 2018, 361 (6402), 579. doi: 10.1126/science.aat8982  doi: 10.1126/science.aat8982

    3. [3]

      Peng, L.; Xu, Z.; Liu, Z.; Guo, Y.; Li, P.; Gao, C. Adv. Mater. 2017, 29 (27), 1700589. doi: 10.1002/adma.201700589.  doi: 10.1002/adma.201700589

    4. [4]

      Liu, L.; Chang, D.; Gao, C. Adv. Fiber Mater. 2024, 6 (1), 68. doi: 10.1007/s42765-023-00340-1  doi: 10.1007/s42765-023-00340-1

    5. [5]

      He, W.; Cheng, H.; Qu, L. Acta Phys.-Chim. Sin. 2022, 38 (9), 2203004.  doi: 10.3866/PKU.WHXB202203004

    6. [6]

      Seol, J. H.; Jo, I.; Moore, A. L.; Lindsay, L.; Aitken, Z. H.; Pettes, M. T.; Li, X.; Yao, Z.; Huang, R.; Broido, D.; et al. Science 2010, 328 (5975), 213. doi: 10.1126/science.1184014  doi: 10.1126/science.1184014

    7. [7]

      Novoselov, K. S.; Fal'ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. Nature 2012, 490 (7419), 192. doi: 10.1038/nature11458  doi: 10.1038/nature11458

    8. [8]

      Moon, J.-Y.; Kim, M.; Kim, S.-I.; Xu, S.; Choi, J.-H.; Whang, D.; Watanabe, K.; Taniguchi, T.; Park, D. S.; Seo, J.; et al. Sci. Adv. 2020, 6 (44), eabc6601. doi: 10.1126/sciadv.abc6601  doi: 10.1126/sciadv.abc6601

    9. [9]

      Chen, Z.; Xie, C.; Wang, W.; Zhao, J.; Liu, B.; Shan, J.; Wang, X.; Hong, M.; Lin, L.; Huang, L.; et al. Sci. Adv. 2021, 7 (47), eabk0115. doi: 10.1126/sciadv.abk0115  doi: 10.1126/sciadv.abk0115

    10. [10]

      Xia, Z.; Shao, Y. Acta Phys.-Chim. Sin. 2022, 38 (9), 2103046.  doi: 10.3866/PKU.WHXB202103046

    11. [11]

      Zhang, X.; Guo, Y.; Liu, Y.; Li, Z.; Fang, W.; Peng, L.; Zhou, J.; Xu, Z.; Gao, C. Carbon 2020, 167, 249. doi: 10.1016/j.carbon.2020.05.051  doi: 10.1016/j.carbon.2020.05.051

    12. [12]

      Huang, H.; Ming, X.; Wang, Y.; Guo, F.; Liu, Y.; Xu, Z.; Peng, L.; Gao, C. Carbon 2021, 180, 197. doi: 10.1016/j.carbon.2021.04.090  doi: 10.1016/j.carbon.2021.04.090

    13. [13]

      Jia, H.; Kong, Q.-Q.; Yang, X.; Xie, L.-J.; Sun, G.-H.; Liang, L.-L.; Chen, J.-P.; Liu, D.; Guo, Q.-G.; Chen, C.-M. Carbon 2021, 171, 329. doi: 10.1016/j.carbon.2020.09.017  doi: 10.1016/j.carbon.2020.09.017

    14. [14]

      Chen, S.; Wang, Q.; Zhang, M.; Huang, R.; Huang, Y.; Tang, J.; Liu, J. Carbon 2020, 167, 270. doi: 10.1016/j.carbon.2020.06.030  doi: 10.1016/j.carbon.2020.06.030

    15. [15]

      Tong, Y.; Tao, Z.; Li, Y.; Liu, Z.; Jiang, L.; Yin, Y. Chin. Space Sci. Technol. 2022, 42 (1), 131.  doi: 10.16708/j.cnki.1000-758X.2022.0015

    16. [16]

      Wang, F.; Fang, W.; Ming, X.; Liu, Y.; Xu, Z.; Gao, C. Appl. Phys. Rev. 2023, 10 (1), 011311. doi: 10.1063/5.0128899.  doi: 10.1063/5.0128899

    17. [17]

      Xie, Y.; Wang, X. Green Carbon 2023, 1 (1), 47. doi: 10.1016/j.greenca.2023.08.004  doi: 10.1016/j.greenca.2023.08.004

    18. [18]

      Kerschbaumer, R. C.; Stieger, S.; Gschwandl, M.; Hutterer, T.; Fasching, M.; Lechner, B.; Meinhart, L.; Hildenbrandt, J.; Schrittesser, B.; Fuchs, P. F.; et al. Polym. Test. 2019, 80, 106121. doi: 10.1016/j.polymertesting.2019.106121  doi: 10.1016/j.polymertesting.2019.106121

    19. [19]

      Sánchez-Calderón, I.; Merillas, B.; Bernardo, V.; Rodríguez-Pérez, M. Á. J. Therm. Anal. Calorim. 2022, 147 (22), 12523. doi: 10.1007/s10973-022-11457-7  doi: 10.1007/s10973-022-11457-7

    20. [20]

      Kim, D.; Lee, S.; Yang, I. J. Korean Phys. Soc. 2021, 78 (12), 1196. doi: 10.1007/s40042-021-00177-0  doi: 10.1007/s40042-021-00177-0

    21. [21]

      Hay, B.; Filtz, J. R.; Hameury, J.; Rongione, L. Int. J. Thermophys. 2005, 26 (6), 1883. doi: 10.1007/s10765-005-8603-6  doi: 10.1007/s10765-005-8603-6

    22. [22]

      Guo, J.; Wang, X.; Geohegan, D. B.; Eres, G.; Vincent, C. J. Appl. Phys. 2008, 103 (11), 113505. doi: 10.1063/1.2936873  doi: 10.1063/1.2936873

    23. [23]

      Ming, X.; Wei, A.; Liu, Y.; Peng, L.; Li, P.; Wang, J.; Liu, S.; Fang, W.; Wang, Z.; Peng, H.; et al. Adv. Mater. 2022, 34 (28), 2201867. doi: 10.1002/adma.202201867  doi: 10.1002/adma.202201867

    24. [24]

      Xin, G.; Zhu, W.; Deng, Y.; Cheng, J.; Zhang, L. T.; Chung, A. J.; De, S.; Lian, J. Nat. Nanotechnol. 2019, 14 (2), 168. doi: 10.1038/s41565-018-0330-9  doi: 10.1038/s41565-018-0330-9

    25. [25]

      Xin, G.; Yao, T.; Sun, H.; Scott, S. M.; Shao, D.; Wang, G.; Lian, J. Science 2015, 349 (6252), 1083. doi: 10.1126/science.aaa6502  doi: 10.1126/science.aaa6502

    26. [26]

      Shen, S.; Henry, A.; Tong, J.; Zheng, R.; Chen, G. Nat. Nanotechnol. 2010, 5 (4), 251. doi: 10.1038/nnano.2010.27  doi: 10.1038/nnano.2010.27

    27. [27]

      Liu, J.; Xu, Z.; Cheng, Z.; Xu, S.; Wang, X. ACS Appl. Mater. Interfaces 2015, 7 (49), 27279. doi: 10.1021/acsami.5b08578  doi: 10.1021/acsami.5b08578

    28. [28]

      Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Nano Lett. 2008, 8 (3), 902. doi: 10.1021/nl0731872  doi: 10.1021/nl0731872

    29. [29]

      Li, Q.; Liu, C.; Wang, X.; Fan, S. Nanotechnology 2009, 20 (14), 145702. doi: 10.1088/0957-4484/20/14/145702.  doi: 10.1088/0957-4484/20/14/145702

    30. [30]

      Zhang, L.; Zhang, G.; Liu, C.; Fan, S. Nano Lett. 2012, 12 (9), 4848. doi: 10.1021/nl3023274  doi: 10.1021/nl3023274

    31. [31]

      Völklein, F.; Reith, H.; Cornelius, T. W.; Rauber, M.; Neumann, R. Nanotechnology 2009, 20 (32), 325706. doi: 10.1088/0957-4484/20/32/325706  doi: 10.1088/0957-4484/20/32/325706

    32. [32]

      Xin, G.; Sun, H.; Hu, T.; Fard, H. R.; Sun, X.; Koratkar, N.; Borca-Tasciuc, T.; Lian, J. Adv. Mater. 2014, 26 (26), 4521. doi: 10.1002/adma.201400951  doi: 10.1002/adma.201400951

    33. [33]

      Liu, Y.; Li, P.; Wang, F.; Fang, W.; Xu, Z.; Gao, W.; Gao, C. Carbon 2019, 155, 462. doi: 10.1016/j.carbon.2019.09.021  doi: 10.1016/j.carbon.2019.09.021

    34. [34]

      Wang, H.-D.; Liu, J.-H.; Zhang, X.; Song, Y. Int. J. Heat Mass Transf. 2014, 70, 40. doi: 10.1016/j.ijheatmasstransfer.2013.10.054  doi: 10.1016/j.ijheatmasstransfer.2013.10.054

    35. [35]

      Pettes, M. T.; Ji, H.; Ruoff, R. S.; Shi, L. Nano Lett. 2012, 12 (6), 2959. doi: 10.1021/nl300662q  doi: 10.1021/nl300662q

    36. [36]

      Yang, J.; Kong, L.; Mu, B.; Zhang, H.; Li, Y.; Cao, W. Rev. Sci. Instrum. 2019, 90 (11), 114902. doi: 10.1063/1.5124720  doi: 10.1063/1.5124720

    37. [37]

      Salihoglu, O.; Uzlu, H. B.; Yakar, O.; Aas, S.; Balci, O.; Kakenov, N.; Balci, S.; Olcum, S.; Süzer, S.; Kocabas, C. Nano Lett. 2018, 18 (7), 4541. doi: 10.1021/acs.nanolett.8b01746  doi: 10.1021/acs.nanolett.8b01746

    38. [38]

      Zhang, S. Y.; Li, Y.; Li, L. F. IOP Conf. Ser.: Mater. Sci. Eng. 2022, 1241 (1), 012050. doi: 10.1088/1757-899X/1241/1/012050  doi: 10.1088/1757-899X/1241/1/012050

    39. [39]

      Schiemann, M.; Gronarz, T.; Graeser, P.; Gorewoda, J.; Kneer, R.; Scherer, V. Fuel 2019, 256, 115889. doi: 10.1016/j.fuel.2019.115889  doi: 10.1016/j.fuel.2019.115889

    40. [40]

      Holliday, T.; Kay, J. A. IEEE Trans. Ind. Appl. 2014, 50 (4), 2403. doi: 10.1109/TIA.2013.2295000  doi: 10.1109/TIA.2013.2295000

    41. [41]

      Kobayashi, K. J. Non-Cryst. Solids 2003, 316 (2), 403. doi: 10.1016/S0022-3093(02)01907-5  doi: 10.1016/S0022-3093(02)01907-5

    42. [42]

      Deshpande, V. V.; Hsieh, S.; Bushmaker, A. W.; Bockrath, M.; Cronin, S. B. Phys. Rev. Lett. 2009, 102 (10), 105501. doi: 10.1103/PhysRevLett.102.105501  doi: 10.1103/PhysRevLett.102.105501

    43. [43]

      Nishi, T.; Ohta, H.; Shibata, H.; Waseda, Y. Int. J. Thermophys. 2003, 24, 1735. doi: 10.1023/B:IJOT.0000004102.55688.c7  doi: 10.1023/B:IJOT.0000004102.55688.c7

    44. [44]

      Pan, Y.; Zhou, Y.; Min, Q.; Li, J. Metrolog. Meas. Tech. 2022, 49 (9), 107.  doi: 10.15988/j.cnki.1004-6941.2022.9.033

  • 加载中
    1. [1]

      Tianqi BaiKun HuangFachen LiuRuochen ShiWencai RenSongfeng PeiPeng GaoZhongfan Liu . Nanoscale Mechanism of Microstructure-Dependent Thermal Diffusivity in Thick Graphene Sheets. Acta Physico-Chimica Sinica, 2025, 41(3): 100025-0. doi: 10.3866/PKU.WHXB202404024

    2. [2]

      Yue ZhangBao LiLixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038

    3. [3]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    4. [4]

      Hao Ren Wen Zhao Fangna Dai Wenyue Guo . Finite Difference Solution of One-Dimensional Quantum Systems: (1) Fundamental Concepts and Infinite Square Well. University Chemistry, 2025, 40(3): 124-131. doi: 10.12461/PKU.DXHX202405145

    5. [5]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    6. [6]

      Anbang DuYuanfan WangZhihong WeiDongxu ZhangLi LiWeiqing YangQianlu SunLili ZhaoWeigao XuYuxi Tian . Photothermal Microscopy of Graphene Flakes with Different Thicknesses. Acta Physico-Chimica Sinica, 2024, 40(5): 2304027-0. doi: 10.3866/PKU.WHXB202304027

    7. [7]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    8. [8]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    9. [9]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    10. [10]

      Xiaofei ZhangShanhao XuZhiyuan WangLong HeTiangcheng HuangYongming XuYucui BianYike LiHaijun ChenZhongjun Li . Surface doping of graphene into BiOCl for efficient photocatalytic amine coupling under visible light. Acta Physico-Chimica Sinica, 2026, 42(5): 100202-0. doi: 10.1016/j.actphy.2025.100202

    11. [11]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    12. [12]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    13. [13]

      Hailang JIAYujie LUPengcheng JI . Preparation and properties of nitrogen and phosphorus co-doped graphene carbon aerogel supported ruthenium electrocatalyst for hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2327-2336. doi: 10.11862/CJIC.20250021

    14. [14]

      Yuanchun Pan Xinyun Lin Leyi Yang Wenya Hu Dekui Song Nan Liu . Artificial Intelligence Science Practice: Preparation of Electronic Skin by Chemical Vapor Deposition of Graphene. University Chemistry, 2025, 40(11): 272-280. doi: 10.12461/PKU.DXHX202412052

    15. [15]

      Zhangshu Wang Xin Zhang Jixin Han Xuebing Fang Xiufeng Zhao Zeyu Gu Jinjun Deng . Exploration and Design of Experimental Teaching on Ultrasonic-Enhanced Synergistic Treatment of Ternary Composite Flooding Produced Water. University Chemistry, 2024, 39(5): 116-124. doi: 10.3866/PKU.DXHX202310056

    16. [16]

      Lisha LEIWei YONGYiting CHENGYibo WANGWenchao HUANGJunhuan ZHAOZhongjie ZHAIYangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202

    17. [17]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    18. [18]

      Shiqian WEIXinyu TIANHong LIUMaoxia CHENFan TANGQiang FANWeifeng FANYu HU . Oxygen reduction reaction/oxygen evolution reaction catalytic performances of different active sites on nitrogen-doped graphene loaded with iron single atoms. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1776-1788. doi: 10.11862/CJIC.20250102

    19. [19]

      Qingtao CHENXiangdong SHIXianghai RAOLiying JIANGChunxiao JIAFenghua CHEN . Catalytic and in situ surface-enhanced Raman scattering detection properties of graphene oxide/gold nanorod assembly. Chinese Journal of Inorganic Chemistry, 2026, 42(1): 120-128. doi: 10.11862/CJIC.20250091

    20. [20]

      Hui Liu Shupeng Zhang Yuntian Zhang Wei Dong Yuji Liu Bingxin Deng Dongping Chen Yongxing Tang . Research on the Application of Virtual Reality (VR) Technology in the Teaching of Organic Chemistry. University Chemistry, 2024, 39(8): 64-71. doi: 10.3866/PKU.DXHX202312028

Metrics
  • PDF Downloads(0)
  • Abstract views(557)
  • HTML views(59)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return